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The present paper deals with relations between flat overrings and quotient rings. We
are mainly concerned with Richman's results [10] on flat overrings and with those of Davis
[2], Gilmer [3], Gilmer and Heinzer [4], Gilmer and Ohm [5], and Mott [8], on rings with the
QR property and with the property (# ) defined in Section 1. Some of their results are
generalized, and it is shown that certain theorems, which at first glance seem to have nothing
in common, are in fact particular cases of a single more general theorem. The main result is
the following (which is proved in Section 2):

THEOREM 1. Let Rbe a Krull domain and let X be the family of all minimal prime ideals of
R. The following statements are then equivalent:

(a) The divisor class group of R is a torsion group.
(b) S = P| RP is a quotient ring of R for each subfamily Y ofX.

P e r
We wish to thank Professor R. Gilmer for his remarks and suggestions.

1. Preliminaries. In the sequel R denotes a commutative integral domain with quotient
field K, unless otherwise specified. An overring of R is any subring of K containing R, a flat
overring of R being an overring which is flat as an R module. R has the QR property if every
overring of R is a quotient ring of R [5]. If P is a prime ideal of R, then RP denotes the
localization of R at P. R has the property (#) if f| RP # f) RP for every pair of distinct

PeAi PeAi
families At and A2 of maximal ideals of/? [3]. By dimR we denote the Krull-dimension of R.

We use a result of Richman in [10], namely that every flat overring of R is an intersection
of localizations of R at prime ideals of R. For the general properties of a Krull domain and
its divisor class group the reader is referred to [11]. It is well known that every quotient ring
of a Krull domain R is of the form f| RP for a suitable subfamily Y of the family of all

PeY
minimal prime ideals of R. Hence every flat overring of R is of this form if R is a Krull
domain.

2. Krull domains. In this section we discuss the Krull domain case, starting with the
proof of Theorem 1.

Proof of Theorem 1. (a) =t» (b). Let M be the set of elements of R invertible in S. Then
S = RM = fl Rp for a suitable subfamily Z of X, and obviously YaZ. If Z^Y, let

PeZ
QeZ—Y. Since the divisor class group of R is a torsion group, Q" is equivalent to a principal
ideal, say Rx, for some integer n. Q and Rx are divisorial ideals; hence Q zz Rx ^> Q". Thus
xeQ and x$P for any PeY. Hence x is invertible in S but not in RM. We thus have a
contradiction, which implies that Y= Z and 5 = RM.

(ft) => (a). Let Q be any element of X, and let S = f| RP. S is a quotient ring of R
PeX-Q
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distinct from R, so that there exists anxeR, x being invertible in S but not in R. Therefore
xeQ and x$P for any PeX— Q. Rx is equivalent to some product of minimal prime ideals

k k k k

Y[ PI' c f) Pt. But P| Pf is a divisorial ideal; hence Rx c f"| P(. Thus only 0 occurs
( » i i = i i = i i = i

among the Pit and i te is equivalent to Q" for some integer n. This completes the proof of
Theorem 1.

REMARK. A Dedekind domain R is a Krull domain in which every ideal is divisorial and
over which every overring is flat. Also, the divisor class group of R is naturally isomorphic
to its ideal class group. An immediate consequence of this remark and Theorem 1 is the
following result, obtained at almost the same time independently by Davis [2], Gilmer and
Ohm [5], and Goldman [6]:

COROLLARY 2. A Dedekind domain R has the QR property if and only if the ideal class
group of R is a torsion group.

We can also easily derive now a result of Gilmer and Ohm [5]:

COROLLARY 3. A unique factorization domain R has the QR property if and only if it is a
principal ideal domain.

Proof. A unique factorization domain is a Krull domain whose divisor class group is
zero. If it also has the QR property, then it is a Priifer domain [5], hence a Dedekind domain.
But R is a Dedekind domain whose ideal class group is zero if and only if it is a principal ideal
domain.

Richman in [10] proved that every flat overring of a unique factorization domain R is a
quotient ring of R. This result is a particular case of the following obvious corollary of
Theorem 1 :

COROLLARY 4. Let R be a Krull domain whose divisor class group is a torsion group.
Then every flat overring of R is a quotient ring of R.

3. Flat overlings. In this section we discuss a more general setting. Consider the
following property:

(*) For any family {P}\j{P,}aeI of prime ideals of R, if P <= JJ P*> t h e n p is contained
IE/

in some Pa.
The following proposition is true for an arbitrary commutative integral domain R:

PROPOSITION 5. IfR has property (*), then every flat overring ofR is a quotient ring ofR.

Proof. Let S be a flat overring of R, and let X be the family of all prime ideals P of R
such that RP => S. Then S = f) RP.

PeX

Let M be the multiplicative set of elements of R invertible in 5. Since RM is also a flat
overring of R, then S => RM = f\ RP for the family Y of all prime ideals P of R such that

RP ^ RM and Y => X. If Y * JSTJet Qe Y-X. UQcP for some PeX, then RQ=>RP=> S,
hence also QeX. Therefore, since (*) holds, Q c U P and there exists an xeQ— \J P.

PeX PeX
Thus x is invertible in S but not in RM, which is impossible. Hence X = Y and S = RM.
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Note that property (*) does not hold in general for an arbitrary ring.
For example, any maximal ideal of a Krull ring R for which dim R ^ 2 is contained in

the set theoretical sum of its minimal prime ideals. However, insofar as the set / is finite, we
have:

k

LEMMA 6 [7, Corollary 3]. / / P c (J ph where P and P, are prime ideals of R, then P is
i = l

contained in some P{.
Combining Lemma 6 with Proposition 5, we arrive at another result of Richman [10].

COROLLARY 7. If R has only a finite number of prime ideals, then every flat overring of R
is a quotient ring of R.

4. Priifer domains. In this section R denotes a Priifer domain. We consider here the
relations between the QR property, property (#) , and property (*). We recall first some
results of Gilmer and Heinzer in [3] and [4].

Let A denote the set of all maximal ideals of R, and let AP = A— {P } for each Pe A.

(A) R has the property (# ) if and only if RQ $ f\ RP for each Q e A.
PeA0

(B) If R has property (# ) and if dimi? = 1, then each overring of R has property (#) .
(C) If Q $ (j P for each Qe A, then R has the property (# ) .

PEAQ

(D) If R has the QR property, then P c JJ Pa if and only if f] Rp. <= Rp for each family
ael 06/

Pu{P,} J E / of prime ideals of JR.
(E) Every overring of R has property (# ) if and only if, for each prime ideal P of R, there

exists a finitely generated ideal J a P such that each maximal ideal of R containing / also
contains P.

(F) R has the property ( # ) if and only if R is uniquely representable as an intersection of a
family {Va} of valuation overrings of R such that there are no containment relations
among the Va.

Since (C) holds, property (*) implies the property (# ) . Moreover, from (E) it can be
proved that if property (*) holds, then every overring of R has property (#) .

The properties (A) and (D) are similar to the following statement: If R has the QR
property, then R has property (*) if and only if every overring of R has property (#) . This is
actually part of the main result of this section, which we now state and prove.

PROPOSITION 8. A Priifer domain R has property (*) if and only if R has the QR property
and every overring of R has property (# ) .

Proof. Suppose that R has property (*). Since every overring of a Priifer domain is a
flat overring, then the QR property follows from Proposition 5. As mentioned earlier, Property
(E) implies that every overring of R has the property (#) .

Suppose now that R has the QR property and that every overring of R has property (#) .
Let P c U Pa, where P and Pt are prime ideals of R. Suppose that P is not contained in

06/
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any Px. It can be assumed without loss of generality that there are no containment relations
among the /ys. It follows from (F), since S = f) ^J>, has the property (#) , that 5 # SnRP =

IE/

5' . Since R has the QR property, then 5 = RM and 5 ' = RN. In this case both sets M and TV
must equal R— \J Pa, so that 5 = 5 ' . Thus P is contained in some Px and the proof of

IE/

Proposition 8 is complete.

As a consequence, since (B) holds, we obtain the following generalization of (C).

COROLLARY 9. Let R be a one-dimensional Prtifer domain. Then Q<k (J P for each

maximal ideal Q of R if and only if R has the QR-property and property ( # ) .
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