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ABSTRACT 

The radial pulsations of very luminous, low-mass models (L/M ~ 
104, solar units), which are possible representatives of the R CrB 
stars, have been examined. These pulsations are extremely nonadia-

batic. We find that there are in some cases at least one extra 
("strange") mode which makes interpretation difficult. The blue 
instability edges are also peculiar, in that there is an abrupt ex
cursion of the blue edge to the blue for L/M sufficiently large. 
The range of periods of the model encompasses observed periods of 
the Cepheid-like pulsations of actual R CrB stars. 

I. INTRODUCTION 

It has been suggested by Wheeler (1978) that the hydrogen-
deficient carbon (HdC) stars may be the progenitors of Type I super-
novae. Among the HdC stars are the R Coronae Borealis (R CrB) stars, 
three of which exhibit, superposed on the large and erratic dimmlngs, 
Cepheid-like pulsations with periods close to 40 (King 1980). 

The present calculations were initiated primarily to test Wheeler's 
(1978) suggestion by using pulsation theory to infer something about the 
masses of these stars. Our original goals have not been overly success
fully realized. Yet, we can say that the masses seem to be around 1-2 
solar masses. However, we have found, we think, some interesting and 
somewhat puzzling results, which are presented in §11. 

The pulsations of models of R CrB stars are very nonadiabatic. 
The reason is that they have high luminosities (L) and relatively low 
masses (M). The ratio L/M is typically of order 101* (solar units), 
compared to ~103 or less for Cenheids. 

We have assumed that the models in their nonpulsating states are 
in hydrostatic equilibrium (Joss, Salpeter, and Ostriker 1973). 
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In §111 we present some conclusions and some conjectures. 

II. RESULTS AND PROBLEMS 

One of the most difficult and frustrating aspects of dealing with 
these very nonadiabatic pulsators is to know what "mode" the star is 
pulsating in. For these oscillations the amplitude I £ I = |<5r/r| of 
the relative radial variation merely undergoes a dip at the "node" 
(i.e., what would be a node if the oscillations were perfectly adia-

batlc). Also, the phase of E, may change gradually by a few radians 
over an appreciable range of radial distances around the "node" (in
stead of changing abruptly by ±TT radians at a node, as in the case of 
perfectly adiabatic oscillations). To make matters worse, there is 
often at least one extra mode; when this is the case, we have called 
such a mode a "strange" mode. The detailed properties of such a 
strange mode depend on the composition chosen for the model. 

We have considered two compositions. One consists of 90% by mass 
of helium and 10% carbon (called HE9C1). The other consists of 98% 
helium and 2% heavier elements, in standard proportions (called Cox-
Hodson 2 or CH2). The opacities and equation of state data have been 
obtained from the opacity library of Huebner et al. (1977), which gives 
information only for temperatures (T) > 12,000 K. For T < 12,000 K, 
special opacity and equation of state tables for HE9C1 have been pre
pared and used. For T < 12,000 K and for CH2, the Stellingwerf (1975) 
opacity formula has been used. All of the linearized calculations re
ported here were carried out with a fully nonadiabatic code similar to 
that of Castor (1971). 

The situation is illustrated in Figure 1, which shows log II (peri
od) versus log Te (effective temperature) for a model with M = 1 M 
(solar mass), L = 1.15 x 101* L0 (solar luminosity), and the above two 
compositions. Shown with dashed lines are the linear adiabatic funda
mental [F, labelled 0 (Ad)1, first overtone [10, labelled 1 (Ad)], and 
second overtone [20, labelled 2 (Ad)] (almost the same for the two 
compositions). The corresponding nonadiabatic modes (indicated subse
quently in the text by "F," "10," and "20") are more~or-less identi
fiable with their adiabatic counterparts, at least for the 10 and 20. 
The strange mode is clearly seen — it is usually intermediate in pe
riod between the "F" and "10" modes, but its detailed characteristics 
obviously depend on composition. Such a strange mode was also found 
by Wood (1976), and called by him the "P " mode. The third mode for 
the CH2 composition — the mode that we have called "F" — exhibits a 
very peculiar behavior indeed. The eigenfunctions for this mode have 
all the characteristics of an F mode at high T 's. Yet, at lower 
T 's its period becomes considerably less than what one would expect 
for a fundamental mode. In fact, the period in this mode becomes 
roughly constant and even diminishes slightly for the smaller Te's. 
Equivalently, one could say that the 0-value in the period-mean density 
relation becomes, for this composition, very much smaller than the 
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Fig. 1. Log II (period in days) vs. log T (effective temperature in K) 
for 1 solar mass models all having luminosity L = l.lSxlO1* L , 
and the two compositions HE9C1 and CH2. S, stable; US, unstable. 

adiabatic Q-value. (The solid line near the bottom of the figure is a 
constant-Q line.) Could this mode actually be a second strange mode? 
Since the curve for this mode actually crosses the curves for several 
other modes, we have here several cases of degeneracy for purely ra
dial modes. 

On the other hand, for the HE9C1 composition the "F" mode at no 
Te's is ever very far away from the adiabatic F mode, at least for this 
luminosity. However, the above peculiar behavior of the "F" mode for 
HE9C1 seems to occur for about a 30% lower luminosity. 

One might ask, "How do the eigenfunctions of two modes near a 
degeneracy differ?" Of the four cases that we have examined (all for 
CH2), two correspond to the near intersection of the "F" mode and the 
strange mode. The crossing point of these two curves is at log II « 
1.55, log Te » 3.83. These two cases are encircled in Figure 1, and 
are illustrated in Figures 2 and 3. The periods of these two modes 
are « 42" (strange mode) and »32d ("F" mode). The other two cases 
(not illustrated) correspond to the intersection of the "F" mode and 
the "10" mode. This intersection point (encircled in Fig. 1) is near 
log n « 1.5, log Tg « 3.76. 
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Fig. 2. Ur/rl vs. x = rQ/R0 for the two cases indicated in Fig. 1 by 
the right-most two circles. 
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Fig. 3. Phase vs. x for the two cases considered in Fig. 2 (see text 
for an explanation of the phase). 
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In Figure 2 are plotted the magnitudes of the relative radial 
variation, |5r/r|, versus x = rQ/R0 (fractional radial distance) for 
the above two modes. In Figure 3 are shown the phases for these two 
modes, versus x. The phase is in each case normalized to be exactly 
ir at the surface. The phases would be IT throughout the star for an 
adiabatic F; TT down to the node and zero interior thereto for an adia-
batic 10; etc. The appearance of the elgenfunctions for the other two 
cases examined is qualitatively the same as illustrated above. 

Finally, the blue edges of the instability regions exhibit a very 
peculiar behavior, which we think is due ultimately to the extreme 
nonadiab'atlcity of the pulsations. In Figure 4 is shown the blue in
stability edge on a Hertzsprung-Russell (H-R) diagrams for M = 1 Me 

and HE9C1. For L < 104 Lffl, the blue edge is at "normal" Tg*s ~ 6000-
7000 K and has a slope roughly parallel to that of the Cepheid insta
bility strip. However, at around L ~ 10"+ L0 the blue edge shifts 
rather abruptly to higher Te's, around 10,000 K. For comparison, also 
shown is the blue edge for the same composition, but for M = 2 M0. 
The approximate location of R CrB is also shown (Schonberner 1975). 

We suspect that for the lower luminosities we are seeing the 
conventional "F" blue edge. However, at the higher luminosities the 
blue edge that we are seeing is probably that of the shorter-period 
strange mode. If the period were to become rather abruptly shorter at 
these higher luminosities, then it can be shown that an abrunt shift 
of the blue edge to the blue Is exactly what would be expected for 
instability due to an envelope ionization mechanism. 

III. CONCLUSIONS 

We have examined the radial oscillations of models of essentially 
helium stars of large luminosity and small mass, i.e., L/M ~ lO4 

(solar units). Such oscillations may be represented In nature by the 
pulsations of certain R CrB stars. 

While our original goal of inferring something about the masses 
of these highly luminous pulsators has not been overly successfully 
realized, we have found some curious and, so far, baffling results and 
some bizarre behavior for these very nonadiabatic oscillations. For 
example, we have found at least one additional ("strange") nonadiaba
tic mode among the lower pulsation modes for sufficiently large L/M. 
Examination of the eigenfunctions of the strange mode and of other 
modes does not appear to help much in the mode identification problem. 

The blue instability edges on an H-R diagram for these models 
behave very peculiarly (see Fig. 4). While the interpretation of 
these results is not clear yet, it does appear that instabilities in 
some mode(s) or other(s) exists throughout a rather large region in 
the H-R diagram encompassing the location of the R CrB stars. 
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Fig. 4. Blue instability edge for H = 1 M0 and the composition HE9C1. 
Numbers alongside the curve give the corresponding periods, in 
days. 

Finally, we wonder if such extremely nonadiabatic oscillations as 
found here, in particular as exemplified by the "strange" mode, have 
any bearing on the Mira variables. After all, it is known (e.g., 
Langer 1971; Keeley 1970a,b) that the pulsations of these stars are 
very nonadiabatic. 

We are grateful to H. Saio for helpful conversations. This work 
was supported in part by NSF Grant No. AST79-22254 , through the Uni
versity of Colorado. 
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DISCUSSION 

KEELEY: Some of the things you are saying remind me very much of 
calculations I did a number of years ago in studying long period vari
ables, particularly the peculiar shape of the fundamental eigenfunctions. 
J. COX: In fact, I was wondering if these peculiar modes have any

thing to do with Mira variables. 
KEELEY: I don't know. These particular ones seem to be similar ob

jects, very luminous with very long periods. 
STARRFIELD: What is the mass of R Cor Bor? 
KING: Somewhere between 0.8 M@ and 2.0 MQ. We did not solve that 

problem. 
A. COX: I want to make a remark. Your eigenfunctions frequently 

get very large as you go into the model. I believe you said four or 
more in some cases. I think that the reason for this is that you have 
a negative density gradient because you are so near the Eddington 
luminosity. You may even exceed it in local regions. Is the eigen-
function large because you have very little mass so that you can swing 
it around wildly? 
J. COX: I don't know. I suppose that is a possibility. 
A. COX: It might be interesting to plot the density on the same 

scale. I will bet that it will be a minimum at the maximum of the 
eigenfunction. 
KEELEY: What do the adiabatic eigenfunctions look like? Can you 

match them up with the nonadiabatic ones? 
J. COX: The adiabatic ones look normal. 
KEELEY: Art may be right. The long period variable stars tend to 

have a broad density inversion. Mine always had larger amplitude there. 
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