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Abstract Using the framework of overpartitions, we give a combinatorial interpretation and proof of
the q-Bailey identity. We then deduce from this identity a couple of facts about overpartitions. We show
that the method of proof of the q-Bailey identity also applies to the (first) q-Gauss identity.
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1. Statement of results

In 1973 Andrews [1] established the q-series identity

∑
n�0

(−a,−q/a)nbnqn(n+1)/2

(bq)n(q2; q2)n
=

(−abq, −bq2/a; q2)∞
(bq)∞

. (1.1)

Here we employ the usual basic hypergeometric series notation [9]:

(x, y)n := (x, y; q)n :=
n−1∏
k=0

(1 − xqk)(1 − yqk). (1.2)

When q = 1, equation (1.1) reduces to a result of Bailey [13, (III.7), p. 243] on ordinary
hypergeometric series, and hence we call it the q-Bailey identity. While this identity gets
mentioned from time to time (see, for example, [9–11]), not much has been written about
it in the three decades since Andrews’s paper appeared. As we shall see, however, there is
indeed something more to be said about the q-Bailey identity, particularly in the context
of overpartitions.

We begin with a combinatorial interpretation and proof of (1.1). Recalling that an
overpartition is simply a partition wherein we may overline the first occurrence of a
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number, it is clear enough that the right-hand side is a generating function for overparti-
tions, the numerator generating the overlined parts and the denominator generating the
non-overlined parts. But what about the left-hand side? It turns out that the summation
variable n can be viewed as the size of the generalized Durfee square of an overpartition,
a generalization of the usual Durfee square which has recently arisen in combinatorial
studies of Rogers–Ramanujan-type identities [7]. For our purposes, we need only know
that the size of the generalized Durfee square of an overpartition λ, denoted D(λ), is
defined to be the largest number n such that the number of overlined parts plus the
number of non-overlined parts greater than or equal to n is at least n. For example, the
overpartition λ = (10, 9, 8, 8, 7, 4, 3, 2, 2) has D(λ) = 5.

By arguing combinatorially that the right-hand side of (1.3), below, satisfies a recur-
rence and initial condition also satisfied by the product on the left-hand side, we will
establish Theorem 1.1, from which the q-Bailey identity will then easily follow.

Theorem 1.1. Let fn(r, m) be the number of overpartitions of m into n parts such
that

(i) all non-overlined parts are at least n and

(ii) r is the number of odd overlined parts minus the number of even overlined parts.

Then
(−a,−q/a)nqn(n+1)/2

(q2; q2)n
=

∑
r∈Z,
m�0

fn(r, m)arqm. (1.3)

Next we examine two Rogers–Ramanujan-type identities contained in the q-Bailey
identity: the case when a = i

√
q and b = 1,

∑
n�0

(−q; q2)nqn(n+1)/2

(q)n(q2; q2)n
=

(−q3; q4)∞
(q)∞

, (1.4)

and the case when q = q2, a = ζ6q and b = 1,

∑
n�0

(q3; q6)nqn2+n

(q)2n(q4; q4)n
=

(q9; q12)∞
(q3; q4)∞(q2; q2)∞

. (1.5)

Here ζ6 is a primitive sixth root of unity.
We interpret these as overpartition identities by viewing the summation variable n in a

second way: as the number of columns in the Frobenius representation of an overpartition.
We recall [6] that the Frobenius representation of an overpartition of m is a two-row array,(

a1 a2 · · · an

b1 b2 · · · bn

)
, (1.6)

where the top row is a partition into distinct parts, the bottom row is an overpartition
into non-negative parts and the sum of all the entries is m. Using a bijection between
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an overpartition and its Frobenius representation [8], we also interpret (1.4) in terms of
the standard representation of an overpartition. (This can also be done for (1.5), but the
result does not have the desired elegance.)

Here and throughout we identify an overpartition λ with a pair of partitions (ρ, δ), the
first element of the pair containing the non-overlined parts and the second containing
the overlined parts. We also employ the notation �(·) for the largest part and ν(·) for the
number of parts.

Theorem 1.2. Let A1(m) denote the number of overpartitions λ = (ρ, δ) of m such
that

(i) �(δ) ≡ ν(δ) (mod 2),

(ii) the overlined parts alternate in parity,

(iii) the largest D(λ) − ν(δ) non-overlined parts alternate in parity, and

(iv) if D(λ) − ν(δ) > 0, then �(ρ) ≡ ν(δ) (mod 2).

Let B1(m) denote the number of overpartitions of m whose Frobenius representations
have a bottom row that is a partition without repeated odd parts. Let C1(m) denote the
number of overpartitions whose overlined parts are congruent to 3 mod 4. Then A1(m) =
B1(m) = C1(m).

Theorem 1.3. Let B2(m) denote the number of overpartitions whose Frobenius rep-
resentations have a top row in which the smallest part as well as the differences between
successive parts are congruent to 2 mod 4, and a bottom row in which

(i) odd parts are overlined and

(ii) if 2k occurs, then k is positive and 2k + 2, 2k + 1, 2k, 2k − 1 and 2k − 2 do not
occur.

Let C2(m) denote the number of ordinary partitions of m where odd parts are congruent
to 3 mod 4 and occur at most twice.

We take a moment to illustrate Theorem 1.2 by recording the overpartitions counted
by A1(5),

(5), (4, 1), (4, 1̄), (2, 2, 1̄), (3, 1, 1),

(3, 1̄, 1), (2, 1, 1, 1), (2, 1̄, 1, 1), (1, 1, 1, 1, 1),

the Frobenius representations of the overpartitions counted by B1(5),(
5
0

)
,

(
4
1

)
,

(
3
2

)
,

(
2
3

)
,

(
1
4

)
,

(
2 1
2 0

)
,

(
3 1
1 0

)
,

(
3 2
0 0

)
,

(
4 1
0 0

)
,
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and the overpartitions counted by C1(5),

(5), (4, 1), (3, 2), (3, 2), (3, 1, 1),

(3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

In each case there are nine overpartitions.
Finally, since there have recently [4, 5, 14] been some simple and straightforward

overpartition-theoretic proofs of the (first) q-Gauss identity,

∑
n�0

(−1/a,−1/b)n(abcq)n

(q, cq)n
=

(−acq,−bcq)∞
(cq, abcq)∞

, (1.7)

we will show that the method of proof used in establishing the q-Bailey identity may also
be applied to prove this identity.

2. Proof of the q-Bailey identity

2.1. Proof of Theorem 1.1

Let Fn(a) denote the right-hand side of (1.3). Clearly, F0(a) = 1. For n � 1, we shall
establish that

Fn(a) =
qn

1 − q2n
((a + qn−1)Fn−1(1/a) + qn(1/a + qn−1)Fn−1(a)). (2.1)

Start with an overpartition λ counted by Fn(a). If neither 1̄ nor n (non-overlined) occurs
in λ, then remove 1 from each part of λ. If there is still no 1̄ or n, then remove 1 from
each part again, continuing this process until either there is a 1̄ or n (or both).

Call the resulting overpartition λ′. If 1̄ occurs in λ′, then remove it and then subtract
1 from each remaining part. The result λ′′ is an overpartition into n − 1 parts whose
non-overlined parts are all at least n − 1. If we subtracted 1 from each part an even
number of times in passing from λ to λ′, then λ′′ is an overpartition counted by

aqn

1 − q2n
Fn−1(1/a);

otherwise it is counted by
q2n

a(1 − q2n)
Fn−1(a).

Now if 1̄ does not occur in λ′, then it has at least one occurrence of n. We remove
one part of size n and then subtract 1 from each remaining part to obtain λ′′, which is
again an overpartition into n − 1 parts whose non-overlined parts are at least n − 1. If
we subtracted 1 from each part an even number of times in passing from λ to λ′, then
λ′′ is an overpartition counted by

q2n−1

1 − q2n
Fn−1(1/a),

https://doi.org/10.1017/S0013091507000314 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000314


Overpartitions and the q-Bailey identity 301

otherwise it is counted by
q3n−1

1 − q2n
Fn−1(a).

Putting the four cases together gives (2.1). A simple computation shows that the
product on the left-hand side of (1.3) also satisfies the recurrence in (2.1):

qn

1 − q2n

(
(a + qn−1)(−1/a,−aq)n−1q

n(n−1)/2

(q2; q2)n−1
+

qn(a + qn−1)(−a,−q/a)n−1q
n(n−1)/2

(q2; q2)n−1

)

=
qn(n+1)/2

(q2; q2)n

(
a(−1/a)n(−aq)n−1 +

qn

a
(−a)n(−q/a)n−1

)

=
qn(n+1)/2

(q2; q2)n

(
a(−a)n

(1 + a)
(−q/a)n(1 + 1/a)

(1 + qn/a)
+

qn(−a)n

a

(−q/a)n

(1 + qn/a)

)

=
qn(n+1)/2

(q2; q2)n

(−a,−q/a)n

(1 + qn/a)
(1 + qn/a)

=
(−a,−q/a)nqn(n+1)/2

(q2; q2)n
.

Together with the initial condition

q0(0+1)/2(−a,−q/a)0/(q2; q2)0 = 1,

this implies Theorem 1.1.

2.2. The q-Bailey identity from Theorem 1.1

Clearly, the right-hand side of the q-Bailey identity is the generating function for
the number of overpartitions, where the exponent of b counts the number of parts and
the exponent of a counts the number of odd overlined parts minus the number of even
overlined parts. For the left-hand side, suppose that the generalized Durfee square of
an overpartition λ has size n. Then λ may be decomposed into an overpartition µ1

into exactly n parts whose non-overlined parts are at least n and an ordinary partition
µ2 into (non-overlined) parts at most n. Letting the exponent of a keep track of the
difference between the number of odd overlined parts and the number of even overlined
parts and letting the exponent of b count the number of parts, Theorem 1.1 tells us that
the generating function for the overpartitions µ1 is

bnqn(n+1)/2(−a,−q/a)n

(q2; q2)n
.

Of course, the generating function for the partitions µ2 is 1/(bq)n. Putting these together
and summing over all n gives (1.1).
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1
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Figure 1. The 2-modular diagram of (9, 7, 6, 6, 4, 3).

3. Overpartition identities from the q-Bailey identity

3.1. Proof of Theorem 1.2

The right-hand side of (1.4) is clearly the generating function for C1(m), those over-
partitions of m whose overlined parts are congruent to 3 mod 4. To discover the function
B1(m), we decompose the summand into two pieces, corresponding to qn(n+1)/2/(q)n and
(−q; q2)n/(q2; q2)n. The first piece is the generating function for partitions into n distinct
positive parts. The second piece is the generating function for partitions without repeated
odd parts and whose parts are at most 2n, or equivalently, partitions into exactly n non-
negative parts without repeated odd parts. This equivalence may be deduced by reading
the columns of the 2-modular diagram of a partition without repeated odd parts and
whose parts are at most 2n. For example, take n = 6 and the partition (9, 7, 6, 6, 4, 3),
whose 2-modular diagram is displayed in Figure 1. Reading the columns, we obtain a
partition into six non-negative parts, (12, 11, 8, 3, 1, 0).

Evidently, the two pieces generate Frobenius representations with n columns counted
by B1(m).

Now to see that the coefficient of qm on the left-hand side is A1(m), we use a simple
bijection (generalizations of which were presented in [8]). Let us call µ1 the partition into
distinct parts contributed by the top row of the Frobenius symbol and µ2 (respectively,
µ3) the partition into even parts (respectively, odd parts) coming from the bottom row.
Notice that the number of parts in µ2 plus the number of parts in µ3 is necessarily equal
to the number of parts in µ1.

We now make a diagram with µ1, µ2 and µ3. This is illustrated in Figure 2, wherein
n = 5, µ1 = (9, 8, 5, 3, 1), µ2 = (6, 6) and µ3 = (7, 5, 3). First, draw the Ferrers diagram for
µ1 in the normal way, except that each part is shifted one unit to the right of the preceding
part. This creates a diagonal (d1, d2, . . . , dn) with n boxes, running from northwest to
southeast. Second, add the ith largest part of µ2 as a row to the left of the diagonal entry
di. Third, add the jth smallest part of µ3 as a column under the diagonal entry dn−j+1.
Finally, draw a vertical line just to the left of the column containing the largest part of
µ3 (if µ3 is empty, this line goes just to the right of the diagonal entry dn). The rows to
the left of the line form a partition δ into distinct parts and the columns to the right of
the line form an ordinary partition ρ. Together these give an overpartition λ = (ρ, δ). In
our example, we obtain (10, 9, 8, 8, 7, 4, 3, 2, 2).

It is clear that n is now the size of the generalized Durfee square. Verifying conditions
(i)–(iv) in the statement of the theorem is routine. For example, the fact that the parts
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d1

d2

d3

d4

d5

Figure 2. A bijection between an overpartition and its Frobenius representation.

2 2 2 2 1

2 2 2 1

2 2 1

2 2 1

2 2

2 1

Figure 3. The 2-modular diagram of (9, 7, 5, 5, 4, 3).

added in the rows to the left of the diagonal entries are even together with the fact that
the vertical line cuts out a staircase between itself and these even rows gives conditions (i)
and (ii).

3.2. Proof of Theorem 1.3

We proceed as in the proof of Theorem 1.2, this time examining the identity (1.5).
First, we write the product side as

1
(q2; q2)∞

∏
k≡3 (mod 4)

(1 + qk + q2k). (3.1)

This is clearly the generating function for C2(m).
For B2(m), we break the summand on the left-hand side into two pieces:

qn2+n/(q4; q4)n and (q3; q6)n/(q)2n.

The first piece is certainly the generating function for the top row of a Frobenius repre-
sentation counted by B2(m). Now rewrite the second piece as

1
(q2; q2)n

n∏
k=1

(1 + q2k−1 + q4k−2).
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This is the generating function for partitions into parts at most 2n, where odd parts occur
at most twice. By reading the columns of the 2-modular diagram of such a partition and
overlining any part whose column contains a 1, we see that this piece is the generating
function for those overpartitions into n non-negative parts such that odd parts are over-
lined and if 2k occurs, then k is positive and 2k + 2, 2k + 1, 2k, 2k − 1 and 2k − 2 do not
occur. For example, take n = 6 and the partition (9, 7, 5, 5, 4, 3). Its 2-modular diagram is
displayed in Figure 3. Reading the columns, we obtain the overpartition (12, 11, 6, 3, 1̄).
This is the bottom row.

4. The q-Gauss identity

We now prove (1.7) using the same kind of argument as in § 2. To begin, the right-hand
side of (1.7) is clearly the generating function for overpartition pairs (λ, µ) such that the
exponent of c is ν(λ)+ ν(µ), the exponent of a is the number of overlined parts of λ plus
the number of non-overlined parts of µ and the exponent of b is the number of parts of µ.

We shall also interpret the summand of the left-hand side as this same generating
function for overpartitions pairs (λ, µ), with a restriction introduced by the summation
variable. This summation variable n will be the largest n such that ν(µ) plus the number
of overlined parts in λ plus the number of non-overlined parts in λ which are greater
than or equal to n is at least n.

Let us write the summand as
Gn(a, b)cn

(cq)n

with

Gn(a, b) =
(−1/a)n(−1/b)n

(q)n
(abq)n.

Now define Fn(a, b) to be the generating function for overpartition pairs (λ, µ) such that
ν(λ)+ν(µ) = n, the exponent of a is the number of overlined parts of λ plus the number
of non-overlined parts of µ, the exponent of b is the number of parts of µ, and the
non-overlined parts of λ are greater than or equal to n.

Since 1/(cq)n is the generating function for partitions into parts at most n, with
the exponent of c tracking the number of parts, we will be done if we can show that
Gn(a, b) = Fn(a, b). Clearly, G0(a, b) = F0(a, b) = 1. For n � 1, we shall establish that

Fn(a, b) =
abq

1 − qn
(1 + qn−1/a)(1 + qn−1/b)Fn−1(a, b). (4.1)

This is obviously true with F replaced by G.
We require an auxiliary function. Let F̃n(a, b) be the generating function for overpar-

tition pairs (λ, µ) counted by Fn(a, b) with the extra condition that the non-overlined
parts of λ are greater than n. This definition implies that

F̃n(a, b) =

{
Fn(a, b) − qnF̃n−1(a, b), if n � 0,

0 otherwise.
(4.2)
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Now take an overpartition pair (λ, µ) counted by Fn(a, b). If neither 1̄ nor n (non-
overlined) occurs in λ and neither 1̄ nor 1 (non-overlined) occurs in µ, then remove 1
from each part of λ and 1 from each part of µ. Continue this process until one of the
above conditions is filled. Call the resulting overpartition pair (λ′, µ′).

If 1 (non-overlined) occurs in µ′, then remove it from µ′. The result (λ′′, µ′′) is an
overpartition pair counted by

A1 =
abq

1 − qn
F̃n−1(a, b).

If 1̄ occurs in λ′ and neither 1 nor 1̄ occur in µ′, then remove 1̄ from λ′ and then
subtract 1 from each remaining part of λ′ and µ′. The result (λ′′, µ′′) is an overpartition
pair counted by

A2 =
aqn

1 − qn
Fn−1(a, b).

If 1̄ occurs in µ′ while 1 (non-overlined) does not occur in µ′ and 1̄ does not occur in
λ, then remove 1̄ from µ′ and then subtract 1 from each remaining part of λ′ and µ′.
The result (λ′′, µ′′) is an overpartition pair counted by

A3 =
bqn

1 − qn
Fn−1(a, b).

If 1̄ occurs in µ′ and λ′ and 1 (non-overlined) does not occur in µ′, then remove the
1̄ from µ′ and λ′. Then subtract 1 from each remaining part of λ′ and µ′. The result
(λ′′, µ′′) is an overpartition pair counted by

A4 =
abqn

1 − qn
F̃n−2(a, b).

(Notice that n must be at least 2 for the above to happen.)
Finally, if n occurs in λ′, 1̄ does not occurs in λ′ and 1 or 1̄ do not occur in µ, then

remove n from λ′ and then subtract 1 from each remaining part of λ′ and µ′. The result
(λ′′, µ′′) is an overpartition pair counted by

A5 =
q2n−1

1 − qn
Fn−1(a, b).

Now all the cases have been covered, and putting them all together gives

Fn(a, b) = A1 + A2 + A3 + A4 + A5

=
1

1 − qn
(aqn + bqn + q2n−1)Fn−1(a, b) + abq(F̃n−1 + qn−1F̃n−2)

=
abq

1 − qn
(1 + qn−1/a)(1 + qn−1/b)Fn−1(a, b),

by an application of (4.2). This is the recurrence (4.1), completing the proof.
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5. Concluding remarks

We close with a few questions. First, can the combinatorial method employed in the proofs
of (1.1) and (1.7) be applied to other basic hypergeometric series identities? Second, is
it possible to prove families of overpartition identities generalizing Theorems 1.2 or 1.3
by using the Bailey machinery [2] to embed (1.4) or (1.5) in an infinite family of q-series
identities? Finally, what about other identities coming from the q-Bailey identity? Drew
Sills has kindly pointed out to us that some instances of (1.1) occur in Ramanujan’s
lost notebook (e.g. [3, (5.35), (5.38), (5.39)]) and in Slater’s list of identities of the
Rogers–Ramanujan type (e.g. [12, (110), corrected]); undoubtedly some of these have
nice consequences for overpartitions as well.
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