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1. Introduction

1.1. Preliminaries

Let X be a connected compact Kähler manifold of complex dimension n � 2, with integral
Kähler form ω. Let L → X be a holomorphic Hermitian line bundle, with connection ∇,
such that curv(∇) = −2πiω (thus c1(L) = [ω]). The line bundle L is ample.

Suppose Y , S are connected compact complex submanifolds of X, S ⊂ Y , 1 � dim S <

dim Y � n, and π : Y → S is a surjective holomorphic map such that π(z) = z for any
z ∈ S, Y =

⋃
z∈S π−1(z) and {π−1(z) | z ∈ S} is a complex analytic family of connected

compact complex submanifolds of X. Define Yz = π−1(z) for z ∈ S. Note that Yz is
diffeomorphic to Yz′ for any z, z′ ∈ S (see, for example, [9]). For z ∈ S, denote by
ιz : Yz → X the inclusion map, and denote by m the (complex) dimension of Yz. Also
denote by σ : S → X the inclusion map.

Let k be a positive integer. Define E
(k)
z = H0(Yz, ι

∗
z(L

⊗k)) for z ∈ S. For sufficiently
large k the complex vector spaces E

(k)
z , z ∈ S, form a holomorphic vector bundle on S,

which we shall denote by E(k); this follows by applying the Kodaira Vanishing Theorem
and the Grothendieck–Riemann–Roch Theorem (also see, for example, [11], where the
setting is more general). Define r = r(k) = dimE

(k)
z and N = N(k) = dimH0(X, L⊗k).

There exists k0 such that, for all k � k0 and for all z ∈ S, ι∗z(L
⊗k) is very ample

and the pull-back (restriction to Yz) map H0(X, L⊗k) → E
(k)
z , s �→ ι∗zs is surjective. The

surjectivity statement means that every holomorphic section over Yz can be extended to
a holomorphic section over X [4, p. 74]. See also the following short explanation: denote
by J (k)

z the sheaf of holomorphic sections of L⊗k vanishing on Yz (i.e. J (k)
z is the product
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of the ideal sheaf of Yz and O(L⊗k)). Note that, for sufficiently large k, H1(X, J (k)
z ) = 0

(by the Serre Vanishing Theorem). Then the exact sequence of cohomology associated
to the exact sequence of sheaves

0 → J (k)
z → O(L⊗k) → O(ι∗z(L

⊗k)) → 0

shows that the map H0(X, O(L⊗k)) → H0(Yz,O(ι∗z(L
⊗k))) is surjective (since the next

map H0(Yz,O(ι∗z(L
⊗k))) → H1(X, J (k)

z ) is the zero map).
Henceforth, we shall assume that k � k0.

1.2. Statement of results and discussion

We shall introduce a natural metric and connection on E(k). It will provide a connection
on the holomorphic line bundle det(E(k)), and we shall study its curvature asymptotically,
as k → +∞.

This connection is the metric connection obtained from the Hermitian metric on E(k),
defined as follows.

Denote the Hermitian inner product on the fibre of L over z by bz(· , ·). This provides
the Hermitian inner product on the fibre of L⊗k over z, which we shall denote by b

(k)
z (· , ·).

Then the Hermitian inner product on L2(X, L⊗k) is

b(k)(s, s′) =
∫

X

b(k)
z (s(z), s′(z))

ωn

n!
,

s, s′ ∈ L2(X, L⊗k), and this defines a Hermitian inner product on H0(X, L⊗k) ⊂
L2(X, L⊗k) which we shall also denote by b(k)(· , ·).

One can define an inner product on E
(k)
z as follows. Observe that for z ∈ S the finite-

dimensional complex vector space H0(X, L⊗k), endowed with Hermitian inner product
b(k)(· , ·), splits into orthogonal sum of subspaces ker(ι∗z) and its orthogonal complement
V

(k)
z

∼= E
(k)
z . Thus, we obtain another inner product on E

(k)
z , obtained from b(k)(· , ·).

We shall denote this inner product by (· , ·)(k), and we shall denote the corresponding
connection on E(k) by D(k). Let us explain this in a little more detail. Suppose that
s, s′ ∈ E

(k)
z . Define the extension s̃ of s to X as s̃ ∈ H0(X, L⊗k) such that ι∗z s̃ = s and

s̃ has the minimal norm (i.e. it has the minimal value of b(k)(s̃, s̃)).∗ Also, let s̃′ be the
extension of s′ to X. The definition above says that (s, s′)(k) := b(k)(s̃, s̃′).

Note that D(k) is defined in the same way as the connection studied in [6, 8] (see
also [7]), and this dates back to [1] (i.e. it is ‘the same’ connection, at least philosophi-
cally); see Lemma 3.1.

Another natural way to define an inner product on E
(k)
ξ , ξ ∈ S, is as follows:

〈s, s′〉(k) =
∫

Yξ

b(k)
z (s(z), s′(z))

(ι∗ξω)m

m!
,

s, s′ ∈ E
(k)
ξ . We shall denote the corresponding Hermitian connection on E(k) by ∇(k).

The connection on det(E(k)) obtained from ∇(k) is the standard L2 connection.
∗ I am grateful to Brian Hall for this remark.

https://doi.org/10.1017/S0013091508000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000539


Complex submanifolds, connections and asymptotics 375

In the theorem below we prove that the curvature of the connection on det(E(k))
obtained from D(k) is asymptotic to −2πiσ∗ω, and as a corollary we obtain that it is also
asymptotic to the curvature of the L2 connection. We also give an explicit expression for
the curvature of D(k) (Proposition 1.4).

Theorem 1.1. Let f1, . . . , fr be a local holomorphic frame for E(k) near ξ ∈ S, and
let h(k) = h(k)(z) be the r × r matrix with h

(k)
ij = (fi, fj)(k). Then, as k → +∞, at z = ξ∥∥∥∥− i

2πkr(k)
∂∂̄ log det h(k) − σ∗ω

∥∥∥∥
ξ

= O

(
1
k

)
.

Lemma 1.2. Let f1, . . . , fr be a local holomorphic frame for E(k) near ξ ∈ S, and let
γ(k) = γ(k)(z) be the r × r matrix with γ

(k)
ij = 〈fi, fj〉(k), Then, as k → +∞, at z = ξ∥∥∥∥− i

2πkr(k)
∂∂̄ log det γ(k) − σ∗ω

∥∥∥∥
ξ

= O

(
1
k

)
.

Corollary 1.3. In the notation of Theorem 1.1 and Lemma 1.2, as k → +∞, at z = ξ∥∥∥∥ 1
kr(k)

(∂∂̄ log det h(k) − ∂∂̄ log det γ(k))
∥∥∥∥

ξ

= O

(
1
k

)
.

The precise meaning of the three asymptotic statements above is as follows: for a
sequence {Ω(k)} of 2-forms on S and ξ ∈ S,

‖Ω(k)‖ξ = O

(
1
k

)
, k → +∞,

means that, for any tangent vectors u, v ∈ TξS,

|Ω(k)
ξ (u, v)| = O

(
1
k

)
as k → +∞

(clearly, uniformly on the unit sphere bundle in TS).
Also, to clarify: the curvature 2-form of the connection on detE(k) obtained from

∇(k) is −∂∂̄ log det γ(k) and D(k) gives the connection on det E(k) with curvature
−∂∂̄ log det h(k). Note that the asymptotics in Theorem 1.1 are consistent with equal-
ity (1) in [11] (a direct consequence of the Grothendieck–Riemann–Roch Theorem),
which in our case gives

c1(det E(k)) =
∫

Yz

[ω]m+1

(m + 1)!
km+1 + O(km)

as k → ∞. This can be refined to a statement at the level of 2-forms (for the curvature
of the L2 connection, see Lemma 1.2 and its proof).

For an N -dimensional complex vector space W we shall denote by G(r, W ) the Grass-
mannian of r-dimensional linear subspaces of W . Choose and fix a basis u1, . . . , uN in
W . Recall that, given a basis f1, . . . , fr in U ∈ G(r, W ), the Stiefel matrix A for U is the
N × r matrix whose jth column consists of components of fj with respect to the basis
u1, . . . , uN . The matrix A is defined up to right multiplication by a non-singular r × r

matrix.
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Proposition 1.4. Suppose that ξ ∈ S, z = z(t1), z = z(t2) are paths in S such that

z(t1)|t1=0 = z(t2)|t2=0 = ξ

and v1, v2 are the tangent vectors to S at ξ represented by these two paths. Suppose
that an orthonormal basis in H0(X, L⊗k) =: W (k) is chosen. For j = 1, 2 let A(k)(z(tj))
be Stiefel matrices for V

(k)
z(tj)

∈ G(r, W (k)) with respect to this basis, depending smoothly
on tj , and such that

A(k)(z(t1))|t1=0 = A(k)(z(t2))|t2=0 =: A
(k)
0 ,

and the basis in V
(k)
ξ is chosen to be orthonormal. Then the curvature of D(k) is the

following element of End(E(k)
ξ ):

Curvξ;v1,v2(D
(k)) = η

(k)
1

T(
IN − A

(k)
0 A

(k)
0

T)
η
(k)
2 − η

(k)
2

T(
IN − A

(k)
0 A

(k)
0

T)
η
(k)
1 , (1.1)

where

η
(k)
j =

dA(k)(z(tj))
dtj

∣∣∣∣
tj=0

, j = 1, 2,

and IN is the N × N identity matrix.

Remark 1.5. If we choose the bases so that fj = uj at ξ for 1 � j � r, then the
matrix (1.1) is B̄T

1 B2 − B̄T
2 B1, where Bl is the (N − r) × r matrix whose ijth entry is

the (r + i, j)th entry of ηl, l = 1, 2.

2. Proofs of Theorem 1.1, Lemma 1.2 and Corollary 1.3

The following statement will be needed.

Lemma 2.1. Let L → M be a very ample Hermitian line bundle on a connected
compact complex manifold M . Let d = dimH0(M, L), and let K(· , ·) be the Bergman
kernel for L (i.e. the kernel of the orthogonal projection L2(M, L) → H0(M, L)). Then
there are points p1, . . . , pd ∈ M such that K(z, p1), . . . , K(z, pd) form a basis in H0(M, L).

Proof. First, we recall that, for any p ∈ M , K(z, p) is naturally identified with a
holomorphic section of L and s(p) = 〈s(z), K(z, p)〉, where p, z ∈ M , s ∈ H0(M, L) and
〈· , ·〉 denotes the inner product on H0(M, L).

Denote by ι : M → P
d−1 the projective embedding given by L. Choose points

p1, . . . , pd ∈ M such that ι(p1), . . . , ι(pd) are not on the same hyperplane in P
d−1.

Let us argue by contradiction. Assume that K(z, p1), . . . , K(z, pd) do not form a basis
in H0(M, L). Then there is s ∈ H0(M, L) which is not the zero section and such that for
1 � j � d, s(pj) = 〈s(z), K(z, pj)〉 = 0. The zero locus of s is the intersection of ι(M)
with a hyperplane in P

d−1, but ι(p1), . . . , ι(pd) are not on the same hyperplane, and
hence s must be the zero section, which is a contradiction. Thus, K(z, p1), . . . , K(z, pd)
form a basis in H0(M, L). �
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Proof of Lemma 1.2. There are various ways to prove this lemma. One way to derive
the result is as follows: integrate (7) in [11, Theorem 2.1] over the fibre, note [11, (8)],
also note that the curvature on det(E(k)) is the trace of the curvature on E(k) and the
trace of the curvature operator is equal to the integral of its kernel restricted to the
diagonal.

Or, instead, one could prove it using the Bismut–Gillet–Soulé Curvature Theorem
[2, Theorem 1.9] and Bismut and Vasserot’s result on the asymptotic expansion of the
analytic torsion [10, Theorem 5.5.8].

Here we shall explain in detail another proof, which is based on asymptotic results
for the Bergman kernel due to Zelditch and Borthwick and Uribe, to demonstrate the
general idea of the proof of Theorem 1.1.

We recall that ∥∥∥∥1
k

φ∗
k(ω(k)

FS ) − σ∗ω

∥∥∥∥ = O

(
1
k

)
(2.1)

as k → +∞, where φk : S → P
q is the projective embedding given by σ∗(L⊗k), q =

q(k) = dimH0(S, σ∗(L⊗k)) − 1, and ω
(k)
FS is the Fubini–Study form on P

q (see, [12], [13,
Corollary 3], [5]).

For z ∈ S denote by K
(k)
z (· , ·) the kernel of the orthogonal projection

L2(Yz, ι
∗
z(L

⊗k)) → H0(Yz, ι
∗
z(L

⊗k))

(the Bergman kernel for the line bundle ι∗z(L
⊗k) → Yz).

For E(k) near ξ, let s1, . . . , sr be a local unitary frame (with respect to 〈· , ·〉(k)), and
also choose a local frame of the form

e1 = K(k)
z (· , p1(z)), . . . , er = K(k)

z (· , pr(z)),

where z ∈ S, p1(z), . . . , pr(z) ∈ Yz. Also assume that the points are chosen so that the
r × r matrix F = F (z, k) with ijth entry equal to fi(pj) varies holomorphically near ξ.
Note that we drop ‘(k)’ from the notation for ej , sj , pj and fj , for simplicity.

Denote by γ
(k)
Berg the r × r matrix whose ijth entry is 〈ei, ej〉(k). Recall that

ei =
r∑

j=1

sj(z)sj(pi).

It is not difficult to see that γ
(k)
Berg = F̄T(γ(k))−1F ; therefore,

∂∂̄ log det γ
(k)
Berg = −∂∂̄ log det γ(k).

In the notation of [3] ej = Πk(· , pj). Note that 〈ei(z), ej(z)〉(k) = K
(k)
z (pj(z), pi(z)),

1 � i, j � r. By [3, Lemma 4.5], as k → +∞,

K(k)
z (pj , pi) = νk(pj)e−kd(pj ,pi)2/2 + O(km−1/2), (2.2)

where d(pj , pi) is the distance between pj and pi, and

νk(pj) := K(k)
z (pj , pj) ∼ km + lower-order terms

(see [13] and [3, Theorem 4.1]).
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We shall need one more assumption on the choice of points p1(z), . . . , pr(z): d(p1, pj) >

ε, j = 2, . . . , r, for some ε > 0, and for all k (this is possible by (2.1), and because
p2, . . . , pr can be chosen inside a ball of radius δ for any small δ > 0). Then, by (2.2), as
k → +∞,

det γ
(k)
Berg ∼ (km + O(km−1/2))r

(
1 + O

(
1√
k

))

and
∂∂̄ log det γ(k) = −r∂∂̄ log(1 + O(k−1/2)) + O(1).

Let u0, . . . , uq be an orthonormal basis in H0(S, σ∗(L⊗k)). We have, as k → ∞,

q∑
j=0

|uj(z)|2 ∼ kq + O(kq−1)

by applying [13, Theorem 1] to the hyperplane bundle on P
q. In addition,

ω
(k)
FS =

i
2π

∂∂̄ log
( q∑

j=0

|uj(z)|2
)

.

Thus,

φ∗
kω

(k)
FS =

i
2π

∂∂̄ log
(

1 + O

(
1
k

))
,

so
− i

2πr
∂∂̄ log det γ(k) − φ∗

kω
(k)
FS = O(1)

and, using (2.1), we obtain the desired asymptotic statement. �

Proof of Theorem 1.1. The idea is essentially the same as in the proof of Lemma 1.2,
but now we shall need a basis in E

(k)
z that consists of sections obtained from the Bergman

kernel for L⊗k (rather than for ι∗z(L
⊗k)).

Let f1, . . . , fr be, as above, a local holomorphic frame for E(k) and let f̃1, . . . , f̃r

be the corresponding basis in V
(k)
z for z ∈ S near ξ. Choose f̃r+1, . . . , f̃N in ker ι∗z so

that f̃1, . . . , f̃N is a basis in H0(X, L⊗k), varying holomorphically with z. Let s1, . . . , sN

be an orthonormal basis in H0(X, L⊗k), such that ι∗zs1, . . . , ι
∗
zsr is a unitary frame for

E(k) (with respect to (· , ·)(k)) near ξ, and such that sj is the extension of ι∗zsj to X,
j = 1, . . . , r.

Denote by K(k)(· , ·) the Bergman kernel for L⊗k → X. Choose a basis

e1 = K(k)(· , p1), . . . , eN = K(k)(· , pN ) in H0(X, L⊗k)

for z ∈ S near ξ, where the points p1 = p1(z), . . . , pN = pN (z) in X are chosen so that
they satisfy the following assumptions: p1, . . . , pr ∈ Yz, ι∗ze1, . . . , ι

∗
zer is a basis in E

(k)
z ,

the ε − δ condition for p1, . . . , pr, as above, is satisfied; also, f̃1(pj) = · · · = f̃r(pj) = 0
for all j = r+1, . . . , N . Denote by h̃(k) the N ×N matrix whose ijth entry is b(k)(f̃i, f̃j),

https://doi.org/10.1017/S0013091508000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000539


Complex submanifolds, connections and asymptotics 379

denote by h̃
(k)
Berg the N × N matrix whose ijth entry is b(k)(ei, ej), and denote by F the

N × N matrix whose ijth entry is f̃ i(pj). We have

h̃(k) = F (h̃(k)
Berg)

−1F̄T,

h(k) = Fr(h
(k)
Berg)

−1F̄T
r ,

where Fr is the r × N matrix which consists of the first r rows of F , and h
(k)
Berg is the

r × r matrix whose ijth entry is

(ι∗zei, ι
∗
zej)(k) = b(k)(ei, ej)

(the 1 � i, j � r part of h̃
(k)
Berg). Then, as above, as k → ∞ we obtain

det h
(k)
Berg = (kn + O(kn−1/2))r

(
1 + O

(
1√
k

))
,

∂∂̄ log det h(k) = −∂∂̄ log det h
(k)
Berg = −r∂∂̄ log(1 + O(k−1/2)) + O(1),

and now the statement follows by the same argument as above, at the end of the proof
of Lemma 1.2. �

Proof of Corollary 1.3. This follows immediately from Theorem 1.1 and Lemma 1.2.
�

3. D(k), projectors and the proof of Proposition 1.4

The following lemma gives an equivalent way to define the connection D(k) (in terms of
projectors).

Lemma 3.1. Suppose that ξ ∈ S, z(t) is a path in S such that z(0) = ξ and v is
the tangent vector to S at ξ represented by z(t). Let Π

(k)
t be the one-parameter family

of orthogonal projectors Π
(k)
t : H0(X, L⊗k) → V

(k)
z(t). Let s be a holomorphic section of

E(k). Then

D(k)
v s = Π

(k)
0

d
dt

s(z(t))
∣∣∣∣
t=0

. (3.1)

Corollary 3.2. Suppose that ξ ∈ S, z = z(t1), z = z(t2) are two paths in S such that

z(t1)|t1=0 = z(t2)|t2=0 = ξ

and let v1, v2 be the tangent vectors to S at ξ represented by z(t1), z(t2). Let Π
(k)
t1 and

Π
(k)
t2 be the one-parameter families of orthogonal projectors

Π
(k)
tj

: H0(X, L⊗k) → V
(k)
z(tj)

, j = 1, 2.

Then the curvature of D(k) is

Curvξ;v1,v2(D
(k)) = Π

(k)
0

[
∂Π

(k)
t1

∂t1

∣∣∣∣
t1=0

,
∂Π

(k)
t2

∂t2

∣∣∣∣
t2=0

]
Π

(k)
0 |

V
(k)

ξ
∈ End(V (k)

ξ ).
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Suppose that the chosen orthonormal basis in W (k) is u1, . . . , uN , and that the Stiefel
matrices are written with the use of a local holomorphic frame f1, . . . , fr for E(k). As
before, h(k) = (h(k)

ij ) is the r×r matrix with h
(k)
ij = (fi, fj)(k), and f̃ i denotes the element

of V
(k)
z corresponding to fi.

Define A(k) = A(k)(z) = (aji(z)), the N × r matrix whose ith column consists of com-
ponents of f̃ i with respect to the basis u1, . . . , uN , i.e. f̃i =

∑N
j=1 ajiuj .

Again, for convenience, we drop the ‘(k)’ from the notation for fj , f̃ j , uj , aji. The
matrix of the orthogonal projection W (k) → V

(k)
z in the basis u1, . . . , uN is

A(k)(z)((h(k)(z))−1)TA(k)(z)
T
.

Additionally, h(k)(z) = (A(k)(z))TA(k)(z), so at z = ξ we have (A(k)
0 )TA

(k)
0 = Ir, where

Ir is the r × r identity matrix.

Proof of Lemma 3.1. It is sufficient to prove (3.1) for s = fi, 1 � i � r. We have

D(k)fi =
r∑

j=1

Θ
(k)
ij fj ,

where (Θ(k)
ij ) = Θ(k) = ∂h(k) · (h(k))−1 is the connection matrix of D(k).

We need to show that
r∑

j=1

(v�Θ(k)
ij )fj = Π

(k)
0

d
dt

s(z(t))
∣∣∣∣
t=0

.

Let us work in V
(k)
z ⊂ W (k), so we replace s by s̃ and fj by f̃ j .

The left-hand side of the desired equality is

r∑
j=1

(v�Θ(k)
ij )

N∑
p=1

apjup,

the right-hand side is

N∑
j=1

daji

dt

∣∣∣∣
t=0

Π
(k)
0 uj =

N∑
j=1

daji

dt

∣∣∣∣
t=0

N∑
p=1

(
A

(k)
0 A

(k)
0

T)
pj

up

and they are equal because

r∑
j=1

(v�Θ(k)
ij )apj =

r∑
j=1

N∑
l=1

apj ālj
dali

dt

∣∣∣∣
t=0

=
N∑

j=1

daji

dt

∣∣∣∣
t=0

(
A

(k)
0 A

(k)
0

T)
pj

.

�

Proof of Corollary 3.2. See [6,7], where the setting is different (the fixed Hilbert
space and its subspaces are defined in a different way) but the calculation is the same,
since the connection is defined by (3.1), in terms of orthogonal projectors from a fixed
Hilbert space to its subspaces. �
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Proof of Proposition 1.4. Use Corollary 3.2. The matrix of

Π
(k)
0

[
∂Π

(k)
t1

∂t1
,
∂Π

(k)
t2

∂t2

]∣∣∣∣
t1=t2=0

Π
(k)
0

regarded as an element of End(W (k)) in the basis u1, . . . , uN is

A
(k)
0 A

(k)
0

T((
η1A

(k)
0

T
− A

(k)
0

(
η1

TA
(k)
0 + A

(k)
0

T
η1

)
A

(k)
0

T
+ A

(k)
0 η1

T
)

×
(
η2A

(k)
0

T
− A

(k)
0

(
η2

TA
(k)
0 + A

(k)
0

T
η2

)
A

(k)
0

T
+ A

(k)
0 η2

T
)

−
(
η2A

(k)
0

T
− A

(k)
0

(
η2

TA
(k)
0 + A

(k)
0

T
η2

)
A

(k)
0

T
+ A

(k)
0 η2

T
)

×
(
η1A

(k)
0

T
− A

(k)
0

(
η1

TA
(k)
0 + A

(k)
0

T
η1

)
A

(k)
0

T
+ A

(k)
0 η1

T
))

A
(k)
0 A

(k)
0

T

= A
(k)
0

(
η̄T
1

(
IN − A

(k)
0 A

(k)
0

T)
η
(k)
2 − η̄T

2

(
IN − A

(k)
0 A

(k)
0

T)
η
(k)
1

)
A

(k)
0

T
.

Hence, the matrix of the corresponding endomorphism of V
(k)
ξ in the basis f̃1, . . . , f̃r is

given by (1.1). �

4. Example: calculation for a Segré variety

Let Y = X = {[u0 : u1 : u2 : u3] ∈ P
3 | u0u3 − u1u2 = 0}. This quadric hypersurface in

P
3 is the image of P

1 × P
1 in P

3 under the Segré embedding

φ : P
1 × P

1 → P
3,

([z0 : z1], [w0 : w1]) �→ [z0w0 : z0w1 : z1w0 : z1w1].

Let L be the hyperplane bundle on X, let

ω =
i

2π
∂∂̄ log(|z0w0|2 + |z0w1|2 + |z1w0|2 + |z1w1|2)

(the pull-back of the Fubini–Study form on P
3 to X) and let S = φ({([z0 : z1], [1 :

0]) ∈ P
1 × P

1}). Recall that σ : S → X denotes the inclusion map. We shall carry out
calculations for k = k0 = 1. The vector bundle E(1) is of rank r(1) = 2. For z = [z0 : 0 :
z1 : 0] ∈ S, Yz = {[z0w0 : z0w1 : z1w0 : z1w1] ∈ P

3 | [w0 : w1] ∈ P
1}, w0, w1 form a basis

in H0(Yz, ι
∗
zL) and this is a local holomorphic frame for E(1).

Note that

〈s, s′〉(1) =
∫

Yz

ss′

|z0w0|2 + |z0w1|2 + |z1w0|2 + |z1w1|2
ι∗zω

for s, s′ ∈ H0(Yz, ι
∗
zL). By straightforward computation we obtain 〈w0, w1〉(1) = 0 and

〈w0, w0〉(1) = 〈w1, w1〉(1) =
1

2(|z0|2 + |z1|2)
.
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Thus,

det γ(1) =
1

4(|z0|2 + |z1|2)2

and
− i

2π
∂∂̄ log det γ(1) =

i
π

∂∂̄ log(|z0|2 + |z1|2) = kr(k)σ∗ω.

Now let us discuss the other connection. Set ζ1 = 2z0w0, ζ2 = 2z0w1, ζ3 = 2z1w0,
ζ4 = 2z0w0. We note that

b(1)(s, s′) =
∫

X

ss′

|z0w0|2 + |z0w1|2 + |z1w0|2 + |z1w1|2
ω2

2

for s, s′ ∈ H0(X, L). A tedious but straightforward computation shows that ζ1, ζ2, ζ3, ζ4

is an orthonormal basis in H0(X, L). Clearly, ker ι∗z is the span of z1ζ1 − z0ζ3 and z1ζ2 −
z0ζ4, and recall that V

(1)
z is its orthogonal complement. Let us now carry out explicit

computations, without loss of generality, near z = [z0 : z1] with z0 = 0. Choose a local
holomorphic frame in E(1) as follows: f1 = 2z0w0, f2 = 2z0w1. To compute (fi, fj)(1),
1 � i, j � 2, we need to find extensions f̃1 and f̃2. We have f̃1 = aζ1 + cζ3, where a and
c are determined by the equality

a +
z1

z0
c = 1

and by the requirement that aā + cc̄ has the minimum value. We get

a =
z0z̄0

z0z̄0 + z1z̄1
, c =

z0z̄1

z0z̄0 + z1z̄1
.

Similarly, f̃2 = aζ2 + cζ4 with a and c as above. Then (f1, f2)(1) = 0,

(f1, f1)(1) = (f2, f2)(1) = aā + cc̄ =
z0z̄0

|z0|2 + |z1|2

and

− i
2π

∂∂̄ log det h(1) = − i
2π

∂∂̄ log
z2
0 z̄2

0

(|z0|2 + |z1|2)2
= kr(k)σ∗ω.
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