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The mean flow behaviour of a turbulent boundary layer over rough walls is expected
to exhibit symmetries that govern the flow dynamics. In particular, when roughness
elements are arranged in a spanwise symmetric manner, the mean flow above them should
also exhibit spanwise symmetry. This symmetrical consideration has garnered substantial
empirical support. We conduct direct numerical simulations (DNS) of flow over aligned
cube arrays to test such symmetry considerations further. We vary the surface coverage
density from 0.25 % to 6.25 %, and employ an averaging time of about 100 large-eddy
turnover times, which is longer than the typical averaging time in prior DNS studies of
rough-wall boundary layers. The results suggest the presence of spanwise asymmetry in
the mean flow. Specifically, we observe the development of a prominent secondary vortex
on one side of the cubical roughness, accompanied by a relatively smaller secondary vortex
on the other side. This asymmetry becomes most pronounced when the surface coverage
density is approximately 0.59 %, and diminishes as the coverage density approaches either
a low or a high value. We also establish that this mean flow asymmetry is robust across
variations in the domain size, the initial condition, and the placement of the cubes in the
spanwise direction.
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1. Introduction

Turbulence is known to be stochastic, but its statistics are expected to reflect the
symmetries that constrain it. An example is the flat-plate boundary layer, where the flow
is statistically symmetric in the spanwise direction owing to the statistical homogeneity.
Symmetry properties of turbulence like the one above have received considerable
empirical support and are common in fluid flow modelling (Pope 2000). In recent
developments of machine learning models, constraints such as symmetry or invariance
properties are invoked to improve the training efficiency (Ling, Kurzawski & Templeton
2016; Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack & Koumoutsakos 2020).
Deviations from symmetry considerations are often attributed to a lack of statistical
convergence or numerics. For instance, Grandemange, Gohlke & Cadot (2013, 2014)
found asymmetry in a wake flow, but the asymmetry vanishes when the averaging time
is sufficiently long. The goal of this work is to test such symmetry considerations in the
context of flow over aligned cube arrays.

1.1. Roughness-induced large-scale secondary flows
The dominant dynamics within a flat-plate boundary layer are characterized by
self-sustaining cycles in the inner layer (Jimenez & Moin 1991), as well as the presence
of large-scale motions (Adrian 2007; Hutchins & Marusic 2007) and very-large-scale
motions in the outer layer (Kim & Adrian 1999; Balakumar & Adrian 2007; Dennis
& Nickels 2011a,b). However, the introduction of surface roughness disrupts the
self-sustaining cycle, transforming the inner layer into the roughness sublayer. Within this
sublayer, the flow is a combination of roughness wakes and a shear layer riding atop the
roughness elements (Yang et al. 2016; Aghaei-Jouybari et al. 2022; Zhang et al. 2022).
The roughness sublayer extends approximately 3–5 times the roughness height (Raupach,
Antonia & Rajagopalan 1991; Flack, Schultz & Connelly 2007). Beyond the roughness
sublayer, the flow characteristics resemble those of a flat-plate boundary layer (Jiménez
2004; Castro 2007; Schultz & Flack 2007; Leonardi & Castro 2010; Flack & Schultz 2014;
Chung, Monty & Hutchins 2018; Chung et al. 2021).

In the past decade, significant attention has been devoted to studying roughness-induced
secondary motions that extend beyond the roughness sublayer. Pioneering studies by
Mejia-Alvarez & Christensen (2013) and Barros & Christensen (2014) were among the
first to report these secondary motions. In their investigations, these large-scale secondary
motions manifest as spanwise alternating high- and low-momentum pathways in the mean
flow. Similar secondary motions have been observed above herringbone-like roughness
(Nugroho, Hutchins & Monty 2013), spanwise alternating high- and low-roughness stripes
(Willingham et al. 2014), and spanwise heterogeneous super-hydrophobic surfaces (Jelly,
Jung & Zaki 2014; Lee, Jelly & Zaki 2015). Moreover, similar secondary motions arise
in other contexts. In fact, secondary motions arise as long as the Reynolds stresses
are spanwise heterogeneous (Anderson et al. 2015). The strength of these large-scale
secondary motions is by and large determined by the length scale of the spanwise
heterogeneity (Vanderwel & Ganapathisubramani 2015; Chan et al. 2018; Yang &
Anderson 2018; Yang et al. 2019). The secondary motions are the strongest when the
spanwise length scale is comparable to the boundary-layer height. Other factors also affect
the strength of the secondary motions. The impacts of thermal stratification, roughness
geometry and roughness arrangements have been investigated by Forooghi, Yang & Abkar
(2020), Medjnoun, Vanderwel & Ganapathisubramani (2020) and Viggiano et al. (2022),
respectively. Nonetheless, the aforementioned studies did not report statistically significant
asymmetries in the mean flow, which is the focus of our current investigation.
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Figure 1. (a) A sketch of the cubical roughness, where x, y, z are the streamwise, spanwise and vertical
directions, respectively, h is the roughness height, and s is the spacing between adjacent roughness elements.
The roughness is arranged in an aligned configuration. (b) A sketch of the roughness-induced large-scale
secondary vortices in the spanwise-vertical (y–z) plane. The vertical dashed line across the cube centre shows
the symmetry plane.

1.2. This work
We consider flow above aligned cubes as shown in figure 1(a). Aligned cubes induce
secondary flows of the second kind, which manifest as counter-rotating vortices, as
depicted in figure 1(b). The direction of these secondary flows, whether they bring low- or
high-momentum fluid to the cubes, depends on the surface coverage density (Vanderwel
& Ganapathisubramani 2015; Xu et al. 2021). In figure 1, the secondary motions bring
high-momentum fluid to the cubes. These secondary flows are part of the mean flow, and
they are expected to exhibit the symmetry that constrains flow. Specifically, the secondary
flows should possess spanwise symmetry, with the symmetry plane indicated by the
vertical dashed line across the cube centre in figure 1(b). Empirical evidence strongly
supports this anticipated symmetry (Coceal et al. 2006; Cheng et al. 2007; Cheng &
Porté-Agel 2015; Yang 2016; Yang et al. 2016; Basley, Perret & Mathis 2019; Xu et al.
2021). In this paper, we aim to re-evaluate this expected symmetry using direct numerical
simulations (DNS).

The remainder of the paper is organized as follows. In § 2, we provide a detailed
description of the DNS set-up. We employ an averaging time that exceeds the typical
duration used in prior DNS studies of rough-wall boundary-layer flows. The results are
presented in § 3. In § 4, we demonstrate that the observed asymmetry persists across
variations in numerical techniques, domain sizes, the arrangement of cubes in the spanwise
direction, and Reynolds numbers. Finally, concluding remarks are provided in § 5.

2. Direct numerical simulations

Creating a perfectly symmetric laboratory facility can be a challenging, if not impossible,
task. However, such limitations are non-existent in numerical simulations. In our study, we
conduct DNS of a half-channel flow with cubical roughness on the bottom wall.

For our DNS, we utilize the pseudo-spectral code LESGO, which solves the
incompressible Navier–Stokes equations. The code employs a pseudo-spectral method
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Case Reτ s/h λp Lx/h × Ly/h × Lz/h nx × ny �x+ (= �y+) �z+ Tuτ /Lz TU0/Lz

S04 360 4 6.25 % 40 × 20 × 6 10 × 5 3.75 0.5–3 88 1002
S06 360 6 2.78 % 42 × 24 × 6 7 × 4 3.75 0.5–3 77 1002
S08 360 8 1.56 % 40 × 24 × 6 5 × 3 3.75 0.5–3 122 1670
S10 360 10 1.00 % 40 × 20 × 6 4 × 2 3.75 0.5–3 115 1670
S13 360 13 0.59 % 39 × 26 × 6 3 × 2 3.75 0.5–3 110 1670
S15 360 15 0.44 % 45 × 30 × 6 3 × 2 3.75 0.5–3 101 1670
S20 360 20 0.25 % 40 × 40 × 6 2 × 2 3.75 0.5–3 93 1670
S13R 360 13 0.59 % 39 × 26 × 6 3 × 2 3.75 0.5–3 109 1670
S13X1 360 13 0.59 % 78 × 52 × 6 6 × 4 3.75 0.5–3 102 1670
S13X2 360 13 0.59 % 156 × 26 × 6 12 × 2 3.75 0.5–3 99 1670
S10X1 360 10 1.00 % 40 × 40 × 6 4 × 4 3.75 0.5–3 113 1670
S10X2 360 10 1.00 % 40 × 40 × 6 4 × 4 3.75 0.5–3 113 1670
L06 180 6 2.78 % 42 × 24 × 6 7 × 4 3.75 0.25–1.5 105 1163
L08 180 8 1.56 % 40 × 24 × 6 5 × 3 3.75 0.25–1.5 93 1163
L10 180 10 1.00 % 40 × 20 × 6 4 × 2 3.75 0.25–1.5 89 1163
L15 180 15 0.44 % 45 × 30 × 6 3 × 2 3.75 0.25–1.5 77 1163
L20 180 20 0.25 % 40 × 40 × 6 2 × 2 3.75 0.25–1.5 73 1163

Table 1. DNS details. The domain is a half-channel; Reτ = Lzuτ /ν is the friction Reynolds number, where uτ

is the friction velocity; s and h are the spacing and height of cubical roughness elements, respectively; λp is the
surface roughness coverage density; Lx, Ly and Lz are the sizes of the domain in the streamwise, spanwise and
wall-normal directions, respectively; nx × ny are the sizes of the cube array; and �x+, �y+ and �z+ are the
grid spacings in the three directions normalized by viscous scales. The grid is uniform in horizontal directions
and stretched in the vertical direction; T is statistical time; and U0 is the mean streamwise velocity at the top of
the domain. S10X1, S10X2 differ in their roughness arrangements.

in the streamwise and spanwise directions, while using a second-order finite difference
method in the wall-normal direction. The domain is periodic in the streamwise and
spanwise directions, with a stress-free top boundary. To resolve the roughness, we employ
an immersed boundary method (Chester, Meneveau & Parlange 2007). The code has
been extensively validated and used for simulating boundary-layer flows, including those
over complex terrains (Anderson et al. 2015; Yang & Meneveau 2016, 2017), vegetative
canopies (Chester et al. 2007; Bai, Meneveau & Katz 2012) and urban canopies (Cheng
& Porté-Agel 2015; Giometto et al. 2016; Yang et al. 2019; Zhang et al. 2022). Further
details of the code are omitted here for the sake of brevity.

Table 1 provides an overview of our DNS set-up. We consider aligned cube arrays as
the surface roughness, with a surface coverage density or solidity ranging from 0.25 %
to 6.25 %. The domain height Lz = 6h is fixed, while the streamwise and spanwise
dimensions of the domains satisfy Lx ≥ 2πLz and Ly ≥ πLz (Lozano-Durán & Jiménez
2014). The grid is uniform in the horizontal directions, with fixed grid spacing �x+ =
�y+ = 3.75. In the vertical direction, the grid is stretched to achieve resolution �z+

min ≈
0.5 near the wall and �z+

max ≈ 3 at the top of the domain. This grid resolution is
comparable to, and often finer than, that used in previous works (Coceal et al. 2006;
Leonardi & Castro 2010; MacDonald et al. 2018). In all DNS, the surfaces of the cubes
coincide with the surfaces of the computational cells to give an accurate representation of
the cube geometry.

Our baseline cases are denoted as S[s/h], where s represents the spacing between
neighbouring cubes, and h denotes the cube height. We vary s from 4h to 20h, resulting
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Averaging time Reference

T = 100δ/uτ Coceal et al. (2006)
T = 50δ/uτ Yuan & Piomelli (2014)
T ≈ 25δ/uτ Chan et al. (2015)
T ≈ 10δ/uτ Mazzuoli & Uhlmann (2017)
T ≈ 30δ/uτ Ismail et al. (2018)
T ≈ 50δ/uτ Chung et al. (2018)
T ≈ 14δ/uτ Wu et al. (2019)
T = 50δ/uτ Ma et al. (2021)
T = 1.5δ/uτ Ganju et al. (2022)

Table 2. Averaging time used in prior DNS studies of rough-wall boundary-layer flows. Here, δ/uτ is
large-eddy turnover time, where δ is half-channel height/boundary layer thickness/pipe radius. This is not
meant to be a comprehensive list.

in cases S04, S06, S08, S10, S13, S15 and S20. Additionally, we explore variations in the
initial condition and domain size. This leads to S13R, which involves flipping the spanwise
coordinate of S13 to verify that any observed mean flow asymmetry is not an artefact of
the numerics, and S13X1 and S13X2, where we double and quadruple the streamwise size
of the S13 domain, respectively, to confirm the robustness of the observed asymmetry to
changes in domain dimensions. To study the effects of the spanwise size of the domain,
we add cases S10X1, S10X2 and S13X1, where we double the spanwise size of the S10
and S13 domains. Finally, we investigate the effect of cube placement in the spanwise
direction, resulting in cases S10X1 and S10X2, where the roughness in S10X2 is shifted
spanwise relative to S10X1. The purpose of these cases is to demonstrate that the location
of the cubes does not influence the observed asymmetry.

The S[s] cases are conducted at a friction Reynolds number Reτ = 360, where uτ =√
(1/ρ)Lz dP/dx represents the friction velocity, Lz is the height of the half-channel, dP/dx

is the pressure gradient driving the flow, and ρ is the fluid density. To examine whether the
observed asymmetry is unique to a specific Reynolds number, we perform additional five
DNS at Reτ = 180, denoted as L06, L08, L10, L15 and L20. These lower Reynolds number
simulations are chosen as the flow is already in the fully rough regime at Reτ = 360, and
increasing the Reynolds number is unlikely to significantly alter the flow phenomena. We
use an averaging time ranging between 80 and 120 large-eddy turnover times, where Lz/uτ

corresponds to one large-eddy turnover time. Table 2 provides a summary of the averaging
times used in some of the prior DNS studies of rough-wall boundary layers. The typical
averaging time is 10–50 large-eddy turnover times, except that 100Lz/uτ is used by Coceal
et al. (2006), which is comparable to our averaging time. Our chosen averaging time is
longer than the typical averaging time and is twice as long as what Yuan & Piomelli (2014)
considered sufficient for obtaining converged mean flow statistics.

3. Results

We present the results of the baseline cases in this section. Figure 2 shows the contours
of the streamwise and temporally averaged velocities 〈ū〉x in the spanwise–vertical (y–z)
plane. The in-plane motions are shown via (〈v̄〉x, 〈w̄〉x) vectors. Here, u, v, w are the
velocities in the streamwise (x), spanwise (y) and vertical (z) directions, respectively,
the overbar denotes time averaging, 〈·〉 denotes spatial average, and the subscript is
the direction of averaging. The symmetry plane is located at the cube centre (y = 0).
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Figure 2. Contours of the streamwise and temporally averaged streamwise velocity 〈ū〉x in the
spanwise/wall-normal plane. The velocity is normalized by its average at the top boundary, which we denote as
U0. The vectors indicate the in-plane motions, i.e. (〈v̄〉x, 〈w̄〉x). The origin of the spanwise coordinate is placed
at the centre of the roughness element. The roughness is symmetric with respect to y = 0. The spanwise extent
of the plot equals the distance between two neighbouring roughness elements, which is the minimum repeating
unit of the flow. Cases are (a) S04, (b) S06, (c) S08, (d) S10, (e) S13, ( f ) S15, and (g) S20.

Large-scale secondary motions that span the entire boundary layer are found when
s/h > 6. In S04, S06 and S20, the secondary motions are approximately symmetric with
respect to y = 0, which aligns with previous findings. Previous authors have also reported
spanwise symmetric mean flow above aligned cubes with surface coverage density � 3 %
(Yang et al. 2016; Xu et al. 2021), which corresponds to S04 and S06 in our study.
Additionally, the flow above isolated cubes, a good approximation for case S20, is known
to exhibit spanwise symmetry (Wang & Lam 2019).

However, what is unexpected is the spanwise asymmetry in the mean flows in cases
S08, S10, S13 and S15. In these cases, we observe a significant vortex on one side of
the roughness, while no such large vortex is present on the other side. These secondary
vortices enhance the vertical transport of streamwise momentum, resulting in the spanwise
undulation of 〈ū〉x as revealed by the contour plots.

To obtain a more quantitative measure of the mean flow asymmetry, we examine the
velocities on the symmetry plane at y = 0. Figure 3 displays the streamwise and temporally
averaged velocities at the cube centre (cc), denoted as 〈ū〉x,cc, 〈v̄〉x,cc and 〈w̄〉x,cc. In a
symmetric flow with respect to y = 0, the spanwise velocity 〈v̄〉x,cc would be zero at y = 0.
As seen in S04 and S06, where the flow exhibits spanwise symmetry, 〈v̄〉x,cc is indeed close
to zero at y = 0. However, in cases S10, S13 and S15, there is a noticeable deviation of
〈v̄〉x,cc from zero, indicating the presence of mean flow asymmetry. While not as prominent
as in cases S10 or S15, a non-zero value of 〈v̄〉x,cc is also observed in S20, indicating a
weak mean flow asymmetry in this case. The behaviours of 〈ū〉x,cc and 〈w̄〉x,cc align with
findings reported in the literature. Specifically, 〈ū〉x,cc increases with increasing inter-cube
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Figure 3. Streamwise and temporally averaged velocities at the cube centreline (i.e. y = 0 in figure 2):
(a) 〈ū〉x,cc/uτ , (b) 〈v̄〉x,cc/uτ , and (c) 〈w̄〉x,cc/uτ .

distance due to the decreasing drag force in the k-type roughness regime. This trend is
consistent with previous studies. In terms of 〈w̄〉x,cc, a downwelling motion leads to a
negative value in cases S08, S10, S13, S15 and S20, similar to the observations made by
Willingham et al. (2014), Anderson et al. (2015) and Chung et al. (2018). On the other
hand, an upwelling motion results in a positive 〈w̄〉x,cc in S04, which is in line with the
findings of Xu et al. (2021).

Figures 4(a–g) show the streamwise, wall-normal and time-averaged x velocity
〈ū〉x,z /Ub as a function of the spanwise coordinate, which is also a good measure of the
mean flow asymmetry. Here, Ub = 〈ū〉x,y,z is the mean flow rate. We see that the flow is
roughly spanwise symmetric in S04, S06 and S20, and spanwise asymmetric in S08, S10,
S13 and S15. The dip at y = 0 is due to the roughness that blocks the flow. The other dips
in the S08, S10, S15 and S20 results are due to secondary motions, which bring low-speed
fluid in the wake of the cube to its sides.

Finally, we define

�U( y) ≡ ∣∣〈ū〉x,z ( y) − 〈ū〉x,z (−y)
∣∣ , (3.1)

and maxy[�U] and 〈[�U]〉y, i.e. the maximum of �U and the average of �U, are
one-number measures of the mean flow asymmetry, with �U( y) = 0 if the flow is
spanwise symmetric. Figure 5 shows 〈�U〉y and maxy[�U] as functions of the inter-cube
distance s. Both measures are approximately 0 in S04 and S06. They increase as s/h
increases, and peak when s/h = 15. The peak values are 0.07 and 0.12 for 〈[�U]〉y /Ub
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Figure 4. Streamwise and normal averaged mean velocity 〈ū〉x,z as a function of the spanwise coordinate for
(a) S04, (b) S06, (c) S08, (d) S10, (e) S13, ( f ) S15, and (g) S20. We show results in one repeating unit for
brevity. The origin of the spanwise coordinate is at the centre of the roughness element.
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Figure 5. The maximum (square symbols) and the mean (triangle symbols) of �U/Ub as a function of the
inter-cube distance.

and maxy[�U]/Ub, respectively, suggesting that the asymmetry can be as large as 10 % of
the bulk velocity.

4. Discussion

4.1. Numerics, domain size and Reynolds number
In this subsection, we show that the mean flow asymmetry is robust to variations in the
domain size, the direction of the spanwise axis, the spanwise location of the surface
roughness, the initial condition, and the Reynolds number.

In our case, the averaging time exceeds 100 large-eddy turnover times. We examine
the momentum budget and the premultiplied velocity probability density function (p.d.f.).
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Consider a generic flow quantity φ. Time averaging is sufficient if ∂φ̄/∂t = 0, i.e. if the
other terms in the φ transport equation balance. The transport equation of the streamwise
velocity reads

d〈ū〉x,y

dt
= −

〈
1
ρ

∂ p̄
∂x

〉
x,y

− d〈u′w′〉x,y

dz
− d〈u′′w′′〉x,y

dz
+ ν

d2〈ū〉x,y

dz2 (4.1)

outside the roughness occupied layer, where u′′ = u − 〈ū〉x,y and w′′ = w − 〈w̄〉x,y. The
terms on the right-hand side are the mean pressure gradient term, the turbulent stress
term, the dispersive stress term and the viscous stress term. If time averaging is sufficient,
then the terms on the right-hand side should balance, leading to

−〈u′w′〉+x,y−〈u′′w′′〉+x,y+
1

Reτ

d〈ū〉+x,y
dz+ = 1 − z

Lz
, (4.2)

which indicates that the sum of Reynolds stress, dispersive stress and viscous stress is a
linear function of the wall-normal coordinate z. This balance is confirmed by the results
shown in figure 6. In addition to the momentum budget, we evaluate the averaging time
through the premultiplied velocity p.d.f. (Meneveau & Marusic 2013; de Silva et al. 2017).
Figure 7 shows the premultiplied p.d.f. of u′, v′, w′ in case S13 at two locations, i.e. z/h = 5
and z/h = 3, above the cube centre. We see that the mean flow, which is the area under the
curve, is captured accurately. The results are similar at other locations and in other cases,
and are not shown here for brevity. Nonetheless, further investigation may still be needed
to confirm the statistical convergence.

Next, we explore the effects of inverting the spanwise axis to examine the sustainability
of the observed asymmetry. According to the spanwise symmetry of the Navier–Stokes
equations, if the asymmetry is inherent to the flow, then flipping the y axis and the spanwise
velocity components should result in sustained asymmetry. We define the flipped quantities
as

uflip(x, y, z) = u(x, −y, z), vflip(x, y, z) = −v(x, −y, z), wflip(x, y, z) = w(x, −y, z).
(4.3a–c)

If numerics are responsible for the asymmetry, then uflip would not be able to sustain itself
and would revert back to u. Flipping the y axis and the spanwise velocity in case S13
leads to case S13R. Figure 8 shows the contours of 〈ū〉x in S13R. The mean asymmetry
sustains for more than another 100 large-eddy turnover times. Consequently, we conclude
that numerics are not responsible for the observed asymmetries.

Third, we investigate the effect of domain size. The size of our domain is comparable to
those in the literature (Lozano-Durán & Jiménez 2014; Yang et al. 2019; Xu et al. 2021)
and should be sufficient. To further verify the adequacy of our domain size, we conduct
two additional DNS: S13X1 with a domain twice as long and twice as wide as that of
S13, and S13X2 with a domain four times as long as that of S13. Figures 9(a,b) show the
contours of the mean flow, and the same asymmetry is observed. Hence we conclude that
the finite domain size is not a concern.

Fourth, we investigate the effect of the spanwise location of the cubes. Figure 10 shows
the contours of the mean velocity in S10X1 and S10X2, where the cubes in S10X2 are
displaced in the spanwise direction by 0.25s relative to S10X1. We see that the mean flow
asymmetry persists, suggesting that spanwise location of the cubes should not affect the
mean flow asymmetry. The result here also shows that the implementation of the periodic
boundary condition in the spanwise direction does not affect the mean flow asymmetry.
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Figure 6. Terms in (4.2), i.e. the momentum budget equation, for (a) S04, (b) S06, (c) S08, (d) S10, (e) S13,
( f ) S15, and (g) S20. Here, Tot, Vis, Disp and Turb are short for total stress, viscous stress, dispersive stress
and turbulent stress.
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Figure 7. Premultiplied probability density functions of velocity fluctuations u′ p(u′), v′ p(v′), w′ p(w′) at
(a–c) z/h = 3 and (d–f ) z/h = 5 above the cube centre in case S13. The premultiplied probability density
function has been normalized such that the maximum is 1.
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Finally, we investigate the effect of the Reynolds number. Figure 11 shows the results at
Reτ = 180. We see that mean flow asymmetry exists at this low Reynolds number.

4.2. A heuristic explanation
Here, we attempt to explain the spanwise asymmetry in the mean flow. We know that
the sizes of the secondary motions are constrained by both the height of the channel and
the distance s between two neighbouring cubes (Vanderwel & Ganapathisubramani 2015).
When s is sufficiently large, the sizes of the secondary motions are limited by the channel
half-height, and its size is O(Lz) – this is what we see in S20. In that case, a repeating
unit that spans a distance s in the spanwise direction fits two secondary vortices, and the
flow is spanwise symmetric. We call these secondary vortices developed vortices. When
s is sufficiently small, the sizes of the secondary motions are limited by s – this is what
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we see in S06. A repeating tile that spans a distance s in the spanwise direction also fits
two of these secondary vortices, and again, the flow would be spanwise symmetric. We
call these secondary vortices undeveloped vortices. When s is such that it does not fit two
developed vortices but is too large for two undeveloped vortices, a repeating tile would fit
one developed vortex and one undeveloped vortex, thereby giving rise to the asymmetry
that we see in the previous subsection.

4.3. Implication on the instantaneous flow field
The discussion so far has focused on the secondary flows, which are mean flow features.
In this subsection, we discuss the implication of the mean flow asymmetry on the
instantaneous flow structures, which are large-scale motions, very-large-scale motions, and
super-structures in a boundary layer. These structures extend in the streamwise direction
from a few boundary-layer heights to a few hundred boundary-layer heights (Kim &
Adrian 1999; Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007; Hutchins
& Marusic 2007; Monty et al. 2007; Kevin, Monty & Hutchins 2019). They are the most
energetic motions in a boundary layer and are responsible for a lot of physical processes
in a boundary layer (Smits, McKeon & Marusic 2011; Marusic & Monty 2019). The
asymmetry found in this work provides a potential strategy to control these structures:
one can place the roughness such that these motions appear less frequently in one region
and more frequently in another.

Figure 12 is a visualization of the instantaneous flow field at z/h = 2 in case S13 at
eight time instances that are equally spaced over an extended period of time. We highlight
the high-speed streaks following the methodology in Kevin et al. (2019). We see that the
high-speed streaks are more likely to appear on one side of the roughness elements than
the other. Figure 13 shows the probability density function for observing a high-speed
streak at a given y location. We see that we can skew the probability density function
significantly in S08, S10, S13 and S15, making the high-speed steaks appear on one side
more frequently than on the other side.

5. Concluding remarks

We conduct DNS of flow over aligned cube arrays with surface coverage densities from
0.25 % to 6.25 %. Our observations reveal the presence of mean flow asymmetry above
spanwise symmetric cubical roughness when the spanwise distance between neighbouring
roughness elements falls within the range 6–20, corresponding to a coverage density
between 2.78 % and 0.25 %.

In-depth investigations demonstrate the robustness of this mean flow asymmetry
across various factors, including domain size, initial conditions and grid collocation.
Furthermore, the asymmetry persists at Reynolds numbers Reτ = 360 and 180, even after
averaging for approximately 100 large-eddy turnover times. This discovery represents an
intriguing flow phenomenon akin to those found in previous studies, such as Van Der Veen
et al. (2016), Iyer et al. (2017) and Xia et al. (2018). Additionally, it presents a potential
strategy for controlling streaks in boundary-layer flows.

However, the exact physical mechanism that is responsible for the observed asymmetry
is not clear and is left for future investigation. We are also yet to confirm the presence
of such asymmetry at significantly higher Reynolds numbers. Finally, the effects of
rough-wall topology such as the streamwise distance between adjacent cubes, are also
interesting topics for future research.
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