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Abstract

In this paper we present an equivalence between TIM, a machine developed to implement
non-strict functional programming languages, and the set of Categorical Multi-Combinators,
a rewriting system developed with similar aims. These two models of computation at first
appear to be quite different, but we show a direct equivalence between them, thereby adding
some new structure to the ‘design-space’ of abstract machines for non-strict languages.

Capsule Review

In recent years a large number of abstract machines have been proposed for compiling
functional languages. Although at first each machine appeared as an isolated ‘island’, it is
now becoming clear that the various different designs can be related to one another in a
larger design space.

In this paper the authors describe in detail the correspondence between two particular
abstract machines: the reduction machine for Categorical Multi-Combinators and the Three
Instruction Machine. The importance of their work is that it provides concrete evidence that
two (seemingly very different) abstract machines can indeed be related to one another within
a larger design space.

1 Introduction

A number of different abstract machines for the implementation of lazy functional
languages have been developed in the last few years. Many of these machines
were developed using different principles or even based on different theories of
functions and seem to be unrelated. In our opinion, it is important to examine the
similarities and differences between these machines, because this will provide a better
understanding of their features.

In this paper, we investigate the relationship between TIM and the system of Cat-
egorical Multi-Combinators. Although these two abstract machines initially appear
to be completely unrelated, we prove their equivalence.

The first section presents the small source language which we use for both
implementations. The next two sections describe Categorical Multi-Combinators and
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the TIM respectively. For further details on TIM, and indeed on other machines,
we refer readers to (Peyton Jones and Lester, 1992). The core of the paper is section
5, in which we present two functions ¢ and  translating from TIM to CMC, and
vice versa. We show in section 5.2 and 5.4 that each of the translation functions
respects rewriting, in a sense which we explain, and in section 5.5 we show that 7
is a inverse of €, and vice-versa.

We make no attempt to address the issues of sharing and graph updates In effect
our results apply only to tree-reduction versions of TIM and CMC. The choice
of the sharing mechanism gives rise to different flavours of TIM and CMC. The
original frame update mechanism in TIM finds its equivalent in CM-CM (Lins and
Thompson, 1990b; Thompson and Lins, 1992). On the other hand, Guy Argo’s
version of TIM with graphs (G-TIM (Argo, 1989), bears some resemblance to
GMC (Musicante and Lins, 1991). 'CMC (Lins and Lira, 1993), a categorical
multi-combinator machine that brings together C code (a result of the compilation
of strict functions and arithmetic expressions) and abstract machine code, has no
equivalent on the TIM side.

2 The source language

The source language is defined by the following grammar:

program = ¢y =rhs;
¢n = ths,
rhs = AXp..Xp.eXpr n=0)
expr = C Combinator
| x Variable

| expr;...expr,  Application (n > 2)

A program is a set of combinator definitions, including a distinguished combinator
main whose value is the result of the program. Lambdas only appear at the top of
a combinator definition, ie., the program has been lambda-lifted (Johnsson, 1987).
Any realistic language will include constants and built-in operations over them, but
we omit them for simplicity.

Both TIM and the Categorical Multi-Combinator machine execute a compiled
version of the program. Each combinator is compiled separately; we use the notation
¢. to denote the compiled CMC code for combinator ¢, and ¢, to denote the compiled
TIM code.

3 Categorical Multi-Combinator Machine

This section briefly introduces the Categorical Multi-Combinator (CMC) compila-
tion and reduction schemes. For a much fuller presentation see Lins (1987) and Lins
and Thompson (1990a).t

t To make presentation easier we adopt a slightly different notation for Categorical Multi-
Combinators from that presented there. The multi-pair combinator is represented by a
tuple (xo,...,X,), we use the empty tuple () to denote identity, and angle brackets stand for
closures (a,b) (previously written o a b).
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3.1 Compilation

Categorical Multi-Combinator code is defined as follows:

CCode ::= L"(CCode) Abstraction (n > 0)
| CCodey ... CCode, Application (n>2)
| c Combinator
| i Variable (i > 0)

In CMC code, variables are identified with their DeBruijn number, i, defined as the

number of lambdas between the occurrence of the variable and its binding lambda.
The compilation algorithm for translating programs into Categorical Multi-

Combinators is given by the functions #.and &., whose types are given by

B, ::rhs — CCode
&, iexpr —» Env — CCode
Env ::var — int

The translation rules are:

(T.1) %l = & lel []

(T2) BAx1...Axpe]l = LY & Lel [xi—>n—1,...,x,— 0])
(T3) &.let ...e]m = (B.lei] ) ... (Ecllen] =)

(T4 &A= = ¢

(T.5) &[] = - )

Rule (T.1) deals with the case where the combinator right-hand side has no lambdas,
while (T.2) handles combinators that do have lambdas. Rules (T.3) to (T.5) handle
the various forms of expression. For example, the combinator definition

S = Aa.2b.Jc.ac(bc)

would be translated to
S.=L*20(10)

3.2 Reduction

The reduction rules for CMCs are described by a state transition system. This requires
us to say what a state is, give rules which transform each state into its successor,
and say what the initial state is.

A CMC state consists of the application of a function closure to zero or more
argument closures:

CState ::= CClo; CCloy ... CClo, (n=0)

Each closure is a pair of a CCode (introduced above) with a frame which gives the
values of each of the free variables in the code:

CClo = (CCode, CFrame)
CFrame = (CCloy,...,CClo,) (n=0)

In papers about categorical machines, states are usually called expressions, closures
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are usually called compositions, and frames are usually called multi-pairs. We use
different terminology to stress the correspondence with the TIM machine, something
that is made explicit later.

Using this notation, the kernel of the Categorical Multi-Combinator rewriting
laws, each of which maps a CState to the next CState, is:

M.y  (n,(Xm -y X1,X0) Wo... W) = XpWo...Wg

(M.2)  (xox1x2...Xn,y) ' Wo...wg = (xp,¥)...(Xn, ¥} wo... W
M.3) (L"), f) wo...wk = (¥, (Wo, ", Wn)) Wagr... Wk
(M.4) (C,f) Wo... W, = (cc,()) Wo... W

Rule (M.1) performs environment look-up, in which the value corresponding to
a variable is looked up in the corresponding frame. Rule (M.2) is responsible
for environment distribution. Rule (M.3) performs combinator application and
environment formation. Finally, Rule (M.4) says that an occurrence of a combinator
can be replaced by its code paired with an empty frame. (The frame is empty because
a combinator has no free variables.)

The initial state of the machine consists of the combinator main paired with an
empty frame:

(main, ())

4 TIM

Next, we briefly introduce TIM, the Three Instruction Machine (Fairbairn and Wray,
1987; Peyton Jones and Lester, 1992).

4.1 Compilation

TIM code is defined as follows:

TCode = Take int; T Code
| Push T Amode; T Code
] Enter TAmode
TAmode ::= Code TCode
| Comb ¢
| Argn

Notice that this code is not linear, because the Code addressing mode contains a
nested T Code, giving the code a tree structure. Real compilers, of course, flatten
the code by introducing arbitrary labels, but that merely complicates matters here
without adding anything,

The right-hand side of each combinator is translated into TIM code by the
compilation schemes 4,, using the auxiliary schemes &,and «/:

B, ::rhs - TCode
& ::expr = Env — TCode
& expr - Env — T Amode
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The compilation schemes are as follows:

i

C1)  Ble]

(C2) B ixy... xn.€]
(C3) 6&iley ... e p
(C4 & fa p

AR

Take n; & e]] [xi—1,...,x,— n]

Push (A [[en] p); ... Push (L[es] p); &:ller] p
Enter (#[[a] p)

I

]

(€5  Hhxl e = Arg p(x)
(C6) Alc] p = Combc
(CT Al p = Code (&:[el p)

As in the case of the CMC machine, the environment p maps combinator arguments
to the slot number they occupy in the frame. As an example, consider again the
combinator definition

S = la.Ab.ic.ac(bc)

It will compile to

S; = Take 3;
PushCode [PushArg 2; EnterArg 3];
PushArg 3;
EnterArg 1

4.2 Execution

Like the CMC machine, the execution of the TIM code is described by a state
transition semantics.
The state of the TIM is a four-tuple of the form

{TCode, addr, (TClo; : ... : TClo,),addr — TFrame)

The first component is the code being executed, while the second is the address of
the frame which gives the values of its free variables. The third component is a stack
of argument closures (the top of the stack is on the left), and the fourth is the heap
which maps addresses to frames. A closure is a pair of a code and frame address,
while a frame is a tuple of closures:

TClo = (TCode,addr)
TFrame .= (TCloy,..,TCloy)

The initial state of the machine is TState ::=
(EnterComb main,(),[],[])

The state transition laws for TIM are

(s.1) (Take n;1,fo,(a; :...:a, : A),F) = {I,f, A, Flf — (a,...,a)]),
where f & dom(F)
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(s.2) (PushArg n;I,f, A F[f— (..,a,..)]) =
U, f,(an : A, F{f — (...,ap,..)])
(s.3) (PushCode B;I,f,A,F)={I,f,(B,f) : A), F)
(s.4) (PushComb ¢;I,f,A,F) = (I,f,({c;, () : A), F)
(s.5) (EnterArgn, f,AF[f— (..,{Isfu)--)]) =

(Ins fus AL F [f = (oo (e fu)s - )D)
(s.6) (EnterComb ¢,f,A,F) = (c;,(),A, F)

Note that in law (s.1) we use the notation F[f — (a,...,a,)] to represent the
heap F updated with a new frame f, consisting of a; to a, In all other rules
F[f + (ai,...,a,)] means the heap F contains a particular frame f. The empty
tuple, (), represents the empty frame.

5 CMC AND TIM

The close relationship between TIM (Fairbairn and Wray, 1987) and the original
set of Categorical Multi-Combinators (Lins, 1986; Lins 1987) has been known to
the first author for a long time, and has also been mentioned by others (Wraith and
Bosley, 1988). This equivalence was also outlined in Lins and Thompson (1990b).
Our aim in this section is to make clear the relationship between TIM (Fairbairn
and Wray, 1987) and the original set of Categorical Multi-Combinators (Lins, 1986;
Lins 1987). We present two functions €, translating from TIM states to CMC states,
and J going in the reverse direction. These functions are defined in terms of others
which establish correspondences between components of the states. Specifically,
CMC closures correspond to TIM closures, and similarly for frames; indeed, these
correspondences suggested our choice of terminology. The functions involved are:

T State P CState

—_—
TClo 0 CClo

TCode o CCode

We then show that the translations given commute with rewriting. First we show
that if a TIM state T, rewrites in one step to state T, then %(T}), the Categorical
Multi-Combinator equivalent rewrites in a sequence of zero or more steps to €(T2)
— (Property I). We then show that if a CMC expression M| rewrites in one step to
M, then 9 (M,), the TIM equivalent rewrites in a sequence of zero or more steps
to J (M3) (modulo an operational equivalence, discussed in section 5.4.2). This is
called (Property II).

Property 1 Property II
n — €M) M — TM)
Y Y= Y Y=
. — 4T M, — J(M)
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Finally, we show that J is an inverse of %, i.c., ‘€ then J is the identity on TIM
states. The other inverse relationship also holds, so ‘7 then € is the identity on
CMC expressions.

5.1 Translating TIM into CMC

The translation from TIM states to Categorical Multi-Combinator expressions 1is
performed by the following functions:

(1) BUL £, (X0 - 2 %), FIf > (s y)]) =
(aI’(TFyO’---aTFyn» TFXQ...TFX;
(t.2) tr{cn, )= (acu, (TFY0,- .-, TEYm))s
where f+— (yo,...,Vm) in F
(t.3) «[Take n;I] = L" ()
(t.4) a[PushArgn;I]=ol n—1)
(t.5) a[PushCodeB;Il =al (aB)
(t.6) a[PushComb ¢;I] =al ¢
(t.7) afEnterArgn]l=(mn-—1)
(t.8) a[EnterComb c]=c¢

o translates code sequences, and tr translates €losures, relative to the heap of frames
F. For notational simplicity the subscript F in tr will be omitted in the sequel
if no misunderstanding can arise. Rule t.1 translates a TIM state into a top-level
Categorical Multi-Combinator expression; it is used to translate the expression under
evaluation. We apply « to each entry in the TIM code to generate the corresponding
CMC code.

5.2 Proof of Property 1

We show that if a state T rewrites to a state T, then €(T), the Categorical Multi-
Combinator equivalent expression to T, rewrites in a sequence of zero or more steps
to 4(T,). The translation between TIM states and CMC expressions is performed
by the algorithm above. The following subsections prove the result clause by clause.

5.2.1 Multi B-Reduction

Let us start analysing the most important state transition law of both machines, the
one which corresponds to f-reduction in the A-Calculus. We can see that

([Take n; 1], fo,(@r ... 1 an s A, F) = (L f, AF[f = (ai,...,an)]),

where f selects an unused frame and

cMC
(L"), W - WIX0X1 " XnXngt Xz = (Y, (X0s- - Xn))Xntt " Xz

perform an equivalent transformation to the code. This can be shown formally as
follows:
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€({([Take n;I],f,(xq :...), F[f — (yo,.. )1)) 2 (a[Take n;1], (tye,...)) TX0...
§s.1 |3
EUL, f1, 0en .. ), Flf1 > (x05- .-, Xa—1)])) (L™ (al), (1y0,...)) 0.
| .1 Y M3
{ed, (TX0, ..., TXn_1)) TXp ... (o, (TX0y - - - s TXp—1)) TXn--.

5.2.2 PushArg as environment look-up

The operation that allows a variable to fetch its value from its corresponding
environment is expressed in TIM and CMC as

TIM

([PushArg n; I, f, A, F[f— (..,an..)]) = (If,an,AF[f—(...,an..)])
and
(n, (Xm,...,X1,X0)) cuc Xn

Consider the behaviour of the rules

el

#(([PushArg n;I],f,(x0 :...),
Flf = (ai,--)])

{e[PushArg n;I], (za;, ) txg...

§s2 | t4
CWI,f.(@n :x0..), FIf = (ai,-9)])) (o (n—1),(zas,"-)) tx0...
&1 Y M2
{ad, (ta;, - *)) ta, txq... {al, (tai, - )M{(n— 1), (zai, - ))tx0...
M1

(o, (zai,- 7)) ta, 0. ..

5.2.3 PushCode as environment distribution

This operation is performed by the following laws in TIM and CMC, respectively:

([PushCode B:Il,f,A,F) =" (If,(B,f):AF)

and
cMC
(xox1X2...Xn,y) = <x0a}’>(xlay}'--(xn—I,Y>(xn1.V)

Right associated applications are translated into TIM code as PushCode. PushCode B
builds a closure of the current frame and the code B.
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Let us prove the operational equivalence between the laws above:

3|

#({[PushCode B;I},f,(xo :...),

F[f = (ai,--)])
§s3 || £.5
CHIL f,[{B,f), x0..),F{f v (@i -)])) {al (aB), (ta;,---)) tx0...
| el | M2
{al, (zai, ) ©(B,f) 1x0- .- {al, (ta;, -+ )){aB, (Tai, - ))TX0 - ...
Il £.2

{al, (za;, - )){oB, (ta;,* - ))1x0. ..

5.2.4 PushComb as script look-up

(x[PushCode B;I], (za;," ")) ™>o.-.

55

In TIM and CMC functions are lambda lifted during compilation so that each func-
tion corresponds to a closed A-expression or a combinator. Whenever a combinator
is applied it will generate its own evaluation environment, binding actual parameters
to formal parameters. In CMC, whenever a combinator name reaches the leftmost

outermost position in the code we enter the corresponding code:

([PushComb ¢;I1,f, A4, F) = (I,f,(c,0) : A, F)

and

{c,f) wo...wg cuc (ce, ) wo ... wy

Let us prove the operational equivalence between the rules above:

€({[PushComb ¢;I],f,(x0 :...), 2 {¢[PushComb c;I], (ta;,- - ))txp...

FIf = (ai, )

§s4 | t.6
E(I,f, (e, 0) : x0,...), F[f = (@i, )])) {of c,(za;," - ))txp...
Il e.1 UM 2
(o, (za;, - - N tler, O)1x0. .. (o, (zas, ")) {c, (rai, - Y)Tx0 - ..
2 VM4
(o, (zas, - --)) {oce, ())rxp... {al, (za;, - - ) {acy, ()Yxo. ..

(Strictly speaking the use of M.4 in the last step of the right hand column will
only occur when (and if) the first argument of the state moves to the head position,
but since none of the rules M.1...M.4 are affected by the structure of non-head

sub-expressions, we can reason that the states are equivalent.)
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5.2.5 EnterArg as environment look-up

([EnterArg nl,f, A, F{f— (... fn) .- )) = L, [, AL F[f = (.. (Iny ) .- )])

In this rule, EnterArg performs a similar transformation to the code as PushArg
above, i.e,, an environment look-up. Let us see the state transition this rule performs

in CMC:
€({[EnterArg n),f,(x0 :..), 2 {e[EnterArg n], (- tlln fr) - )1x0...
Flf (L fa) 7))
§s.5 | £7
E(Ins frs [X05- ), FLfn = (3o,--)]) ((n—= 1), ¢, tldn fn), N0
Il ¢.1 | M1
{odns (TY0, - "+ TYm)}TX0 . .. Ty, fn)tXx0...
II'¢2

{ady, (tyo, "+, TYm))TXg . ..

5.2.6 EnterComb as script look-up

The role of the EnterComb instruction is simply to read the code for a function

definition from the script, performing a lazy linking of the code, by the following
law:

([BnterComb c, f, A, F) = (¢, (), 4, F)

This law is equivalent to the following state transformation in CMC:

€({([EnterComb cl, f, [xo,...], L (e[EnterComb c], (tam,-*)) tXxp...
Fif = (am," 1)

§ 5.6 |l ¢.8
(¢, 0, [x0,-. ), FIf — (am,-. 1) {c, (tam,* ")) x0...
| z.1 | M.4
(@, ()) >0 {ces ()) 0.

i
{ce, () Txp...

5.3 Translating CMC into TIM

The translation between Categorical Multi-Combinator expressions and TIM states
is performed by the following functions:

(l'.l) g—((es ()’0, v ’ym)> Wo... wk) = (Ue,f’ [OW(), cees OWk],F[f = (9}’0, s ByM)])
(r.2) 0(x,(y0,..-,¥m)) = {ox,[), where f+— (Oyo,...,0pm)

(r.3) on=EnterArg (n+1)

(rd) oc=EnterComb ¢
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(r.5) olepe;...ep) = Yen;...;WYey;ae

(r.6) oL"!(x) = [Take n;ox]

(r.7) Wn = PushArg (n+ 1)if n is a variable
(r.8) Yc = PushComb cif ¢ is a combinator
(r9) Y(epe;...em) = PushCode [o(ege; ... em)]

J translates a Categorical Multi-Combinator state into a TIM state, 0 translates
closures, and ¢ translates CMC code into TIM code. ¥ is an auxiliary function to
o, much as «f is auxiliary to &, in section 4.1.

F appears as an unbound variable in rule (r.1) — the meaning of this is ‘the heap
built by the recursive invocation of 8 on the subexpressions to which it is applied’.
When (r.2) is applied a new frame in the heap is generated, and we can see that the
traversal of the Categorical Multi-Combinator expression gives rise to a collection
of frames (F) in the heap.

The corresponding TIM script is generated by applying ¢ to each of the entries
of the CMC script, thus:

C; = 0C;

5.4 Proof of Property 11

We show here that if a Categorical Multi-Combinator expression M, rewrites to
expression M, in one step, then the TIM state J (M,) rewrites in a sequence of
one or more steps to J (M,), modulo the proviso in Section 5.4.2. The translation
between CMC expressions and TIM states is performed by the algorithm above.

5.4.1 Environment look-up

T (s (s (s X0))5 . ))Wo - W) c {an, f, [Bwo,...,0w],
F[f e (..., 00, (xj,- - x))s- )]
$ M°.1 I r3
T ({y, (xj, =, x1))wo ... wi) (EnterArg (n+ 1), f, [6wy,...],
Pl e D
| r.1 §s5
{oy, I, [Owo, ..., 0w, (oy, f', [Bwo,..., 0w,
F[f'+ (0xj,---,0x1)) FIf e (.oiloy, f),.. 00

The translation rules give rise to different heaps on the left and right hand sides.
Note, however, that the only difference is the presence of an additional frame f on
the right hand side. As rewriting is not affected by the presence of this extra frame,
the two expressions above are equivalent.
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5.4.2 Environment distribution

—

T((x0... Xp, Oms--IWo..) = {o(x0-..%n), S, [Owo,.. ], F')

| M2 i r.5
T ((x0, Wms-- )Y v Xy Uy . ))Wo0..) {(¥xp...0x0,f, [Owo,...], F')
[| r.1

{ox0,f, [0{x1, Wm»..)),...,0wq,.. ], F')
where we define F' = F[y — (Oy,...)].

There are three cases to be considered depending on the form of the expressions
x;. The appropriate case is used to transform the closures on the TIM stack (in the
left-hand column) and the Push instructions in the TIM instruction stream (in the
right-hand column). x; is a combinator c:

I r.7 | r.8
(6x0,f,[...,{6¢, Ym,...)),0wp,.. ], F')  (PushComb c...axo, f, [Owo,..), F)
Il | s4
(ox0,f, ..., (EnterComb ¢,(¥m,..)),  (¥Xu-1...0x%0,f,[{c, (), Owo,...}, F')
Owy,...],F)

U *(s.2,5.3,0r s5.4)
<O'X(),f, [ BR) (cb 0)’ OWOa .. ~]’Fl>

Now, the TIM closure (EnterComb ¢, (ym,...)) behaves exacly like the closure
(¢, ()), so the two states are operationally equivalent.

X, is a variable a:

i r.6 I r.7
{ox0,f,[..,04a, (¥m,-..)), (PushArg (a+1)...0xo,f, [Bwo,...], F)
0W0, .. .], F’)
{s2

(¥Xp—i-..0X0, f, [0ya ,Owp,...], F')
| *(s.2,5.3, or s.4)
(ox0, f,[.--»0ya ,0wp,...), F')

The final states here are equivalent, operationally, as in whichever situation the
closure 6{a, (ym,...)) is invoked, it will behave in exactly the same way as y,. It is in
this sense that the result is modulo an operational equivalence.

https://doi.org/10.1017/50956796800000939 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000939

On the equivalence between CMC and TIM 59

X, is an application (epe():

|| r.6 | r9
(ox0,f,[.-.,{c(e0er), [}, (PushCode [o(eoe1)]...oxo, f, [Owo,...], F')
fw,..], F)
s3

<\Pxn—l ... 0Xp, fa [(6(8031)a f)v OW(), .. ']a Fl)
U *(s.2, 5.3, or s4)

<0'X(),f, [ ) (O'(e()e]),f>, OWO’ . ']’F,>
5.4.3 Multi B-reduction

TUL ), oy, w))Xo...x)) = (oL" (), f', [0x0,..., 0],
F{f' — (Bwo,...,0w)])

Yy M3 | r.6
T Y (X055 Xn—1)) Xn...Xz) ([Take n;oyl, [, [0x0,...,0x,],
Flf' — (Bwo,...,0w)])
I r.1 I sl
{oy,f,[0xn,...,0x,], (oy,f,[0xn,...,0x;],

F[fH (exo,"-agxn—l):” F[fH (on,...,(?x,,_|)])

The heap in the right hand side has an additional frame f’ if compared with the
heap in the left hand side. As this does not affect rewriting we can say that the two
expressions above are equivalent.

55 €and T

We show that the two translation functions ¥ and < are related to each other, and
that 4 and € are inverse mappings.

5.5.1 T o % = Identity

Here we prove that 7 (¢x) = x, when x is a TIM state by structural induction over

the structure of x.

T(€(I,f,[xo0,--->X:], g T (o, (tyo,...,TVn)) TX0...TX;)

F[f = (yo,---,yn)])

-

(O’((ZI), f’ [B(TXO)a tees H(sz)],

, Ff — (8(zyo),.-..,0(ryn))])
Assuming that o(xz) = z and f(zx) = x

E L, X0 %), FIf = Gore o, 9)])
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Now we prove that 8(rx) = x by induction over the structure of x:

0(zl{cn )] =

[

8((acn, (ty0, - -+, TYm)))
(a(acn), f)

wheref — (8(tyo),...,0(tym)
by induction 8(tI) = I and assuming o (xz) = z,

L enf)

We need to prove that o(xz) =z

X
[

~
w

o(a[Take n;I) = o(L"! al)
s [Take n;a(al)]
by induction a(al) = I,s0 £ [Take n;I]
o(a[PushArg n;I}) = gl n—1)
2 - 1);0@]
L [PushArg n;o(al)]
by induction a(al) = I,so = [PushArg n;I]
o(a[PushCode [B];I]) 2 o(al (aB))
2 [¥(B);o()]
r9

[PushCode [o(xB)];0(al)]
[PushCode [B];I]

IIe Ik

by induction a(al) =1,

-~
N

o(a[PushComb ¢;I]) = oa(al;c;)

2 Yo

8 [PushComb c;a(al)]

by induction o(al) = I,so = [PushComb c;I]
o(x[EnterArg n)) 2 an—1)

o3 [EnterArg n}
o(e[EnterComb c)) 2 ac,

rd4

[EnterComb c]

5.5.2 € 09 = Identity

We will show that 4(Z x) = x, where x is a Categorical Multi-Combinator expres-
sion, also holds.
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BT (&, (Vos-- - ym)IWo... W) = Blae, f, [Bw, ..., 0w,

FUH (OyOs" ,0)’m)1>

({aloel, (z[Oyol, - .., z[Oym]))
T[Bwol ... t[0wn]

(e; o, - ym)) wo ... wi

-~

[}

If a[oe] = e and 7[0x] = x, then

Now we prove that t[8x] = x, where x is a Categorical Multi-Combinator expression
by induction over the structure of x:

-
N

1[0(x, (yo, - ym))] tl{ox, f)]
(alox], (x[Oyo], ..., Tl0ym)))

(%, (¥0,---»> Ym))

o

oo,10

Now we prove that a(ox) = x, again by induction over the structure of x.

(=}

al[eL" ()] = «[Take n;al]

2 L alol))
£ 7'
afon] 2 oa[EnterArg (n+1)]
2 (m+1—1
n
afo(epey - .- em)] =2 a[Wem;...;Wer;0e]
if ey 1s a variable n o a[PushArg (n41);...;We,; aep)
u af...;Wey;0e0]n
r.500

epll...ey

The induction is in the last step, which also uses (r.5) backwards. The other two
cases are similar:

. . . 9
if en is an application (wgw;) = a[PushCode [o(wow))];...; Ve;;0eg]
t.5
= al...;Wer;0eo](a[o(wowr)])
ag
= al...;Wer;ae0](wow)
r.5a0
= €péy ...y
if e,, is a combinator ¢ 8 a[PushComb c;...;Ve;;0ep)
6
= af...;We;;0e0]c,
r.S_,_au

€p€1...em
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6 Related work

There is a fair amount of related work which derives an abstract machine design (or
designs) from the semantic specification of a (usually functional) language (Wand,
1991; Kelsey and Hudak, 1989; Lester, 1989; Meijer, 1992). There seems to be much
less literature which directly relates to abstract machine designs arising from different
roots, such as that presented in this paper. Meijer explores several abstract machine
designs within a single formal framework (Meijer, 1989), while Hannan presents a
framework for reasoning about the ‘concretisation’ of an abstract machine (Hannan,
1991). Peyton Jones and Lester (1992, Chap. 4) give an informal transformation
which shows the relationship between the G-machine and TIM.

7 Conclusions

In this paper we have shown the equivalence between the operational semantics
of the TIM machine and rewriting of Categorical Multi-Combinator expressions:
every TIM state is equivalent to a Categorical Multi-Combinator expression and
vice versa; equivalent expressions are transformed into equivalent expressions by
rewriting. In effect, we can see TIM and CMC as notational re-packagings of each
other. The only real difference is that the CMC’s environment-distribution rule (M.2)
does in one step what is done by a sequence of Push instructions in TIM.

A notable omission from our treatment is the issue of sharing and updates, which
we leave as an open, and quite difficult, problem.

We see the main interest of our result as an extra landmark in the ‘design space’
of abstract machines.
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