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WEAK CONVERGENCE AND ONE-SAMPLE RANK
STATISTICS UNDER ¢-MIXING*

BY
K. L. MEHRA

1. Introduction. Let {X;:i=1,2,...} be a real strictly stationary process
(defined on a probability space ({2, .7, P)) which has absolutely continuous finite
dimensional distributions (with respect to Lebesgue measure) and satisfies the
¢-mixing condition: Let My and My, denote the sub-o-fields generated, respec-
tively, by {X;:i<k} and {X;:i>k+n}; then, for each k>1 and n>1, E, € MY and
E, € My, , together imply

Ly [P(Ey N E;)—P(Ey) - P(Ey)| < $(m)P(EY),

where ¢, 0<4<1, is a non-increasing function of positive integers which ap-
proaches 0 as n—c0. In [3], Fears and Mehra proved the Chernoff-Savage Theorem
[2] concerning the asymptotic normality of two-sample linear rank statistics for
sequences of observations which satisfy the above ¢-mixing dependence. The proof
uses the weak convergence approach of Pyke and Shorack [4] and is based on a
Hajek-Rényi type inequality for one-sample empirical processes under ¢-mixing,
which enables one to study weak convergence properties of the one and two
sample empirical processes for ¢-mixing sequences. The object of the present paper
is to establish similar results for the one-sample linear rank statistics under ¢-
mixing, viz., the statistics of the type

1 N
(1.2) Ty == 2 chrweo

Niz1
where 7y;=1,0, —1 according as the ith order statistics |X|), 1<i<N, in an
ordering of |X;|, k=1,2,..., N, corresponds to a positive, zero or negative X
and {c},;:1<i< N} is a certain appropriate double sequence of scores. In the pro-
cess we establish -a Hajek-Rényi type inequality (see (2.9)) for the one-sample
signed empirical process V(t), defined by (2.6) below, which should be of interest
per se. The results of this paper are related to those of Pyke and Shorack [5] and
are employed in a separate paper to study the asymptotic relative efficiency of
Hodges-Lehmann type estimates of location and related rank tests for sequences
of dependent observations satisfying ‘mixing’ conditions.
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In section 2, some notation and preliminary results concerning the weak con-
vergence of one-sample signed empirical processes are described. Section 3 contains
an identity relating the signed empirical processes {Ln(#):0<t<1} and {Vy(2):
0<Lt<1} (see (2.4) and (2.6) for definitions) and the main theorem concerning the
weak convergence of Ly and Tx. In the last section 4, a convenient Chernoff-
Savage type theorem for the one-sample linear rank statistics T’y is given.

2. Notation and Preliminary Results. Let H (F) denote the distribution function
(d.f) of | X3} (X} and Hy(Fy) the empirical d.f. corresponding to the first N |X|’s
(X’s) and let G denote the empirical function

1 N
2.1 Gy(x) = ’ﬁ ;I[lxi| <a1580(X)),

where sgn(X,)=1,0 or —1 according as X; is positive, zero or negative. Let
Ry, (Sy,) stand for the number of positive (negative) X’s whose absolute values do
not exceed |X|*9, 1<i<N. Then RN,.—-SM-:NGNH;l(i/N), where the inverse
function Hy'(1), 0<t<1, is defined by Hy'(t)=inf{x: Hy(x)>1} (similarly H;",
H-1 etc.) so that as in Pyke and Shorack [4] using summation by parts and the
relations 7y, =Ry — Sy and 7y =(Ry;—Syv)— Rye—1n—Snee-1), 1<kLN, the
statistic T is expressible as

1y 1 _
2.2) Ty =~ 3 onlRyi=Sx) = f GyHR) duy(D),

where cy,’s are related to cx.’s by ¢ni=2.-: Cyp, 1<IKN and vy denotes the
(signed) measure giving weight cy; to (i/N) 1<i<N. Assuming that 0<F(0)<1,
denote by m(n) the number of positive (negative) X’s, Ay=(m/N), F+(F~) the
conditional d.f. of [X;| given X;>0 (X;<0) and

H = H;'N = Z’NF++(1_}'N)F~

G =G,, = AyF'—(1—Ay)F~

(H and G are both random and depend on N, but this fact is suppressed in the
notation). Note that if we set 4,=1—F(0), then Hy(x)=H, (x)=F(x)—F(—x) and
Go(x)=G, (x)=F(x)+F(—x)—2F(0) are the d.f.’s of |X;| and |X;| sgn(Xy) res-
pectively. Further also note that on account of the absolute continuity assumption
of section 1, (n/N)=1— A, with probability one. Define now the empirical process

{Ln():0Lt<L1} by
(2.4) Ly(t) = NV} [GyHF()—GH™()];
then setting 7=/ (1, GH7(t) dvy(t), we obtain from (2.2) that

(2.3)

1
@.5) T = NVA(Ty—ny) = f Ly dvy(0).
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To study the asymptotic distribution of Ty, as N—oo, under suitable conditions
on the measures vy and the sequence {X;:i>1}, we shall study in section 3 the
weak convergence of the process Ly relative to various metrics. For this we need
to study the weak convergence of the one-sample signed empirical processes
{Va(1):0<t <1} and {V3(2):0<t< 1}, where
Va() = NV GyH (1)~ GHy ' (1)]
V¥~ NVHyHG ()~ HHF (9]

We shall now prove a result similar to Lemma 2.2 of Pyke and Shorack [4]
(see also Lemma 2.1 of Fears and Mehra [3]).

(2.6)

LEMMA 2.1. Assume that the ¢-mixing sequence {X;} satisfies the conditions im-
posed in section 1, with 3=, n*$,! ?< 0. Then given £>0, there exists a 0,0< 0<%,
depending on & alone and an integer Ny=Ny(e, ¢) (N, depends on {X,} through ¢
alone) such that for N> N,

@7 P[ sup |Va(0/a()] > s] <,
0<1<0
where q(1)=[t(1—1)]*/?-3, 0<t<1, for some 6, 0<0<}%. The same result holds
for Vy in place of Vy.
Proof. The proof is similar to Lemma 2.1 of [3]. Let
g(x) = [I[lac]sH;‘(t)]Sgn(x)—(I[¢>01F+Ho_l(t)"I[z<o]F_Ho_l(t))], 0L,

and consider M real points 0<s; <5, <" * - <55, =0<%, with 5,= (0| M), 1 << M.
Since Eg,(X)/I;x,>0,1=0 a.s., it follows that for any 1<j<k<M,

Sk S; 2s;

< —
S 6o P60 169G,

fj] 3 W),

(2.8)

the last inequality in (2.8) following from (2.3) to (2.6) of [3]. Now proceeding
exactly as in [3] with &=[Vy(sD/q(sD], &:=[Vn(sis1/q(sd]—[Vn(s)/q(siD],
1<i<M, and using Lemma 22.1 and Theorem 12.2 of [1] and the inequality

2.9) [4*()/a ()1 < 2 for 1 <1< M,
we obtain

Va(s:) K, aM ﬁM= 2 %
2.10) P[lggu q(s,) 2 E:I < &t [1 :H:M =z (1/q (SZ)):| ’
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(K, K4, K', etc. are genenc constants throughout). Now since |FHy (1) — FHy *(s)|+
|F(— H‘l(s)) F(—Hy'(£))|=|t—s|, we have for 0<s<t<1
1— ;N) N1/2(t_s)’

where Yy(t1)=NY2[HyHy 1(t)—1]. Further from (22.17) of Billingsley [1], we have
for 5;<t< 5341
(2.12) [Yp(8)—Yn(s)l < |Yn(si)l+1Yn(s)+N 1/2(3“-1—51'),

so that from (2.9), (2.11), (2.12) and the monotonicity of ¢, we obtain after some
manipulation

@11)  [Vy@O—=Vy)l < Yy =Yyl + (1+iN+

1£10)

< 2 max |VN(Si)l<4 max | Yo(s,)|
q(®)

1<ism g(sy) 1<ism g(s;)

+( +AN+1 2N)[(2N0)1’2/M‘1’2’+"].
do  1—14

Now for given ¢ and 0 choose M and N sufficiently large, say N>Ny(e, 0, ¢),
such that

0/ M)<t<0

(2.13)

4N6 NO 1— XN) s] e
2.14 —>M>=— and P >-| <=
(2.19) > > - an [(2+2+ =20 23 <%

(for large enough N (2.14) is clearly possible since Ay—,0, as N—oo, uniformly in
mixing sequences {X.}). Using the inequality (2.14) of [3] and (2.10) above, it
follows from (2.13) and (2.14) that

0 2
@19 P s 10> @) < S [0 @)+
Further note that since Hy(Hy (0/M))=0 implies that
V() < NV (y[do)+({(A=2)](1=2)]t for 0 <t < (6/M),
we have from (2.14)

P[ sup l—IM<£]
o<t<(o/) ¢(t) 3
2 ()25 < rrono -] 312

The desired result follows from (2.15) and (2.16) if we choose 6 so small that the
first term on the right in (2.15) is less than /6. The proof of the inequality (2.7) for
{V%:0<t<1}is similar. [J

(2.16)

Let C=CJ0, 1] be the space of continuous functions on [0, 1] and D=D[0, 1]
the space of right-continuous functions on [0, 1] that have left-hand limits. Let p
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and d denote, respectively, the uniform and the Skorohod metrics (see Billingsley
(1968) p. 115). Both (C, p) and (D, d) are complete separable metric spaces. Now
let Fy; denote the empirical d.f. of X3, X,, ..., Xy and

1 ¥ _ 1 &
(2.17) FR() = = 3 In< xi<ap FNOX) = = 2 Ino<—xi<als

NS Nio
then setting Va(t)=NV2[FyHy (1)—AyF+Hy (t)] and Vy(t)=N2[FyHy (1) —
(1=Ax)F-Hy'(1)], it can be easily seen that

{V;v“(t) = Un(FH;"(0)—Un(FO)[L—F"H;'(t)] and
V() = Un(F(O)[1—FHy'(0)]— Un(F(—Hg (),

where Upy(t) and Uy(t) are the one-sample empirical processes defined by Uy(f)=
N12[FyF1(t)—t] and Uy(t)=N'2[Fy(F-1(t)—)—t]. Define now the processes
{Wa():0<u<L1}, for N>0, by

Wx(u) = Vy(Qu) if 0<u<}

(2.18)

= VHQu—1) if %—;u <1,
where the processes ¥, and V; are defined by

Vi(t) = Uy(FHg (1)~ Uy(F(O)[L —F*Hg ()]
Vo(®) = UFO)[1—F (Hy ()]~ UoF(—Hg (1))

and U, is the a.s. continuous Gaussian process given by (2.21) of [3]. (See also
Theorem 22.1 of [1]).

2.19

(2.20)

LEMMA 2.2. Let the function q and the sequence {X,} be as in Lemma 2.1. Then,
as N—o, (i) Wy —r, W, relative to (D, d), and (ii) (Wx[q*) —1 (W,[q*) relative
to (D, d), where g*(u), 0<u<1, is defined by q*(u)=g(2u) for 0<u<% and g*(u)=
q(2u—1) for $<u<1. Also note that Wy-process is a.s. continuous.

Proof. First note that due to the assumed continuity of F, both processes Uy
and Uy converge weakly, relative to (D, d), to the Uy-process (by Theorem 22.1 of
[1]). Therefore it follows from (2.18) that the finite dimensional distributions of
W -process converge to those of Wy-process and that condition (i) of Theorem
15.2 of [1] is satisfied. Now for a given function f on [0, 1], let w;(f), 0<d<1,
be the modulus of continuity of f. Then using (2.21) of [1] and the equality

(21)  [F(HF'®)—FH ) +F(—Hg'(s)) —F(—Hy ()| = [t—s]|

for s, t € [0, 1], it follows from (2.18) that w,(V3) and w,(¥y) can be made arbi-
trarily small in probability for sufficiently small 6 and sufficiently large N. Since
V() —, 0 and Vx(?) —, 0, as +—0 or 1, it follows that condition (ii) of Theorem

15.2 of [1] s also satisfied for the Wy-processes. Thus part (i) of this lemma follows
from Theorem 15.1 of [1]. For the proof of part (ii), first note that since

(2.22) V() = V-V and V) = VEO+V 0,
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0<t<1, the conclusion of Lemma 2.1 holds for ¥V, or ¥y in place of Vy. In
view of this last assertion, (2.21) and the fact that (Vx(¢)/q(?)) and (Vx(2)/q(2)) also
converges to 0 in probability, as r—0 or 1, part (ii) follows by using the result and
arguments of part (i) as done in the proof of Theorem 2.1 of [3].

REMARK 2.1. Consider the process {Wx3():0<t<1}, N>0, with Wy=4{(Wy)
obtained through a linear transformation £: D—D and defined by

1(g(t))=g(3’—2ﬂ)—ga) for 0< 1}

(2.23) pt
t— ) .
—g(—2—)+g(t) for 1<t<1;

for the transformation #, defined by (2.23), note that g € D'={ff€ D, f(0)=f(})=
f(1)=0} implies #(g) € D’. Further for the process Wy, we have Wyx(t)=Vy(2t)
if 0<t<} and W(H)=V5(2t—1) for (})<t<1; consequently Wy and (Wy/q)
(N >0) satisfy, respectively, the conclusions (i) and (ii) of Lemma 2.2, where we
have set Vy()=V§(t)— V5 (t) and Vi (t)=Vg(t)+ Vo (t). This is because ¢ satisfies
the conditions of Theorem 5.1 of [1]. Also £:C'—C’, where C'={f:fe C, f(0)=
($)=f(1)=0}, so that P[Wg € C]=1.
Now define the processes {Xy(7):0<t<1}, N>0, by

X)) =2y for 0<t<}
= V3B3t—1)/q(3t—1) for 3} <t< %
= V§(3t—2)/q(3t—2) for 2<t< 1.

The same arguments as in Lemma 2.2 show that X — X,, as N—co, relative to
(D, d). Thus using item 3.1.1 of Skorohod we can construct processes Xy, N>0,

on a single probability space Q, MN, P), which have the same finite dimensional
distributions as their counterparts X, N >0, defined on (2, &, p) and which satis-
fy d(Xy, Xo)—>4.5. 0, as N—>c0. Defining now, as in Pyke and Shorack [5],
i = NXy(0), i= N—m for N >1 and

Va(® = aOXn(@+D[3), VO = qOF5(t+2)[3) for N>0 (0<t<LD),
we have that (i) (1y, Vy, V) have the same finite dimensional distributions as
(Ax» Vv, V), (ii) that the processes ¥y and ¥y are a.s. continuous and (iii) with
probability 1, the processes ¥y and ¥y have jumps of size N=1/2 and are otherwise
continuous for N>1. If we set Vy=V3—Vy and Vy=Vx5+ V5 (N>0), it follows
that
(2‘24) Zl\f —>a.s. 0 and (VN’ I7]"\") _>a,.s. (1705 17(;“)5 (17}(;'5 V}:’) —)a,s,

(V§,V5), as N—oo
(relative to the product (Skorohod) topology of the space D x D).
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From now onward we shall work with the space «Q, .sa/, P) with the symbol ~
dropped from all subsequent notation. The results asserted below, as pointed out
by Pyke and Shorack [4], are generally valid only for the specially constructed
processes, except for the implied weak convergence results which are valid for the
original processes.

Let the metrices d, and p, be defined by d,(f, g)=d(f]q, g/g) and similarly for
ps» and Q denote the class of functions g’ on [0, 1] defined by Q={g":there exists
positive numbers K, 6, ¢ (0<J, e<}) such that q'(O)>K[t(1—1)]v»=° on [0, &]
and [1—e¢, 1] are bounded away from zero on [e, 1 —&]}.

Now since the processes ¥, and V' are a.s. continuous, one can conclude from
(2.24) as in Fears and Mehra [3] (see the proof of Theorem 3.1 of [3]) that V_
and Vg satisfy the conclusions of Lemma 2.1 and as N—oo,

(225) Pq(VN’ VO) —>a.s. 0 and pa(V]t" V:)k) ~>a.s. 0 for q€ Q'

For studying the weak convergence of the empirical processes Ly and L} in
section 3, we need to prove Theorem 2.1 below, the counterpart of Theorem 2.2
of [4]. To accomplish this, let X ~=H,Hy', K= H,H-! and I as the identity function
on [0, 1], and note that under the conditions of section 1, p(Ky, I) -, ;. O (see
Lemma 2.3 of [4] and the proof of Theorem 3.1 of [3]), so that

(226) P(VN(KN)’ VO) S P(VN> VO)"’"(%(KN)a VO) —a.s. 0’

using (2.25) and the a.s. continuity of ¥, on [0, 1]. In view of (2.26), Theorem
2.1 can be proved with exactly the same arguments as for Theorem 2.2 of [4],
provided we first prove the following counterpart of Lemma 2.5 of [4] (c.f., Theorem
3.1 of [3]):

LeMMA 2.3. Under the conditions of Lemma 2.1, for given ¢,7>0 (¢, 7<}),
there exists a b>0 and an N, such that for N> N,
P[KN(t) < b for 1> %] S 1—e.

Proof. Since p(Ky, I) —,,,, 0, for given ¢>0 there exists an Ng= Ny (¢) such that
Ky(t)<t+e as. for NZN(;. Since it is possible to choose a b=5b(¢) and a §=0(¢)
such that t+¢e<b¢" for all £>0, the problem reduces to the consideration of the
interval [0, 6] for sufficiently small 6 by choosing an appropriately large 5. We
need to consider only the interval [1/N, 0]. Now using Lemma 2.1, choose 6
and N such that for N>Ng

.27 P[Ey] > 1—¢ where Ey={Vy<q(t) for 0<t< 6},
with g(¢)=[t(1—1)]*/>% and 6=7/2(1—7). Now on Ey

https://doi.org/10.4153/CMB-1975-100-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1975-100-5

562 K. L. MEHRA [October
Kn(t) = HyH7 () —N"*Yy(K (1)
(2.28) < (t+%) +N3g(K p(1))

< 2t+17%g(K \(1)), for % <t<L0,

which yields Ky(#)<bt*~" for 1/N<Lt<0 as shown in the proof of (3.7) of [3].
The result, therefore, follows from (2.27) for Ny=max(Ng, N,).
We thus have Theorem 2.1 below, for which we define

’ _ .1_ _l
(2.29) ViEn() = Va(Ky(t)) for e <t<l1 S

= 0 otherwise.

THEOREM 2.1. Under the conditions of Lemma 2.1 and for q € Q,

(2.30) PV N(Kn), Vo) >, 0, as N — 0.
The convergence (2.30) also holds for V3, Vo, or Vy, Vo or Vy, Vi in place of
Vs Ve

3. Weak Convergence of the Signed Empirical Process Ly. The basic identity
relating the signed empirical process Ly with the processes ¥ and ¥y which
enables us to study the weak convergence of Ly (relative to various metrics) from
that of ¥V and Vy, is given by Lemma 3.1 below. Using Theorem 2.1 above,
this identity and arguments similar to those used in Pyke and Shorack [4], one
can deduce Theorem 3.1 below which gives sufficient conditions (on vy, F etc.) for
the asymptotic normality of T.

On account of the absolute continuity assumption for the finite dimensional
distributions of the process {Xy}, the distribution of order statistics (|X]®,
| X|®, ..., |X|®) is also absolutely continuous. It follows as in [4] that, for each
0<k<N, P[HH}l(t);ét at all ¢ except the points t=(i/N), 0<i<N[m=k]=1.
Thus, except at these finite number of points, Ly(z) can be expressed a.s. as

Lv(t) = V(K (@) + 2 (”t)"tGH —O N2

t

where u,= HH}l(t). Further

u—t = (HyH O—)— N2V % Ky(0),
so we obtain

(3.1) Ly() = Vy(Ky(®)—An@OV Ky () +n(0),
where

GHY(u)—GHY(t)
A =
(3.2) () u—t
Sn(f) = An(ONY*[H yH7 (1) —1].

and
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Since for ¢ € [0, 1]

IGHR()—GH™(0)| < Ay |[F*HY()—F H™'(1)|

+(1=2y) |FFHF()—F H7'()| = [HHF()—1|,
it follows from (3.2) that |4y|<1 and |dy|<N72/2. Also for points ¢ at which
HH;l(t)=t, Ly(t)=Vx(K(2)). Defining Ly(z) by left continuity at undefined points
in (3.1), we obtain

LeMMA 3.1. With probability 1,

Ly(®) = Vy(Kn(D)— ANV HE n(0)+05(1)
forallt e (0, 1), where Ay and Oy, are given by (3.2).
Since AF+H;'(t)+(1—A)F-H;'(1)=t, both F*H;" and F-H;' are absolutely
continuous; let aj(ay) and g (ay) denote the derivatives of F*H-1(F-H-) and
FHy (F-H7Y), respectively. Now set

(3.3) Ly(t) = Vo) —ao()V (1), ao(t) = Ayag()—(1—2o)ag(t)
and, as in Pyke and Shorack [4], Ly=Ly(dy=0y) on [1/N, 1] (on [1/N, 1—(1/N)])
and zero elsewhere. Then we have from (2.29)

Pq(Ll,V, LO) S pq(V]’V(KN)’ V0)+P(AN’ O)Pq(V}kV/(K.N)’ V(T)
Ly(1)

+p(Axs a)p(Va, 00+ sup | =2 |4NT
1-a/m<i<1 4(1)

so that in view of Theorem 2.1, |4,|<1 and the assertion about V;* just before
(2.25), it follows that for g € Q, p,(L}y, Ly)—0, as N—oo, provided we show that
p(Ay, a))=0,(1) and supy_;n<t<1|Ln(®)/g()l=0(1), as N—oco. The second
requirement follows since in the interval [1/N, 1],

ILy(®)] = N** |Ay(1=F—H'®)) —(1 =21 —F H(®)| < N"*(1-1);
the first one follows, as in Pyke and Shorack [4], under the additional assumption
3.1 below: (see Lemmas 4.1 and 4.2 of [4]).

AssUMPTION 3.1. The functions FH™! have derivatives a; for all z€ (0, 1)
and for some A, a, is continuous on (0, 1) and has one-sided limits at 0 and 1.

Let D denote the set of left-continuous functions on [0, 1] that have only jump
discontinuities. Then from p,(Ly, L,) —, 0, it follows that Ly —, L,, relative to
(D, p,), as N—co. The same holds for d, in place of p, in above. We can now con-
clude

THEOREM 3.1. (i) Suppose that the ¢-mixing process {X,} satisfies the conditions
of Lemma 2.1, 0< F(0)<1 and Assumption 3.1 holds. If (ii) for a Lebesgue-Stieltjes
measure v on (0, 1), {3 qd |v|< oo for some q € Q and (iii)

1
34 f Lydyy—v)—0, as N — o,
1N
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then Ty —, ﬁ Ly dv, which is a N(O, o‘ﬁ) r.v. with a§< oo given by
1 prt
a5 %= 8] [ E-b@Vio-bi07i0)
(3.5) 0 Jo

X [(1=by(s))V5(s)—bo(s)V5(5)] - dv(s) d(t),
where by(t)=d(FHy ' (t))|dt and V", Vg are as in (2.20).

Proof. Since p,(Ly, L,) —, 0, the result follows from the inequality
1 1 1
| T [ Lo v <1 || Livdoy=n) Lt L) [ ad

(2.20) and (3.2), provided we show the finiteness of oy. For this it would suffice to
show the finiteness of one of the four terms, say

(3.6) f f EV V()] do(s) do);

for the remaining the same arguments are applicable. Now setting c(s, ¢) as the
covariance function of the Ug-process, we obtain from (2.20) that (3.6) equals

L f (L~ F~H5(s))e(F(0), FH3*()
(1= FHF0)1—F~H3(s)) - c(F(0), F(O)—c(F(—H5'(s)), FHy'(1)

CD = FHW)F(—H5 5, FO)] - dv(s) db(t)
= L 1 f "EISX (X + EXIn(X)] do(s) da(r),
where
&%) = grm,1n(X)—(1—FTH7 (1) gh0)/(X),
N(x) = (1=F Hg*(5)) g 0) (%) — g r(rr, 251 (%)
and

87(x) = I,z 1 (X)—t.
Using F+Hy '()<A5'(1), 1| —F+Hy ' (£)<45'(1—t) (similarly for F-Hy'(s)) and
E| gs(Xl)gt(Xk)l<2¢,lc/_21[s'(1—s)t(l—t)]l/z, we obtain that there exists a constant
K, such that (3.7) does not exceed

K [[(s0=911-01}a0)a0 d 11 9 d b1
which is finite on account of the assumption | 5 q(t)d|v| (1)< 0.

REMARK 3.1. It can be easily shown (See corollary 4.1 of [4] that Assumption
3.1 above is satisfied if either (i) f=F"is symmetric about zero or (ii) fis continuous,
H, is strictly increasing and the limits Lim,_,, ., [f(x)/f(—x)] exist. In case of
symmetry of f, FHy 1(t)=(1+t)/2 so that co(t)=1% and the variance (3.5) takes a
much simpler form in this case.
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4. A Chernoff-Savage Theorem. Let » be induced by a non-constant function
—J, of bounded variation on (g, 1—¢) for every >0, and let Jy(tf)=cy; on
(i—1/N, i/N] for 1<i< N and Jp(0)=Jn(0+). Then we can write

1 1
NW[TN— f J(H) dG] = TH+yy, Where yy= N2 f [J y(H)—J(H)] dG.
0 0

It can be shown under the conditions of Proposition 5.1 of [4], that yy=0,(1)
and (3.4) holds, as N—oo. Consequently, we obtain under the additional hypothesis
(i) of Theorem 3.1 that

4.1) N2 [TN— f : J(H) dG} —; N(0, 63),

as N—co, with o3 given by (3.5). We can, however, further improve this result by
replacing in (4.1) the random quantity [ J(H) dG by the fixed quantity [ J(H,) dG,.
The following theorem can be compiled by following the arguments of Theorem 1
of Pyke and Shorack [6].

THEOREM 4.1. Suppose the hypothesis (i) and (ii) of Theorem 3.1 hold and

N
N2 2 ek J(G/N) A (N=1/N)| < 8y

with §y=0(1) as N—oo. Then the statistic

1 1
Ty = N2 [TN— f J(H,) dGo] -y f L, dv,
0 [1]
a N(0, o2) r.v. with o given by (3.5).

Proof. Similar to that of Theorem 1 of [6].
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