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The Known Biology of Neuropathic Pain and Its Relevance to Pain
Management

Peter A. Smith
Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada

ABSTRACT: Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms
are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has
provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with
the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote
post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that
is crucial for the onset and persistence of pain and the release of secondarymediators such as colony-stimulating factor 1 from primary afferent
terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and
astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most
part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by
addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory
factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve trans-
lation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysi-
ology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.

RÉSUMÉ : Nos connaissances actuelles en biologie en ce qui concerne la douleur neuropathique et leur pertinence pour la prise en charge
de la douleur. Les patients souffrant de douleurs neuropathiques sont hétérogènes en termes de pathophysiologie, d’étiologie et de
présentation clinique. Leurs signes cliniques et leurs symptômes sont déterminés par la nature de leur lésion ainsi que par des facteurs tels
que la génétique, le sexe, une lésion antérieure, l’âge, la culture et l’environnement. À l’aide de modèles appliqués à des rongeurs, nos con-
naissances scientifiques fondamentales ont fourni des éléments généraux d’information sur l’étiologie de la douleur en étudiant les
conséquences de lésions périphériques. Un tel phénomène est associé à la libération de cytokines pro-inflammatoires, de chimiokines et
de facteurs de croissance qui sensibilisent les terminaisons nerveuses sensorielles, modifient l’expression génétique, favorisent la modification
post-traductionnelle des protéines et altèrent la fonction des canaux ioniques. Cela conduit en retour à une activité spontanée dans les neuro-
nes afférents primaires, laquelle est cruciale dans l’apparition et la persistance de la douleur et la libération de médiateurs secondaires, par
exemple le récepteur de « facteur de stimulation des colonies 1 » à partir des terminaisons afférentes primaires. Ces dernières favorisent par
ailleurs la libération de médiateurs tertiaires tels que le facteur neurotrophique dérivé du cerveau (FNDC) et l’interleukine-1β par la microglie
et les astrocytes. Les médiateurs tertiaires facilitent aussi la transmission des informations nociceptives aux niveaux spinal, thalamique et
cortical. Dans l’ensemble, ces découvertes n’ont pas permis d’identifier de nouvelles approches thérapeutiques. Cela dit, les avancées plus
récentes de la science fondamentale reflètent mieux la situation clinique des patients en abordant la ou les pathophysiologies associées à
des types spécifiques de lésions, en affinant la méthodologie employée et en prêtant attention à divers facteurs contributifs, par exemple
le sexe. Une meilleure quantification du profil sensoriel de chaque patient et leur répartition en groupes définis peuvent ainsi améliorer
le transfert entre les connaissances fondamentales de la science et la pratique clinique. Si cette quantification parvient à remonter jusqu’aux
aspects cellulaires et moléculaires de la physiopathologie, cela pourrait conduire à des approches médicales personnalisées qui dictent une
approche thérapeutique rationnelle pour chaque individu.
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Introduction

The signs and symptoms of neuropathic pain in each individual
patient are strongly dependent on variables such as sex, age, eth-
nicity, inherited genetic predisposition, intestinal microbiome,
prior neonatal injury, personality variables, and cultural and envi-
ronmental factors.1–5 This heterogeneity of presentation also
reflects the association of neuropathic pain with a diverse set of
maladies. These include peripheral nerve trauma, brain or spinal
cord injury, fibromyalgia, multiple sclerosis, spinal, cortical or
brain stem cord stroke, post herpetic and trigeminal neuralgia,
migraine, osteoarthritis, rheumatoid arthritis, autoimmune dis-
ease, complex regional pain syndromes I and II, viral infections
such as HIV and COVID-19 and neuropathies associated with dia-
betes, chemotherapy, and cancer itself.6

Signs and symptoms include hyperalgesia, mechanical, or cold-
induced allodynia, bouts of spontaneous “electric shock like” pain
and sometimes the persistent burning pain of causalgia6 Some
patients experience sensory disturbances. These may involve par-
esthesias, described as a crawling sensation, pricking or tingling7 or
anesthesia dolorosa where the area of injury is painful yet insensi-
tive to touch.8 Neuropathic pain is frequently intractable, relatively
insensitive to the action of opioids9,10 and may present with co-
morbidities such as anxiety, irritability, sleep disorders, depression,
and/or sensory abnormalities.7,11 Despite intensive efforts to find
new drugs and targets over the past 30 years, the urgent need to
find new treatments persists.6,9,10,12 Most of the current under-
standing is derived from peripheral nerve injurymodels in rodents.
Inmost cases, the spared nerve injury (SNI) or chronic constriction
injury (CCI) models are used.13

This review will overview the current understanding of pain
induced in animal models by peripheral nerve injury. In view of
the recognized knowledge gap between these basic science results
and the various signs and symptoms and/or pain phenotypes seen
in patients,12 a brief outline of clinical and basic science strategies
that seek to bridge this gap will be presented.

Nerve Injury, Wallarian Degeneration, and Primary
Mediators

Following injury, Wallerian degeneration of severed axons is associ-
ated with neutrophil, macrophage, and T-lymphocyte invasion as
well as activation of Schwann cells, fibroblasts, mast cells, keratino-
cytes, and epithelial cells.14–16 Once activated, these immuno-
competent cells generate and release pro-inflammatory primary
mediators. These include tumor necrosis factor (TNF-α),14,17 inter-
leukins 1β,15,17 and 18 (IL-1β, IL-15, IL-17, and IL-18),14,18–21 nerve
growth factor,14,22 monocyte chemoattractant protein 1 (MCP-1/
CCL-2),23 chemokine (C-X-C motif) ligands 1 (CXCL-1)14,24

and 12 (CXCL-12),25 histamine, prostaglandins, serotonin, and
substance P14,26,27 as well as the secreted glycoproteins Wnt3a
(wingless-typemammarytumorvirus integrationsite familymember
3a) and Wnt5a.28

Structural Remodeling of Injured Peripheral Nerves

Following SNI of rodent peripheral nerves, degeneration of the
axons of low threshold non-nociceptive afferents can lead to loss
of sensation. Peripheral nociceptors then sprout into territories
that were previously occupied by low threshold afferents. These
nociceptors are transformed to exhibit a low activation threshold
so that mild tactile stimulation now produces mechanical
allodynia.29

In many cases, injury also provokes the sprouting of perivascu-
lar sympathetic fibers so that they interact and excite sensory nerve
terminals and DRG cell bodies.30,31 These processes are especially
relevant to the etiology of complex regional pain syndrome II.32

Injury-Induced Peripheral Sensitization, the Importance of
Spontaneous Activity, and the Generation of Secondary
Mediators

Immune cell-derived primary mediators sensitize peripheral nerve
endings, axons, and cell bodies of primary afferents.14 Mediators
also promote plasma extravasation and increase the permeability
of the blood–brain barrier33 and the blood–nerve barrier in the
periphery.34 This and the chemoattractant profiles of various
mediators facilitate the recruitment of immunocompetent leuco-
cytes and lymphocytes to the site of injury.15,20 These myeloid
and lymphoid cells themselves release a host of cytokines and che-
mokines thereby instigating a positive feedback process in the ini-
tiation and maintenance of neuroinflammation and pain.
Neuroinflammation is defined as activation of the brain’s innate
immune system in response to an inflammatory challenge.35,36

Satellite glial cells and resident macrophages in DRG37–39

represent yet another source of inflammatory mediators. The
actions of primary mediators such as IL-1β and TNF-α on DRG
neurons culminate in marked changes in genes coding for neuro-
peptides, cytokines, chemokines, receptors, ion channels, signal
transduction molecules, and synaptic vesicle proteins.40,41 Some
of these gene products also function as secondary mediators that
are released and effect the transfer of information between dam-
aged peripheral nerves and various cell types in the spinal dorsal
horn.18

Primary mediators also control the expression of long non-
coding RNA’s42 and microRNA’s in DRG. The latter are also upre-
gulated by nerve injury6 and post-transcriptionally regulate the
protein expression of hundreds of genes in a sequence-specific
manner.43 Transfer of microRNAs between cell types may be
brought about by the release and uptake of exosomes.44

Importantly, altered function of ion channels as a result of the
action of primary mediators leads to increased excitability of pri-
mary afferent neurons45–49 and the generation of stimulus-inde-
pendent spontaneous activity. This incessant spontaneous
activity in primary afferents is absolutely crucial for the onset
and persistence of pain.50–53 This is illustrated by the effectiveness
of topically applied lidocaine in the clinic.54 Altered ion channel
function and peripheral hyperexcitability may even be involved
in spinal cord injury55 and central post-stroke pain.56 Although
Nav1.7, Kv7.2, Cav2.2, Cav3.2, and HCN2 channels have emerged
as potential therapeutic targets for drug development, with the
notable exception of gabapentinoid action on voltage-gated Ca2þ

channels,9 pharmacological manipulation of these channels has
failed to identify new therapeutic approaches.57

The observation that peripherally generated pain is often not
suppressed by rhizotomy58 seems at odds with the idea that stimu-
lus-independent spontaneous activity is required for pain mainte-
nance. It is possible, however, that pain seen after rhizotomy is
related to deafferentation. This deafferentation pain may replace
that which previously resulted from ectopic primary afferent
activity.58

As would be expected, the population of ion channels affected
by primary mediators is similar to that affected by peripheral nerve
injury45,47,59 and in animal models, blockade of the actions of pri-
mary mediators abrogates signs of injury-induced pain.14,15,18,60–63
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In general however, attempts to block the action of inflammatory
mediators to limit neuropathic pain in the clinic havemet with lim-
ited success.64

Bidirectional Signalling between the Nervous and Immune
Systems and “Neurogenic Neuroinflammation”

The relationship between immune cells and neurons is bidirec-
tional. In addition to the well-documented actions of immune
mediators on neurons,18,45–48,65–67 neuronal activity has a direct
effect on immune cells.68–72 This “neurogenic neuroinflamma-
tion”73 is brought about by the release of neuropeptides and glu-
tamate from primary afferents and their interaction with their
cognate receptors on immune cells, astrocytes, and microglia.72,74

Actions of Secondary Mediators and Transfer of
Information from the Periphery to the Spinal Cord

Most secondary mediators are released from primary afferent ter-
minals. Substances such as colony-stimulating factor 1 (CSF-1), the
chemokines CCL-21, CXCL-12, and Wnt3a and Wnt5a6,18,28,75–78

activate their cognate receptors on spinal microglia and/or astro-
cytes and alter their properties. Activated glia thereby detects and
mount an enduring response to peripheral nerve injury. Spinal
microglia are affected in male rodents77 whereas invading macro-
phages and adaptive immune cells such as T-lymphocytes are
involved in females.79–81 CCL-21 and CXCL-12 signal to activate
astrocytes.78,82 The inflammatory mediator, IFN-γ is increased
in spinal cord following peripheral nerve injury83 and this may
originate from invading T-lymphocytes.

Generation and Release of Tertiary Mediators in the
Dorsal Horn and Central Sensitizaton

Glial activation and proliferation leads to the generation and
release of tertiary mediators such as BDNF, IL-1β, TNF-α, and
IFN-γ.18,84,85

BDNF is released from microglia in response to the secondary
mediators CSF-118,76,86,87 and/or Wnt3a.88 BDNF release requires
activation of P2X4 receptors by ATP.9,89 As a mediator of the effect
of nerve injury,90–92 BDNF facilitates excitation84,93–95 and attenu-
ates inhibition in the superficial dorsal horn.9,96 These changes,
which lead to central sensitization, spontaneous activity, and the
misprocessing of sensory information,97–100 involve at least four
cellular mechanisms.

Microglial-derived BDNF increases excitatory drive to excitatory
dorsal horn neurons and inhibits that to inhibitory neurons by both
presynaptic and postsynapticmechanisms.87,93,94 This altered synaptic
activity is capable of increasing spontaneous action potential dis-
charge in excitatory neurons while reducing it in inhibitory neurons.93

BDNF also enhances excitatory responses to N-methyl-d aspar-
tate (NMDA) in rat spinal cord in vitro.101 This may involve poten-
tiation of the function of presynaptic NMDA receptors on primary
afferent terminals102 with a resultant increase in excitatory gluta-
matergic transmission. This may contribute to the effectiveness of
the NMDA blocker, ketamine in some patients.54

Peripheral nerve injury reduces expression of the potassium-
chloride exporter (KCC2) selectively in nociceptive dorsal horn
neurons.90,103 The resulting accumulation of intracellular Cl− nor-
mally causes outward, inhibitory GABAergic synaptic currents
mediated by Cl− influx to become inward excitatory currentsmedi-
ated by Cl− efflux.90 In male rats, this downregulation of KCC2 is
mediated by BDNF.104 Since the loss of GABAergic inhibition

enables non-noxious Aβ fiber-mediated excitatory transmission
to access the superficial spinal dorsal horn, this process contributes
to the establishment of allodynia.99

Long-term potentiation (LTP) of synaptic transmission, some-
times known as “wind-up”, contributes to central sensitization in
the dorsal horn.105,106 LTP of C-fibre responses is augmented by
BDNF107 and LTP induced by nerve stimulation is occluded by
BDNF pretreatment.108 The importance of these effects was recently
underlined by the observation that spinal LTP as well as microglial
activation and upregulation of BDNF are inhibited by antibodies to
the secondary mediator CSF-1. This strongly implicates the CSF-1-
microglia-BDNF axis18 in the generation of spinal LTP.109

As already mentioned, in females, changes in sensory process-
ing in the dorsal horn involve the invasion of macrophages and T-
lymphocytes.80,81 Yet as in males, this leads to attenuation of inhib-
ition following the collapse of the Cl− gradient.110 In females, col-
lapse of the Cl− gradient is also brought about by the neuropeptide,
CGRP111 which is released from primary afferent terminals.112

IL-1β from microglia stimulates astrocytic production of both
TNF-α and IL-1β itself113 thereby amplifying the initial IL-1β sig-
nal. Spinal actions of IL-1β involve increases in excitatory synaptic
transmission.65,66 This may involve a reduction in the ability of
astrocytes to take up glutamate as a result of internalization of
the astrocytic glutamate transporter (EAAT2).114

TNF-α also augments excitatory transmission in the dorsal
horn18,66 as well as LTP by an action on glial cells.115 Blockade
of TNF-1 receptors attenuates neuropathic pain in male rodents
but not in females.116 Although anti-TNF antibodies and anti-
TNF drugs such as thalidomide are available, none seem particu-
larly useful in pain management.117

IFN-γ from invading T-lymphocytes induces both tactile allo-
dynia and altered microglia function. Genetic ablation of the inter-
feron receptor (IFN-γR) impairs nerve injury-evoked activation of
ipsilateral microglia and tactile allodynia.118 IFN-γ also increases
dorsal horn excitability119 and facilitates synaptic transmission
between primary afferent C-fibres and Lamina 1 neurons via a
microglial dependent mechanism.120

Failure to Resolve Chronic Neuroinflammation

All types of injury are capable of promoting inflammation and
pain121 and the interactions of inflammatory mediators with neu-
rons, glia, immunocompetent leucocytes and lymphocytes, and
macrophages14 promote neuroinflammation. Since identified
“off signals” actively suppress the classical signs of inflamma-
tion,121,122 pain is usually short lasting or acute. The signals that
actively resolve inflammation and pain include anti-inflammatory
cytokines such as IL-10 and lipid-derived specialized pro-resolving
mediators (SPMs).123,124 Despite this, the neuroinflammation asso-
ciated with neuropathic pain may not resolve, thereby promoting
the transition from acute pain to chronic pain.121 As already men-
tioned, spontaneous and ectopic activity in primary afferent fibers
is crucial for the maintenance and persistence of signs of neuro-
pathic pain.50–53,56 Excessive neuronal activity releases glutamate
and neuropeptides which interact with glia and immune cells to
provoke the generation of inflammatory mediators.73 It is possible
that this incessant neurogenic neuroinflammation overcomes the
resolution processes that normally terminate inflammation
thereby contributing to the indefinite persistence of neuro-
pathic pain.

In addition, the injury-induced structural changes in peripheral
afferent29 and sympathetic nerves30,31 and in higher brain
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structures are almost certainly irreversible.12 These enduring
changes also contribute to the chronic nature of neuropathic pain.

Changes in Central Sensory Pathways in Higher Brain
Regions

Cytokine/chemokine/growth factor/glial cell interactions are also
involved in modulation of sensory information in the mesolimbic
system,125 thalamus, sensory cortex, nucleus accumbens, and
amygdala.125–127 Peripheral nerve injury promotes microglial acti-
vation in the contralateral thalamus, sensory cortex, and amygdala
as would be expected from the anatomical projections of ascending
sensory fibers. Brain regions not directly involved in either sensory
or affective aspects of pain, such as themotor cortex, do not display
microglial activation.128 Hyperactivity in parts of the anterior cin-
gulate cortex and other limbic structures drives the anxiety and
depression that represent a co-morbidity of chronic and neuro-
pathic pain.7,129

Blood-borne inflammatory mediators130 from the site of
peripheral injury increase the permeability of the blood–brain
barrier.33 This allows CNS neurons to access blood cells and the
cytokines and chemokines they produce.131 In addition, the selec-
tive activation of glia and immune cells in nociceptive pathways125

likely reflects localized neurogenic neuroinflammation in response
to enduring intense activity.73

Alterations in Descending Control of Spinal Processing

Spinal nociceptive processing is subject to modulation by descend-
ing serotonergic and noradrenergic pathways.6,132 Descending
inhibition is mediated via α2-adrenoceptors and 5HT7 receptors
whereas serotonergic activation of metabotropic 5HT2 receptors
and ionotropic 5HT3 receptors facilitates transmission7.
Brainstem excitatory pathways are more important in the mainte-
nance than in the induction of pain and under these conditions,
α2-noradrenergic inhibition is attenuated whilst facilitation
through 5HT2 and 5HT3 receptors is enhanced.7,132–134 Actions
on these descending controls are thus likely to underlie the efficacy
of tricyclic antidepressants and serotonin-noradrenaline reuptake
inhibitors in pain management.7,10

Different Injuries and Different Etiologies

As already stated, different types of nerve injury provoke different
types of behavioral or physiological response in both humans and
animals.1–4 Thus while mechanical allodynia produced in animals
by SNI13 persists for many weeks, that produced by CCI is short-
lived and recovery is seen in about 4 weeks.13,37 Similarly, changes
in synaptic transmission in the superficial dorsal horn are more
robust after sciatic CCI than after complete sciatic nerve section
(axotomy).92 These findings are consistent with the observation
that CCI promotes stronger and more long-lasting upregulation
of TNF-α, IL-1β, and CCL-2 than axotomy by nerve crush.135 It
has also been shown that the neuronal subtypes in the dorsal horn
that are involved in generation of mechanical allodynia is defined
by the nature of peripheral nerve injury.136

More clinically relevant observations include reports that neu-
ropathic pain associated with multiple sclerosis is characterized by
loss of spinal neurons137 but this effect is not seen with CCI.138,139

The above findings imply that different types of injury provoke the
generation of different sets of mediators18,140 and thus present
different drug targets.

The Way Forward? Bridging the Gap between Basic
Science and Clinical Practice

Given that patients with neuropathic pain are heterogeneous in
pathophysiology, etiology, and clinical presentation1,5 it is hardly
surprising that injury-specific pathologies are found in animal
models. As in the clinic, there is the added complication that signs
of pain and response to medication of each experimental animal is
determined by factors such as their sex, prior exposure to
neonatal injury, age, intestinal microbiome, and environmental
factors.1–4,141,142

Quantitative sensory testing (QST) may help to bridge the
knowledge gap between clinical and laboratory findings. This
involves formalization and quantification of a battery of neurologi-
cal tests, such as response to von Frey filaments, vibration, heat,
pressure, and cold as well as dynamic allodynia and wind-up ratio.5

Findings are compared with datasets that represent normal
responses to sensory tests. Neuropathic pain patients can then
be grouped into clusters based on their sensory profiles and this
may have a role in determining treatment.143 Technological
improvements in microneurography have shown that the specific
C-fibre subpopulation affected (mechanoinsensitive versus non-
mechanoceptive) depends on the source of neuropathic pain
and the type of neuropathy.144,145 Modern microneurography
approaches will thus play a role in future refinement of QST.
The validity of QST is supported by the observation that post
hoc analysis of responders to treatments in clinical trials suggest
that clinical effectiveness may cluster according to pain pheno-
type.143 Beyond this, it may also be possible to subcategorize
patients according to their cytokine profile. It then may be possible
to correlate precisely quantified signs and symptoms in each indi-
vidual patient to pathophysiology at the cellular and molecu-
lar level.

Recent improvements in basic science approaches also seek to
bridge the gap between the “bench and bedside”. For example,
improved methodologies are starting to differentiate probable pain
in animal models from nociception or simple withdrawal
reflexes.57,146 Also more attention is now paid to the genetics, envi-
ronment, and sex of experimental animals1,80 and improved meth-
odologies are now available for bringing human tissue to the
laboratory. These include the culture of human nociceptors either
from surgical or post-mortem tissue or using human-induced plu-
ripotent stem cell-derived nociceptors.145,147

Taken together, these approaches will permit a rational
and highly personalized medicine approach that will dictate the
most appropriate therapeutic approach for each individual
patient.7,148,149
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