$H(\phi)$ SPACES

ΒY

W. DEEB AND M. MARZUQ

ABSTRACT. Let ψ be a non-decreasing continuous subadditive function defined on $[0, \infty)$ and satisfy $\psi(x) = 0$ if and only if x = 0. The space $H(\psi)$ is defined as the set of analytic functions in the unit disk which satisfy

$$\sup_{0\leq r<1}\int_0^{2\pi} \psi\left(\left|f(re^{i\theta})\right|\right)d\theta < \infty,$$

and the space $H^+(\psi)$ is the space of all $f \in H(\psi)$ for which

$$\sup_{0 \le r \le 1} \int_0^{2\pi} \psi\left(\left|f(re^{i\theta})\right|\right) d\theta = \int_0^{2\pi} \psi\left(\left|f(\theta)\right|\right) d\theta$$

where $f(\theta) = \lim f(re^{i\theta})$ almost everywhere.

In this paper we study the $H(\psi)$ spaces and characterize the continuous linear functionals on $H^+(\psi)$.

Introduction. Let ϕ be a real-valued function defined on $[0, \infty)$ satisfying the following:

- 1. ϕ is increasing,
- 2. $\phi(x + y) \le \phi(x) + \phi(y)$ for all x, y in $[0, \infty)$,
- 3. $\phi(x) = 0$ if and only if x = 0 and
- 4. ϕ is continuous at zero (from the right).

Such a function is called a modulus function; some examples of modulus functions are x^p , 0 , log <math>(1 + x), in fact if ϕ is modulus then so is $\frac{\phi}{1 + \phi}$.

Let $H(\Delta)$ denote the space of analytic functions in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and let

$$H(\phi) = \left\{ f: f \in H(\Delta) \text{ and } \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi(|f(re^{i\theta})|) d\phi < \infty \right\}$$

where ϕ is a modulus function. We define a distance function on $H(\phi)$ by

$$|f - g|_{\phi} = \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi(|f(re^{i\theta}) - g(re^{i\theta})|) d\theta.$$

© Canadian Mathematical Society 1985.

Received by the editors July 6, 1984 and, in revised form, April 29, 1985.

AMS Subject Classification, Primary 46A06, Secondary 46E10, 30H05.

If we take $\phi(x) = x^p$, $0 , then <math>H(\phi) = H^p$ and if $\phi(x) = \log (1 + x)$, then $H(\phi) = N$, see [6] for definition. We will use $|f|_{\phi}$ to denote

$$\sup_{0\leq r<1}\frac{1}{2\pi}\int_0^{2\pi}\phi(|f(re^{i\theta})|)\ d\theta.$$

DEFINITION. A modulus function ϕ is called strongly modulus if it satisfies:

- 1) $\int_{1}^{\infty} \frac{\Phi(x)}{x^2} \, dx < \infty,$
- 2) $\lim_{x \to \infty} \frac{\Phi(x)}{\log x} > 0$ and
- 3) $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$.

Examples of strongly modulus functions are x^p , $0 , and <math>\log (1 + x)$. We define

$$H^{+}(\phi) = \{ f \in H(\phi) : \sup_{0 \le r \le 1} \frac{1}{2\pi} \int_{0}^{2\pi} \phi(|f(re^{i\theta})|) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \phi(|f(e^{i\theta})|) d\theta \}$$

where

$$f(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta}).$$

In this paper we study some basic properties of $H(\phi)$ spaces and give an example of a modulus function $\hat{\phi}$ such that $H(\hat{\phi}) \subset H^p$ for all $p, 0 but <math>H^1 \subset H(\hat{\phi})$. We also characterize the continuous linear functionals on $H^+(\phi)$ for ϕ strongly modulus, a result which could be considered a generalization of the one given in [5] and [6].

1. Basic properties of $H(\phi)$:

LEMMA 1. If ϕ is a modulus function, then $H^1 \subset H(\phi)$.

PROOF. $\phi(x) \le \phi([x] + 1) \le ([x] + 1)\phi(1)$, so if x > 1, then $\phi(x) \le 2x\phi(1)$, and if $x \le 1$, then $\phi(x) \le \phi(1)$.

Now let $f \in H^1$, and for any 0 < r < 1, let

$$A_r = \{\theta : |f(re^{i\theta})| \le 1\},\$$

$$B_r = \{\theta : |f(re^{i\theta})| > 1\}.$$

Then

$$\begin{split} \int_{0}^{2\pi} \phi(|f(re^{i\theta})|) \ d\theta &= \int_{A_r} \phi(|f(re^{i\theta})|) d\theta + \int_{B_r} \phi|f(re^{i\theta})| d\theta \\ &< 2\pi \phi(1) + 2\phi(1) \int_{B_r} |f(re^{i\theta})| \ d\theta \\ &\leq 2\pi \phi(1) + 2\phi(1) \int_{0}^{2\pi} |f(re^{i\theta})| \ d\theta < \infty, \end{split}$$

since $f \in H^1$. Hence $f \in H(\phi)$.

https://doi.org/10.4153/CMB-1986-045-0 Published online by Cambridge University Press

[September

H(\phi) SPACES

THEOREM 1. If $\frac{\lim}{x \to \infty} \frac{\phi(x)}{x} = \alpha > 0$ then $H(\phi) = H^1$.

PROOF. The condition implies that there exists M > 0 such that $\phi(x) > \alpha x$ in $[M, \infty)$. Let $f \in H(\phi)$ and consider for 0 < r < 1, $A_r = \{\theta : |f(re^{i\theta})| < M\}$, $B_r = \{\theta : |f(re^{i\theta})| \ge M\}$, then

$$\begin{split} \int_{0}^{2\pi} |f(re^{i\theta})| d\theta &\leq \int_{A_{r}} M d\theta + \frac{1}{\alpha} \int_{B_{r}} \phi\Big(|f(re^{i\theta})| \Big) d\theta \\ &\leq 2\pi M + \frac{1}{\alpha} |f|_{\phi}, \end{split}$$

hence $f \in H^1$. Using Lemma 1 we conclude that $H(\phi) = H^1$.

REMARK: It is clear that if ϕ is bounded then $H(\phi) = H(\Delta)$.

LEMMA 2. Let
$$\phi$$
 be a modulus, then $\frac{1}{1-z} \in H(\phi)$ if and only if $\int_{1}^{\infty} \frac{\phi(x)}{x^2} dx < \infty$.
PROOF. Suppose $1/(1-z) \in H(\phi)$ and let $z = re^{i\theta}$, then

$$|1-z|^{2} = (1 - r \cos \theta)^{2} + r^{2} \sin^{2} \theta$$

= 1 - 2r \cos \theta + r^{2} = 1 - 2r \left(1 - \frac{\theta^{2}}{2} + \frac{\theta^{4}}{4!} + \dots\right) + r^{2}
\left(1 - r)^{2} + \theta^{2}, \quad 0 \left\text{ \theta} \left\text{ \theta}.

Let δ be a (small) positive number and let r_0 be such that $0 < 1 - r_0 < \delta$, then for $z = re^{i\theta}$ with $\pi \ge \theta > \delta$ and $r > r_0$ we have

$$|1 - z|^2 \le 2\theta^2$$
, hence $\phi |\frac{1}{1 - z}| \ge \phi \left(\frac{1}{2\theta}\right)$,

but

$$\frac{1}{1-z} \in H(\phi), \text{ so } \int_{\delta}^{\pi} \phi\left(\frac{1}{2\theta}\right) d\theta < M \qquad \text{for all } \delta > 0.$$

Set $x = \frac{1}{2\theta}$, then

$$\int_{1}^{1/2\delta} \frac{\Phi(x)}{x^2} \, dx < M \quad \text{for all } \delta > 0$$

so

$$\int_1^\infty \frac{\Phi(x)}{x^2} \, dx < \infty.$$

https://doi.org/10.4153/CMB-1986-045-0 Published online by Cambridge University Press

1986]

Conversely: suppose that $\int_{1}^{\infty} \phi(x)/x^{2} dx < \infty$, as it was shown in [5] $|1 - z|^{2} \ge \theta^{2}/4$ for $\frac{1}{2} \le r < 1$ and $0 < \theta \le \delta$ (where δ is sufficiently small). To show that $1/1 - z \in H(\phi)$, it is enough to show that $\int_{0}^{\delta} \phi |1/(1 - re^{i\theta})| d\theta \le M$ for all $r > \frac{1}{2}$. But for $0 < \theta < \delta$ we have

$$\int_0^{\delta} \phi \left| \frac{1}{1 - re^{i\theta}} \right| d\theta \leq \int_0^{\delta} \phi \left(\frac{2}{\theta} \right) d\theta \leq 2 \int_{2/\delta}^{\infty} \frac{\phi(x)}{x^2} dx < M$$

hence $1/1 - z \in H(\phi)$.

From Lemmas 1 and 2 we get

THEOREM 2. If ϕ is a modulus and $\int_{1}^{\infty} \frac{\phi(x)}{x^2} dx < \infty$, then $H^1 \subset H(\phi)$.

REMARK. We believe that $\int_{1}^{\infty} \phi(x)/x^2 dx < \infty$ is a necessary and sufficient condition for $H^1 \subset H(\phi)$.

We now give an example of a modulus function $\hat{\phi}$ such that $H(\hat{\phi}) \neq H^1$ and $H(\hat{\phi}) \subset H^p$ for all 0 .

^{*±*} Let $p_n = n/n + 1$, n = 1, 2, ... Define $\hat{\Phi}(x)$ on $[0, \infty)$ by

$$\hat{\Phi}(x) = \begin{cases} \sqrt{x}, \ 0 \le x \le 4\\ x^{p_n}, \ 2^{n(n+1)} \le x \le 2^{(n+1)(n+2)}; \\ y_n^{(x)}, 2^{n(n+1)} \le x \le 2^{(n+1)(n+2)}; \\ n \text{ odd} \end{cases}$$

where $y_n(x)$ represents the line segments joining the points $(2^{n(n+1)}, 2^{(n-1)(n+1)}), (2^{(n+1)(n+2)}, 2^{n(n+2)})$. Using elementary computations one can show that $\hat{\phi}$ is a modulus. To show that $H(\hat{\phi}) \subset H^p$ for all p, 0 , choose <math>n such that

$$p < \frac{n}{n+1} = p_n,$$
 then $H^{p_n} \subset_{\neq} H^p$

and since $x^{p_n} < \hat{\Phi}(x)$ for all $x > 2^{(n+1)(n+2)}$ one can obtain by an argument similar to the one given in Lemma 1, that $H(\hat{\Phi}) \subset H^{p_n} \subset H^p$. Consider now $\int_1^\infty \frac{\Phi(x)}{x^2} dx$, it is clear that

$$\int_{1}^{\infty} \frac{\hat{\Phi}(x)}{x^2} dx = \sum_{n=0}^{\infty} \int_{I_n} \frac{\hat{\Phi}(x)}{x^2} dx,$$

where $I_0 = [0, 2^2], I_n = [2^{n (n + 1)}, 2^{(n + 1)(n + 2)}]$, but

$$\int_{I_n} \frac{\hat{\Phi}(x)}{x^2} dx \le \int_{I_n} \frac{x^{p_n}}{x^2} dx \le (n+1) \left[\frac{1}{2^n} - \frac{1}{2^{n+2}} \right],$$

hence $\int_{1}^{\infty} \frac{\hat{\Phi}(x)}{x^2} dx < \infty$, so by Theorem 2 we get $H^1 \subset H(\hat{\Phi})$.

September

H(\phi) SPACES

LEMMA 3. Let ϕ be strictly increasing modulus function such that $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$, then $|f(z)| \leq \phi^{-1} (4|f|_{\phi}/1 - r)$ for all $z = re^{i\theta} \in \Delta$.

PROOF. Since $\phi(|f|)$ is subharmonic in $|z| < \rho$ and continuous in $|z| \le \rho$ where $0 < \rho < 1$, and since plurisubharmonic is a subharmonic in one variable, then by Lemma 1 in [3] we get

$$\phi(|f(z)|) \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho^2 - |z|^2}{|\rho e^{\theta} - z|^2} \phi(|f(\rho e^{i\theta})|) d\theta.$$

Hence if $z = re^{i\theta}$, at $\rho = (1 + r)/2$ we obtain

$$\phi(|f(z)|) \le \frac{4|f|_{\phi}}{1-r},$$

hence

$$|f(z)| \leq \phi^{-1}\left(\frac{4|f|_{\phi}}{1-r}\right).$$

LEMMA 4. If ϕ is a modulus function which satisfies $\lim_{x\to\infty} (\phi(x))/(\log x) > 0$ and $\phi(|f|)$ is subharmonic for every $f \in H(\Delta)$, then $\lim_{r\to -1} f(re^{i\theta})$ exists almost everywhere and $|f|_{\phi} = \lim_{r\to -1^-} 1/2\pi \int_0^{\pi} \phi(|f(re^i)|) d\theta$.

PROOF. An argument similar to the one given in Lemma 1 yields that

$$\sup_{0\leq r\leq 1}\frac{1}{2\pi}\int_0^{2\pi}\log^+(|f(re^{i\theta})|)\ d\theta<\infty,$$

hence $f \in N$, so f has a radial limit a.e.[2]. Now $\phi(|f|)$ is subharmonic for each $f \in H(\Delta)$ so

$$\frac{1}{2\pi}\int_0^{2\pi}\phi(|f(re^{i\theta})|)\,d\theta$$

is an increasing function of $r, r \in [0, 1)$ so

$$\sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi(\left| f(re^{i\theta}) \right|) d\theta = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \phi(\left| f(re^{i\theta}) \right|) d\theta,$$

and that proves the lemma.

If ϕ is modulus such that $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$ then $H^+(\phi)$ becomes the subspace of $H(\phi)$ which consists of all f such that

$$\lim_{r \to -1} \frac{1}{2\pi} \int_0^{2\pi} \phi(|f(re^{i\theta})|) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \phi(|f(e^{i\theta})|) d\theta$$

For $\phi(x) = x^p$, $H^+(\phi) = H^p[2]$ and for $\phi(x) = \log(1 + x)$, $H(\phi) = N$ and $H^+(\phi) = N^+[6]$.

1986]

lial limit a.e.[2].

September

THEOREM 3. If ϕ is strictly increasing modulus function which satisfies $\phi(|f|)$ is subharmonic for every $f \in H(\Delta)$ and $\lim_{x\to\infty} (\phi(x))/(\log x) > 0$, then $(H^+(\phi), ||_{\phi})$ is an *F*-space over \mathbb{C} .

PROOF. To show that the space is complete. Let $\{f_n\}$ be a Cauchy sequence in $H(\phi)$, then by Lemma 3 we have for any compact set *K*

$$\left|f_{n}(z)-f_{m}(z)\right| \leq \phi^{-1}\left(\frac{4\left|f_{n}-f_{m}\right|_{\phi}}{1-r}\right)$$

for all $z \in K \subset \{w \in \mathbb{C} : |w| < r\}$, this shows that $\{f_n\}$ is a Cauchy sequence in $H(\Delta)$, hence it converges uniformly on compact subsets of Δ to a function $f \in H(\Delta)$. We need to show that $f \in H(\phi)$, and f_n converges to f in $H(\phi)$. Since f_n converges uniformly on compact sets, then $\phi(|f_n|)$ converges uniformly on compact sets to $\phi(|f|)$. Since for all r < 1 we have $\{z \in \mathbb{C} : |z| = r\}$ is compact in Δ so

$$\int_{0}^{2\pi} \Phi(\left|f(re^{i\theta})\right|) d\theta = \lim_{n \to \infty} \int_{0}^{2\pi} \Phi(\left|f_n(re^{i\theta})\right|) d\theta \leq \lim_{n \to \infty} \int_{0}^{2\pi} \Phi(\left|f_n(e^{i\theta})\right|) d\theta \leq M,$$

the inequality before the last is because of Lemma 4 and the last one is because $\{f_n\}$ is a Cauchy sequence in $H(\phi)$. Now the rest of the proof is similar to the one given in [6] for N^+ , one only needs to use properties of ϕ among which is the fact that $\phi(|\alpha x|) \le ([|\alpha|] + 1)\phi(x)$ where $[|\alpha|]$ is the largest integer in $|\alpha|$.

2. Continuous linear functions on $\mathbf{H}^+(\mathbf{\phi})$. We now study the space of continuous linear complex valued functionals on $H^+(\mathbf{\phi})$ which we will denote by $(H^+(\mathbf{\phi}))^*$. The spaces $(H^p)^*$, $0 were studied in [1, 5] and <math>(N^+)^*$ in [6].

THEOREM 4. Let ϕ be a strongly modulus function. Then $T \in (H^+(\phi))^*$ if and only if there exists $g \in H(\Delta)$ such that

$$T(f) = \lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} f\left(\frac{r}{\rho} e^{i\theta}\right) g\left(\rho e^{-i\theta}\right) d\theta$$

where $0 < r < \rho < 1$.

PROOF. Let $T \in (H^+(\phi))^*$ and let $b_k = T(z^k)$, $k = 0, 1, 2, \ldots$ Now $\{z^k : k = 0, 1, 2, \ldots\}$ is a bounded set in $H^+(\phi)$ and T is a continuous linear functional on F-space, so T is bounded [4] and $T(z^k)$ ($k = 0, 1, 2, \ldots$) is a bounded set, so the function $g(z) = \sum_{k=0}^{\infty} b_k z^k$ is analytic in Δ . Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^+(\phi)$, then for $r \in (0, 1)$ put $f_r(z) = f(rz)$, f_r converges to f in $H^+(\phi)$, the proof is exactly as in [6]. Now,

$$T(f_r) = T\left(\lim_{n \to \infty} \sum_{k=0}^n a_k r^k z^k\right) = \lim_{n \to \infty} \sum_{k=0}^n a_k b_k r^k = \sum_{k=0}^\infty a_k b_k r^k$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(r \rho^{-1} e^{i\theta}) g(\rho e^{-i\theta}) d\theta, \qquad 0 < r < \rho < 1.$$

300

But $f_r \to f$ in $H^+(\phi)$ as $r \to 1$, hence

$$T(f) = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} f(r\rho^{-1}e^{i\theta}) g(\rho e^{-i\theta}) d\theta.$$

Conversely, suppose that

$$T(\mathbf{f}) = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} f(r \rho^{-1} e^{i\theta}) g(\rho e^{i\theta}) d\theta$$

exists for all $f \in H^+(\phi)$.

For each $r \in (0, 1)$ let

$$T_r(f) = \frac{1}{2\pi} \int_0^{2\pi} f(r \rho^{-1} e^{i\theta}) g(\rho e^{i\theta}) d\theta.$$

Clearly $T_r \in (H^+(\phi))^*$ for T_r is linear and if f_n converges to f in $H^+(\phi)$, then by Lemma 3 f_n converges to f uniformly on compact subsets of Δ , hence $T_r(f_n)$ converges to $T_r(f)$. But $\lim_{r \to +} T_r(f)$ exists for all $f \in H^+(\phi)$, hence by the uniform boundedness principle [4] it follows that $T(f) = \lim_{r \to +} T_r(f)$ is continuous.

REMARK. Although the topologies on $H^+(\phi)$ and N^+ are different in general we do have the following:

COROLLARY. If $T \in (N^+)^*$, then $T \in (H^+(\phi))^*$.

REFERENCES

1. P. L. Duren, B. W. Romberg and A. L. Shields, *Linear functionals on* H^p spaces with 0 , J. Reine Angew. Math.**238**(1969), pp. 32–60.

2. P. L. Duren, *Theory of H^p Spaces*, Pure and Appl. Math., no. 38, Academic Press, New York and London (1970).

3. K. T. Hahn and J. Mitchell, H^{ρ} spaces on bounded symmetric domains, Trans. Amer. Math. Soc., **146** (1969), pp. 521–531.

4. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).

5. S. Walters, Remarks on the space H^p, Pacific J. Math. 1 (1951), pp. 455-471.

6. N. Yanagihara, Multipliers and linear functionals for the class N^+ , Trans. Amer. Math. Soc., 180 (1973), pp. 449-461.

DEPARTMENT OF MATHEMATICS KUWAIT UNIVERSITY KUWAIT

1986]