
Canad. Math. Bull. Vol. 29 (3), 1986 

H(<|>) SPACES 

BY 

W. DEEB AND M. MARZUQ 

ABSTRACT. Let ij/ be a non-decreasing continuous subadditive function 
defined on [0, <») and satisfy IJJ(JC) = 0 if and only if x = 0. The space H(\\i) 
is defined as the set of analytic functions in the unit disk which satisfy 

sup [ iK|/(re i e) |)</0<co, 

and the space H + (\\f) is the space of a l l /G //(i|0 for which 

sup [ ^ (\f(rei9)\) dd = [ I|I ( |/(6)|) </6 

where/(8) = lim/(re'°) almost everywhere. 
'•t i 

In this paper we study the H(\\J) spaces and characterize the continuous 
linear functionals on H + (\\f). 

Introduction. Let $ be a real-valued function defined on [0,o°) satisfying the 
following: 

1. <|> is increasing, 
2. $(x + y) < (|)(JC) + c|>(;y) for all jc,y in [0,oo), 
3. ())(JC) = 0 if and only if x = 0 and 
4. (|) is continuous at zero (from the right). 
Such a function is called a modulus function; some examples of modulus functions 

are xp, 0 < p < 1, log (1 + JC), in fact if <\> is modulus then so is - . 
1+9 

Let //(A) denote the space of analytic functions in the unit disc A = {z E C : 
\z\ < 1} and let 

//(<(>) = { / : / G //(A) and sup -^- pc|)(|/(^ / e)|)d<|) < oo] 

where <J> is a modulus function. We define a distance function on #(4>) by 

I / - *U = sup -!- f2^(|/f^'9) - g(^/e)|) de. 
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If we take <(>(*) = xp, 0 < p < 1, then H($) = Hp and if <\>(x) = log (1 4- JC), then 
//((()) = TV, see [6] for definition. We will use |/|<j> to denote 

sup -!- f2\(\f(re[B)\) dQ. 
0 < r < 1 Z7T ^o 

f2ir 

•'O 

DEFINITION. A modulus function ((> is called strongly modulus if it satisfies: 

i) r ^ dx < », 
J\ X 

2) lim P*l > 0 and 
.r-oo lOgJC 

3) <|>( l/l ) is subharmonic for a l l / e //(A). 

Examples of strongly modulus functions are xp, 0 < p < 1, and log (1 + x). We define 

H + (<\>) = {/ G //(<()): sup -!- f % ( | / ( r e / e ) | ) d 8 = ^ P<|)( | /(^ e) |)£/e} 

where 

/(e / e) = lim f{rel"). 

In this paper we study some basic properties of H(§) spaces and give an example 
of a modulus function cf> such that H($) C Hp for all p, 0 < /? < 1 but / / ' C //(4>). 
We also characterize the continuous linear functionals on H + ($) for <\> strongly mod
ulus, a result which could be considered a generalization of the one given in [5] and 
[6]. 

1. Basic properties of H(<|)): 

LEMMA 1. If <\> is a modulus function, then H] C //(())). 

PROOF. <K*) < 4>(M + 1) < ([JC] + 1)<|>(1), so if x > 1, then cj>(x) < 2 ^ ( 1 ) , and 
if JC < 1, then C|)(JC) < c()(l). 

Now le t / E / / \ and for any 0 < r < 1, let 

Ar = { 9 : | / ( r e / e ) | < 1}, 

£ r = {6: | / (re i e) | > 1}. 

Then 

f%( | / ( r e / e ) | ) r f e = f <|>(|/(r^e)|)£/e+ f <H/(re/e)|</6 
J0 *M,. JBr 

< 2TTC|)(1) + 2<()(1) J | / ( re / e )L/6 

T2TT 

< 2TT(()(1) + 2<|)(1) |/(re /e)|</e < oo, 

since/ G / / ' . Hence/ G H(<\>). 
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THEOREM 1. /yJiEL ^ M = a > o then H(6) = //'. 
X-^oo X 

PROOF. The condition implies that there exists M > 0 such that §(x) > ax in [M, o°). 
Let / G //(<(>) and consider for 0 < r < 1, Ar = {9 : |/(ré? / e)|< M}, £ r = 

{6: |/(ré?/e)| > M } , then 

fV(^ / 9 )Me<f M̂ e + - f <|)(|/(r^e)| 
j o j^r <* J» V 

de 

hence / E / / ' . Using Lemma l we conclude that 7/(c|)) = / / ' . 

REMARK: It is clear that if cj) is bounded then H($) = H (A). 

LEMMA 2. Let § be a modulus, then E //(c))) if and only if —— dx 

PROOF. Suppose l/(l - z) E H(§) and let z = reiB, then 

| l - z | 2 = (l - rcos 6)2 + r2 sin26 

' - ' • ( ' - T ^ * - ) ^ l - 2r cos 6 + r2 = l - 2r[ 1 - — + — -f . . . ) + r 

< (i - r)2 + e2, o < e < 77. 
Let 8 be a (small) positive number and let r0 be such that 0 < 1 — r0 < 8, then for 
z = reld with TT ̂  6 > 8 and r > r0 we have 

|1 - z | 2 < 2 9 2 , hence c f > | y ^ | ^ c}> ( ^ ) , 

but 

1 
//(C()), SO P(f) 

1 - z v ^" J* \26 
dti <M for all 8 > 0. 

Set x = —, then 
2u 

J i '1 X 2 

W JJC < M for all 8 > 0 

so 

U ) j 
Y1 dx < oo. 

y , 
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Conversely: suppose that f^fy (x)/x2 dx < oo, as it was shown in [5] | 1 - z |2 > 62/4 
for \ < r < 1 and 0 < 8 < ô (where ô is sufficiently small). To show that 1/1 — z G 
//(<(>), it is enough to show that §§ | 1/(1 - re1'8 ) | dQ < M for all r > i. But for 0 < 
9 < 8 we have 

Jo I 1 - re I -/0
 VW; J2/s JC 

hence 1/1 - z E //(<(>). 

From Lemmas 1 and 2 we get 

THEOREM 2. If § is a modulus and -^— dx < o°, f/zen H] C //(cf>). 
•>i JC ^ 

REMARK. We believe that f^fy (x)/x2 dx < o° is a necessary and sufficient condition 
for//1 C //(4>). 

We now give an example of a modulus function <f> such that //(4>) =£ Z/1 and //(4>) 
C / / p for all 0 < p < 1. 

Let pn - n/n 4- I, n = 1, 2 , . . . . Define <|>(JC) on [0,o°) by 

VJC, 0 < JC < 4 

cf>(jc) = { xp% 2n(n+]) < JC < 2(,7 + /) (" + 2j; « even 

^ U ) , 2 " ( " + I ) < x < 2 f " + / ) M 2 ,
; «odd 

where j„ (JC) represents the line segments joining the points (2"{n + °, 2(" ° (" + °), 
(2(,J + IJ M 2), 2 " (" + 2)). Using elementary computations one can show that 4> is a 
modulus. To show that 7/(<î>) C Hp for all p, 0 < p < 1, choose « such that 

p < — ^ - = /?„, then #'« C # ' 
n + 1 * 

and since x7'" < 4>(;c) for all JC > 2{n+ ,)(/? + 2) one can obtain by an argument similar to 
the one given in Lemma 1, that H($) C HPn C Hp. Consider now $*§{x)/ x2 dx, it 
is clear that 

J\ X „ = o J/„ X 

where /„ = [0,22], /„ = [2" <» + ", 2(" + l)(" + 2>], but 

hence ^ y ^ dx < œ, so by Theorem 2 we get Z/1 C / / ( $ ) . 
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LEMMA 3. Let (j) be strictly increasing modulus function such that $( \f\) is sub-
harmonic for allf E H(A), then \f(z)\ < (f>_1 (4\f\+/\ - r) for all z = reiQ E A. 

PROOF. Since <fy( | / | ) is subharmonic in | z \ < p and continuous in | z | < p where 0 
< p < 1, and since plurisubharmonic is a subharmonic in one variable, then by Lemma 
1 in [3] we get 

<t>(l/00l)^;r- r , p 2
9 "" | z | ' < |> ( l / (pg / e ) l )de . 

^ J0 |pew - z\ 

Hence if z = re'Q, at p = (1 + r)/2 we obtain 

4|/U <Ml/(z)|) 1 - r' 

hence 

LEMMA 4. If § is a modulus function which satisfies lim^*, (4>(jc))/(log x) > 
0 and (J)( | / | ) /s subharmonic for every f E //(A), r/i£« limf _ ! f(relQ) exists almost 
everywhere and \f\^ = linv _ r 1/2TT J^^K | / ( re ' ) | ) d6. 

PROOF. An argument similar to the one given in Lemma 1 yields that 

sup -!- r i o g + ( | / ( r e / e ) | ) d e < o o , 
0 < r < 1 ZTT Jo 

hence/ E N, so/has a radial limit a.e.[2]. Now cj> ( | / | ) is subharmonic for each/ E 
//(A) so 

~ - \2\(\f(rei0)\)dd 
ZlT JQ 

is an increasing function of r, r E [0, 1 ) so 

sup -!- r < K | / ( r e / e ) | ) d e = lim -?- f % ( \f(reid) | ) d6, 
0 < r < 1 ZTT JQ r -> 1 Z7T J 0 

and that proves the lemma. 

If c|) is modulus such that <J>(|/|) is subharmonic for a l l / E //(A) then H+($) 
becomes the subspace of H(§) which consists of all/such that 

lim y - r < K l / ( ^ l ' e ) | ) d e = T!- fw<|)( | /(^ e) |)de 

For <j>(x) = x", // + (<j>) = Hp [2] and for <$>(x) = log (1 + jt), tf(4>) = N and # + (4>) 
= AT [6]. 
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THEOREM 3. Iffy is strictly increasing modulus function which satisfies <|>(|/|) is 
subharmonic for every f E //(A) and lim.,-»*, (cj) (x))/(\og x)) > 0, then (H + (fy), \ |<j>) 
is an F-space over C 

PROOF. TO show that the space is complete. Let {/n} be a Cauchy sequence in H(fy), 
then by Lemma 3 we have for any compact set K 

\fAz)-f,Az)\^V,{^f'\~_f'^) 

for all z E K C {w E C : | w \ < r}, this shows that {/„} is a Cauchy sequence in //(A), 
hence it converges uniformly on compact subsets of A to a function/E //(A). We need 
to show tha t /E //(4>), and/,, converges to/in H(<\>). Since/,, converges uniformly on 
compact sets, then 4> ( | fn I ) converges uniformly on compact sets to <\> ( | f\ ). Since for 
all r < 1 we have {z E C : | z | = r} is compact in A so 

r ^ l f(re»)\)dQ= lim [ % ( | f„(rei9) | ) d6 < lim \"\( | /„ (eiB) | ) </6 < M, 

the inequality before the last is because of Lemma 4 and the last one is because {f„} 
is a Cauchy sequence in H(<\>). Now the rest of the proof is similar to the one given in 
[6] for N+, one only needs to use properties of <\> among which is the fact that <|>( | ou: | ) 
— ([ I a I ] + 1)<I> U) where [ | a | ] is the largest integer in | a |. 

2. Continuous linear functions on H + (<()). We now study the space of continuous 
linear complex valued functionals on H + (fy) which we will denote by (H + ((}>))*. The 
spaces (7/p)*, 0 < p < 1 were studied in [1,5] and (N+)* in [6]. 

THEOREM 4. Let § be a strongly modulus function. Then T E (H(<\)))* if and only 
if there exists g E //(A) such that 

T(f)= lim y - p 7 ( - e / e ) g ( p e - / , V 8 
r -» 1 Z7T J() \ p / 

where 0 < r < p < 1. 

PROOF. Let 7 E (// + (c|)))* and let fc* = T(zk), A: = 0, 1,2, Now {z* : it = 
0 , 1 , 2 , . . . } is a bounded set in // + (cj)) and T is a continuous linear functional on 
F-space, so T is bounded [4] and T(zk) (A: = 0 , 1 , 2 , . . . ) is a bounded set, so the 
function g(z) = S^=0 bkz

k is analytic in A. Let/(z) = 2,7= o anz" E //+(c|)), then for 
r E (0, 1) put/r(z) = f(rz),fr converges to/in Hf (())), the proof is exactly as in [6]. 

Now, 

/ " \ " 
T(fr) = Tylim 2 0*r*zM - lim S A ^ r * = X 0*fc*r* 

= r^- f 7 ( r p - V 9 ) g ( p ^ ) d6, 0 < r < p < 1. 

https://doi.org/10.4153/CMB-1986-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-045-0


1986] H(<|>) SPACES 301 

But/ r —»/in H+(<\>) as r—> 1, hence 

T{f) = lim -î- fV('-p"1^e)^(P^','e) dQ. 

Conversely, suppose that 

T(f) = lim j - rf(rç>-leiB)g(peiB) dd 

exists forall/E// + (c()). 
For each r E (0, 1 ) let 

Clearly Tr E (// + ((())) * for 7\ is linear and if/„ converges to/in / / + (())), then by Lemma 
3 /„ converges to/uniformly on compact subsets of A, hence Tr (fn) converges to Tr(f). 
But lim,_», Tr(f) exists for a l l /E H + ($), hence by the uniform boundedness principle 
[4] it follows that T(f) = limr_^, Tr(f) is continuous. 

REMARK. Although the topologies on // + (<f>) and N+ are different in general we do 
have the following: 

COROLLARY. IfT E (A^+)*, then T E (// + (c()))*. 
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