Canad. Math. Bull. Vol. 29 (3), 1986

## H( $\phi$ ) SPACES

BY<br>W. DEEB AND M. MARZUQ

AbSTRACT. Let $\psi$ be a non-decreasing continuous subadditive function defined on $[0, \infty)$ and satisfy $\psi(x)=0$ if and only if $x=0$. The space $H(\psi)$ is defined as the set of analytic functions in the unit disk which satisfy

$$
\sup _{0<r<1} \int_{0}^{2 \pi} \psi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta<\infty
$$

and the space $H^{+}(\psi)$ is the space of all $f \in H(\psi)$ for which

$$
\sup _{0<r<1} \int_{0}^{2 \pi} \psi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\int_{0}^{2 \pi} \psi(|f(\theta)|) d \theta
$$

where $f(\theta)=\lim _{r \uparrow 1} f\left(r e^{i \theta}\right)$ almost everywhere.
In this paper we study the $H(\psi)$ spaces and characterize the continuous linear functionals on $\mathrm{H}^{+}(\psi)$.

Introduction. Let $\phi$ be a real-valued function defined on $[0, \infty)$ satisfying the following:

1. $\phi$ is increasing,
2. $\phi(x+y) \leq \phi(x)+\phi(y)$ for all $x, y$ in $[0, \infty)$,
3. $\phi(x)=0$ if and only if $x=0$ and
4. $\phi$ is continuous at zero (from the right).

Such a function is called a modulus function; some examples of modulus functions are $x^{P}, 0<p \leq 1, \log (1+x)$, in fact if $\phi$ is modulus then so is $\frac{\phi}{1+\phi}$.

Let $H(\Delta)$ denote the space of analytic functions in the unit disc $\Delta=\{z \in \mathbb{C}$ : $|z|<1\}$ and let

$$
H(\phi)=\left\{f: f \in H(\Delta) \text { and } \sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \phi<\infty\right\}
$$

where $\phi$ is a modulus function. We define a distance function on $H(\phi)$ by

$$
|f-g|_{\phi}=\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)-g\left(r e^{i \theta}\right)\right|\right) d \theta
$$

If we take $\phi(x)=x^{P}, 0<p \leq 1$, then $H(\phi)=H^{P}$ and if $\phi(x)=\log (1+x)$, then $H(\phi)=N$, see [6] for definition. We will use $|f|_{\phi}$ to denote

$$
\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta
$$

Definition. A modulus function $\phi$ is called strongly modulus if it satisfies:

1) $\int_{1}^{\infty} \frac{\phi(x)}{x^{2}} d x<\infty$,
2) $\lim _{x \rightarrow \infty} \frac{\phi(x)}{\log x}>0$ and
3) $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$.

Examples of strongly modulus functions are $x^{p}, 0<p<1$, and $\log (1+x)$. We define

$$
H^{+}(\phi)=\left\{f \in H(\phi): \sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta\right\}
$$

where

$$
f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1^{-}} f\left(r e^{i \theta}\right) .
$$

In this paper we study some basic properties of $H(\phi)$ spaces and give an example of a modulus function $\hat{\phi}$ such that $H(\hat{\phi}) \subset H^{P}$ for all $p, 0<p<1$ but $H^{1} \subset H(\hat{\phi})$. We also characterize the continuous linear functionals on $H^{+}(\phi)$ for $\phi$ strongly modulus, a result which could be considered a generalization of the one given in [5] and [6].

## 1. Basic properties of $\mathbf{H}(\phi)$ :

Lemma 1. If $\phi$ is a modulus function, then $H^{1} \subset H(\phi)$.
Proof. $\phi(x) \leq \phi([x]+1) \leq([x]+1) \phi(1)$, so if $x>1$, then $\phi(x) \leq 2 x \phi(1)$, and if $x \leq 1$, then $\phi(x) \leq \phi(1)$.

Now let $f \in H^{1}$, and for any $0<r<1$, let

$$
\begin{aligned}
& A_{r}=\left\{\theta:\left|f\left(r e^{i \theta}\right)\right| \leq 1\right\}, \\
& B_{r}=\left\{\theta:\left|f\left(r e^{i \theta}\right)\right|>1\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta & =\int_{A_{r}} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta+\int_{B_{r}} \phi\left|f\left(r e^{i \theta}\right)\right| d \theta \\
& <2 \pi \phi(1)+2 \phi(1) \int_{\mathrm{B}_{r}}\left|f\left(r \mathrm{e}^{i \theta}\right)\right| d \theta \\
& \leq 2 \pi \phi(1)+2 \phi(1) \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta<\infty,
\end{aligned}
$$

since $f \in H^{1}$. Hence $f \in H(\phi)$.

Theorem 1. If $\frac{\lim }{x \rightarrow \infty} \frac{\phi(x)}{x}=\alpha>0$ then $H(\phi)=H^{\prime}$.
Proof. The condition implies that there exists $M>0$ such that $\phi(x)>\alpha x$ in $[M, \infty)$.
Let $f \in H(\phi)$ and consider for $0<r<1, A_{r}=\left\{\theta:\left|f\left(r e^{i \theta}\right)\right|<M\right\}, B_{r}=$ $\left\{\theta:\left|f\left(r e^{i \theta}\right)\right| \geq M\right\}$, then

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta & \leq \int_{A_{r}} M d \theta+\frac{1}{\alpha} \int_{B_{r}} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta \\
& \leq 2 \pi M+\frac{1}{\alpha}|f|_{\phi},
\end{aligned}
$$

hence $f \in H^{1}$. Using Lemma 1 we conclude that $H(\phi)=H^{1}$.
Remark: It is clear that if $\phi$ is bounded then $H(\phi)=H(\Delta)$.
Lemma 2. Let $\phi$ be a modulus, then $\frac{1}{1-z} \in H(\phi)$ if and only if $\int_{1}^{\infty} \frac{\phi(x)}{x^{2}} d x<\infty$.
Proof. Suppose $1 /(1-z) \in H(\phi)$ and let $z=r e^{i \theta}$, then

$$
\begin{aligned}
|1-z|^{2} & =(1-r \cos \theta)^{2}+r^{2} \sin ^{2} \theta \\
& =1-2 r \cos \theta+r^{2}=1-2 r\left(1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{4!}+\ldots\right)+r^{2} \\
& \leq(1-r)^{2}+\theta^{2}, \quad 0 \leq \theta \leq \pi .
\end{aligned}
$$

Let $\delta$ be a (small) positive number and let $r_{0}$ be such that $0<1-r_{0}<\delta$, then for $z=r e^{i \theta}$ with $\pi \geq \theta>\delta$ and $r>r_{0}$ we have

$$
|1-z|^{2} \leq 2 \theta^{2}, \quad \text { hence } \phi\left|\frac{1}{1-z}\right| \geq \phi\left(\frac{1}{2 \theta}\right),
$$

but

$$
\frac{1}{1-z} \in H(\phi), \text { so } \int_{\delta}^{\pi} \phi\left(\frac{1}{2 \theta}\right) d \theta<M \quad \text { for all } \delta>0 .
$$

Set $x=\frac{1}{2 \theta}$, then

$$
\int_{1}^{1 / 28} \frac{\phi(x)}{x^{2}} d x<M \quad \text { for all } \delta>0
$$

so

$$
\int_{1}^{\infty} \frac{\phi(x)}{x^{2}} d x<\infty .
$$

Conversely: suppose that $\int_{1}^{\infty} \phi(x) / x^{2} d x<\infty$, as it was shown in [5] $|1-z|^{2} \geq \theta^{2} / 4$ for $\frac{1}{2} \leq r<1$ and $0<\theta \leq \delta$ (where $\delta$ is sufficiently small). To show that $1 / 1-z \in$ $H(\phi)$, it is enough to show that $\int_{0}^{\delta} \phi\left|1 /\left(1-r e^{i \theta}\right)\right| d \theta \leq M$ for all $r>\frac{1}{2}$. But for $0<$ $\theta<\delta$ we have

$$
\int_{0}^{\delta} \phi\left|\frac{1}{1-r e^{i \theta}}\right| d \theta \leq \int_{0}^{\delta} \phi\left(\frac{2}{\theta}\right) d \theta \leq 2 \int_{2 / \delta}^{\infty} \frac{\phi(x)}{x^{2}} d x<M
$$

hence $1 / 1-z \in H(\phi)$.
From Lemmas 1 and 2 we get
Theorem 2. If $\phi$ is a modulus and $\int_{1}^{\infty} \frac{\phi(x)}{x^{2}} d x<\infty$, then $H^{1} \underset{\neq}{\subset} H(\phi)$.
Remark. We believe that $\int_{1}^{\infty} \phi(x) / x^{2} d x<\infty$ is a necessary and sufficient condition for $H^{\prime} \subset_{\neq} H(\phi)$.

We now give an example of a modulus function $\hat{\phi}$ such that $H(\hat{\phi}) \neq H^{\prime}$ and $H(\hat{\phi})$ $\subset H^{p}$ for all $0<p<1$.
${ }^{\neq}$Let $p_{n}=n / n+1, n=1,2, \ldots$. Define $\hat{\phi}(x)$ on $[0, \infty)$ by

$$
\hat{\phi}(x)=\left\{\begin{aligned}
& \sqrt{x}, \quad 0 \leq x \leq 4 \\
& x^{p_{n}}, \quad 2^{n(n+1)} \leq x \leq 2^{(n+1)(n+2)} ; n \text { even } \\
& y_{n}^{(x)}, 2^{n(n+1)} \leq x \leq 2^{(n+1)(n+2)} ; n \text { odd }
\end{aligned}\right.
$$

where $y_{n}(x)$ represents the line segments joining the points $\left(2^{n(n+1)}, 2^{(n-1)(n+1)}\right)$, $\left(2^{(n+1)(n+2)}, 2^{n(n+2)}\right.$. Using elementary computations one can show that $\hat{\phi}$ is a modulus. To show that $H(\hat{\phi}) \subset \neq H^{P}$ for all $p, 0<p<1$, choose $n$ such that

$$
p<\frac{n}{n+1}=p_{n}, \quad \text { then } H^{p_{n}} \underset{\neq}{\subset} H^{p}
$$

and since $x^{p_{n}}<\hat{\phi}(x)$ for all $x>2^{(n+1)(n+2)}$ one can obtain by an argument similar to the one given in Lemma 1, that $H(\hat{\phi}) \subset H^{p_{n}} \underset{\neq}{\subset} H^{p}$. Consider now $\int_{1}^{\infty} \phi(x) / x^{2} d x$, it is clear that

$$
\int_{1}^{\infty} \frac{\hat{\phi}(x)}{x^{2}} d x=\sum_{n=0}^{\infty} \int_{I_{n}} \frac{\hat{\phi}(x)}{x^{2}} d x
$$

where $I_{0}=\left[0,2^{2}\right], I_{n}=\left[2^{n+1)}, 2^{(n+1)(n+2)}\right]$, but

$$
\int_{I_{n}} \frac{\hat{\phi}(x)}{x^{2}} d x \leq \int_{I_{n}} \frac{x^{p_{n}}}{x^{2}} d x \leq(n+1)\left[\frac{1}{2^{n}}-\frac{1}{2^{n+2}}\right]
$$

hence $\int_{1}^{\infty} \frac{\hat{\phi}(x)}{x^{2}} d x<\infty$, so by Theorem 2 we get $H^{\prime} \underset{\neq}{\subset} H(\hat{\phi})$.

Lemma 3. Let $\phi$ be strictly increasing modulus function such that $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$, then $|f(z)| \leq \phi^{-1}\left(4|f|_{\phi} / 1-r\right)$ for all $z=r e^{i \theta} \in \Delta$.

Proof. Since $\phi(|f|)$ is subharmonic in $|z|<\rho$ and continuous in $|z| \leq \rho$ where 0 $<\rho<1$, and since plurisubharmonic is a subharmonic in one variable, then by Lemma 1 in [3] we get

$$
\phi(|f(z)|) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\rho^{2}-|z|^{2}}{\left|\rho e^{\theta}-z\right|^{2}} \phi\left(\left|f\left(\rho e^{i \theta}\right)\right|\right) d \theta .
$$

Hence if $z=r e^{i \theta}$, at $\rho=(1+r) / 2$ we obtain

$$
\phi(|f(z)|) \leq \frac{4|f|_{\phi}}{1-r}
$$

hence

$$
|f(z)| \leq \phi^{-1}\left(\frac{4|f|_{\phi}}{1-r}\right)
$$

Lemma 4. If $\phi$ is a modulus function which satisfies $\underline{\lim }_{x \rightarrow \infty}(\phi(x)) /(\log x)>$ 0 and $\phi(|f|)$ is subharmonic for every $f \in H(\Delta)$, then $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ exists almost everywhere and $|f|_{\phi}=\lim _{r \rightarrow 1^{-}} 1 / 2 \pi \int_{0}^{\pi} \phi\left(\left|f\left(r e^{i}\right)\right|\right) d \theta$.

Proof. An argument similar to the one given in Lemma 1 yields that

$$
\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta<\infty,
$$

hence $f \in N$, so $f$ has a radial limit a.e.[2]. Now $\phi(|f|)$ is subharmonic for each $f \in$ $H(\Delta)$ so

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta
$$

is an increasing function of $r, r \in[0,1)$ so

$$
\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) \mathrm{d} \theta=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta,
$$

and that proves the lemma.
If $\phi$ is modulus such that $\phi(|f|)$ is subharmonic for all $f \in H(\Delta)$ then $H^{+}(\phi)$ becomes the subspace of $H(\phi)$ which consists of all $f$ such that

$$
\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta
$$

For $\phi(x)=x^{p}, H^{+}(\phi)=H^{p}[2]$ and for $\phi(x)=\log (1+x), H(\phi)=N$ and $H^{+}(\phi)$ $=N^{+}[6]$.

Theorem 3. If $\phi$ is strictly increasing modulus function which satisfies $\phi(|f|)$ is subharmonic for every $f \in H(\Delta)$ and $\left.\lim _{x \rightarrow \infty}(\phi(x)) /(\log x)\right)>0$, then $\left(H^{+}(\phi),\| \|_{\phi}\right)$ is an $F$-space over $\mathbb{C}$.

Proof. To show that the space is complete. Let $\left\{f_{\mathrm{n}}\right\}$ be a Cauchy sequence in $H(\phi)$, then by Lemma 3 we have for any compact set $K$

$$
\left|f_{n}(z)-f_{m}(z)\right| \leq \phi^{-1}\left(\frac{4\left|f_{n}-f_{m}\right|_{\phi}}{1-r}\right)
$$

for all $z \in K \subset\{w \in \mathbb{C}:|w|<r\}$, this shows that $\left\{f_{n}\right\}$ is a Cauchy sequence in $H(\Delta)$, hence it converges uniformly on compact subsets of $\Delta$ to a function $f \in H(\Delta)$. We need to show that $f \in H(\phi)$, and $f_{n}$ converges to $f$ in $H(\phi)$. Since $f_{n}$ converges uniformly on compact sets, then $\phi\left(\left|f_{n}\right|\right)$ converges uniformly on compact sets to $\phi(|f|)$. Since for all $r<1$ we have $\{z \in \mathbb{C}:|z|=r\}$ is compact in $\Delta$ so
$\int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} \phi\left(\left|f_{n}\left(r e^{i \theta}\right)\right|\right) d \theta \leq \lim _{n \rightarrow \infty} \int_{0}^{2 \pi} \phi\left(\left|f_{n}\left(e^{i \theta}\right)\right|\right) d \theta \leq M$,
the inequality before the last is because of Lemma 4 and the last one is because $\left\{f_{n}\right\}$ is a Cauchy sequence in $H(\phi)$. Now the rest of the proof is similar to the one given in [6] for $N^{+}$, one only needs to use properties of $\phi$ among which is the fact that $\phi(|\alpha x|)$ $\leq([|\alpha|]+1) \phi(x)$ where $[|\alpha|]$ is the largest integer in $|\alpha|$.
2. Continuous linear functions on $\mathbf{H}^{+}(\boldsymbol{\phi})$. We now study the space of continuous linear complex valued functionals on $H^{+}(\phi)$ which we will denote by $\left(H^{+}(\phi)\right)^{*}$. The spaces $\left(H^{P}\right)^{*}, 0<p<1$ were studied in $[1,5]$ and $\left(N^{+}\right)^{*}$ in [6].

Theorem 4. Let $\phi$ be a strongly modulus function. Then $T \in\left(H^{+}(\phi)\right) *$ if and only if there exists $g \in H(\Delta)$ such that

$$
T(f)=\lim _{r \rightarrow 1^{-}} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\frac{r}{\rho} e^{i \theta}\right) g\left(\rho e^{-i \theta}\right) d \theta
$$

where $0<r<\rho<1$.
Proof. Let $T \in\left(H^{+}(\phi)\right)^{*}$ and let $b_{k}=T\left(z^{k}\right), k=0,1,2, \ldots$. Now $\left\{z^{k}: k=\right.$ $0,1,2, \ldots\}$ is a bounded set in $H^{+}(\phi)$ and $T$ is a continuous linear functional on $F$-space, so $T$ is bounded [4] and $T\left(z^{k}\right)(k=0,1,2, \ldots)$ is a bounded set, so the function $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ is analytic in $\Delta$. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H^{+}(\phi)$, then for $r \in(0,1)$ put $f_{r}(z)=f(r z), f_{r}$ converges to $f$ in $H^{+}(\phi)$, the proof is exactly as in [6].

Now,

$$
\begin{aligned}
T\left(f_{r}\right) & =T\left(\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} r^{k} z^{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} b_{k} r^{k}=\sum_{k=0}^{\infty} a_{k} b_{k} r^{k} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r \rho^{-1} e^{i \theta}\right) g\left(\rho e^{-i \theta}\right) d \theta, \quad 0<r<\rho<1 .
\end{aligned}
$$

But $f_{r} \rightarrow f$ in $H^{+}(\phi)$ as $r \rightarrow 1$, hence

$$
T(f)=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r \rho^{-1} e^{i \theta}\right) g\left(\rho e^{-i \theta}\right) d \theta .
$$

Conversely, suppose that

$$
T(\mathrm{f})=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r \rho^{-1} e^{i \theta}\right) g\left(\rho e^{i \theta}\right) d \theta
$$

exists for all $f \in H^{+}(\phi)$.
For each $r \in(0,1)$ let

$$
T_{r}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r \rho^{-1} e^{i \theta}\right) g\left(\rho e^{i \theta}\right) d \theta .
$$

Clearly $T_{r} \in\left(H^{+}(\phi)\right)^{*}$ for $T_{r}$ is linear and if $f_{n}$ converges to $f$ in $H^{+}(\phi)$, then by Lemma $3 f_{n}$ converges to $f$ uniformly on compact subsets of $\Delta$, hence $T_{r}\left(f_{n}\right)$ converges to $T_{r}(f)$. But $\lim _{r \rightarrow 1} T_{r}(f)$ exists for all $f \in H^{+}(\phi)$, hence by the uniform boundedness principle [4] it follows that $T(f)=\lim _{r \rightarrow 1} T_{r}(f)$ is continuous.

Remark. Although the topologies on $H^{+}(\phi)$ and $N^{+}$are different in general we do have the following:

Corollary. If $T \in\left(N^{+}\right)^{*}$, then $T \in\left(H^{+}(\phi)\right)^{*}$.

## References

1. P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), pp. 32-60.
2. P. L. Duren, Theory of $H^{p}$ Spaces, Pure and Appl. Math., no. 38, Academic Press, New York and London (1970).
3. K. T. Hahn and J. Mitchell, $H^{p}$ spaces on bounded symmetric domains, Trans. Amer. Math. Soc., 146 (1969), pp. 521-531.
4. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).
5. S. Walters, Remarks on the space $H^{p}$, Pacific J. Math. 1 (1951), pp. 455-471.
6. N. Yanagihara, Multipliers and linear functionals for the class $N^{+}$, Trans. Amer. Math. Soc., 180 (1973), pp. 449-461.

Kuwart

