$\mathbf{x X x}$
In this case one two-rowed skew Latin square minor always exists, owing to the fact that $p=4 r+1$ can be expressed as the sum of two squares. Here

$$
\left.\begin{array}{rr}
2 & 3 \\
3 & -2
\end{array} \right\rvert\,=-\left(2^{2}+3^{2}\right)=-13
$$

The quadratic residues for $p=4 r+1$ always occur in pairs $\pm y$ and involve only half of the possible set of reduced integers: they may or may not lead to a non zero minor determinant. For $p=13$, the six residues are $\pm 1, \pm 3, \pm 4:$ for $p=17$ the eight residues are $\pm 1, \pm 2, \pm 4, \pm 8$. We have

$$
\left|\begin{array}{rrr}
1 & 4 & 3 \\
4 & 3 & -1 \\
3 & -1 & -4
\end{array}\right|=0,\left|\begin{array}{rrrr}
1 & 2 & 4 & 8 \\
2 & 4 & 8 & -1 \\
4 & 8 & -1 & -2 \\
8 & -1 & -2 & -4
\end{array}\right|=17^{3}
$$

The University, St Andrews.

Inequalities for Positive Series

By C. E. Walsh.

$$
\text { Let } \begin{aligned}
f(x) & \equiv(1-x)^{b}+b a^{b-1} x \\
\phi(x) & \equiv x^{c}-c \beta^{c-1} x
\end{aligned}
$$

where $b \geqq 1, c \geqq 1,0 \leqq \alpha \leqq 1,0 \leqq \beta \leqq 1$, and x is assumed to lie in the range (0,1). By differentiation, or otherwise, it is easily shewn that $f(x)$ and $\phi(x)$ have minima when $x=1-\alpha$ and when $x=\beta$, respectively. Hence

$$
\begin{aligned}
& (1-x)^{b}+b a^{b-1} x \geqq b a^{b-1}+(1-b) a^{b} \\
& x^{c}-c \beta^{c-1} x \geqq(1-c) \beta^{c} .
\end{aligned}
$$

Multiplying the first of these by $c \beta^{c-1}$, the second by $b a^{b-1}$, and adding, we get

$$
\begin{aligned}
c \beta^{c-1}(1-x)^{b} & +b a^{b-1} x^{c} \geqq b a^{b-1} \beta^{c-1} \\
& +b(c-1) a^{b-1} \beta^{c-1}(1-\beta)+c(1-b) a^{b} \beta^{c-1} .
\end{aligned}
$$

Dividing across by β^{c-1}, this is the same as

$$
c(1-x) \geqq b \alpha^{b-1}\left(1-\beta^{1-c} x^{c}\right)+b(c-1) a^{b-1}(1-\beta)+c(1-b) a^{b}
$$

> (1).

The use of (1) enables us to prove easily some inequalities of the sort obtained by Copson and Elliot ${ }^{1}$ for positive series. An example may perhaps be given.

$$
\text { Let } A_{n}=\sum_{r=1}^{n} \lambda_{r} a_{r}, \Lambda_{n}=\sum_{r=1}^{n} \lambda_{r}, P_{n}=\sum_{r=1}^{n} p_{r} \lambda_{r}
$$

where, for all $n, a_{n}>0, \lambda_{n}>0, p_{n}>0$. We assume further that

$$
p_{n} \Lambda_{n} / P_{n} \geqq p_{n+1} \Lambda_{n+1} / P_{n+1}
$$

always. Now make the following substitutions in (1).

$$
\text { Let } x=A_{n-1} / A_{n}, \beta=P_{n-1} / P_{n}, a=\mu \lambda_{n} / \Lambda_{n}
$$

where μ is positive, and such that $\alpha=\mu \lambda_{n} / \Lambda_{n}<1$, but is otherwise undetermined so far. As a result of these substitutions (1) becomes

$$
\begin{array}{r}
c\left(\frac{\lambda_{n} a_{n}}{A_{n}}\right)^{b} \geqq b\left(\frac{\mu \lambda_{n}}{\Lambda_{n}}\right)^{b-1}\left(1-\frac{P_{n-1}^{1-c}}{P_{n}^{1-c}} \frac{A_{n-1}^{c}}{A_{n}^{c}}\right)+b \frac{(c-1) \mu^{b-1} \lambda_{n}^{b-1} p_{n} \lambda_{n}}{\Lambda_{n}^{b-1} P_{n}} \\
+\frac{c(1-b) \mu^{b} \lambda_{n}^{b}}{\Lambda_{n}^{b}}
\end{array}
$$

Multiplying across by $\lambda_{n}^{1-b} A_{n}^{c} \Lambda_{n}^{b-1} P_{n}^{1-c}$ gives

$$
\begin{align*}
& c \lambda_{n} P_{n}^{1-c} \Lambda_{n}^{b-1} a_{n}^{b} A_{n}^{c-b} \geqq b \mu^{b-1}\left(P_{n}^{1-c} A_{n}^{c}-P_{n-1}^{1-c^{c}} A_{n-1}^{c}\right) \\
& \quad+\lambda_{n} A_{n}^{c}\left\{b(c-1) \mu^{b-1} p_{n} P_{n}^{-c}+c(1-b) \mu^{b} P_{n}^{1-c} \Lambda_{n}^{-1}\right\} . \tag{2}
\end{align*}
$$

Now the last factor on the right, namely

$$
b(c-1) \mu^{b-1} p_{n} P_{n}^{-c}+c(1-b) \mu^{b} P_{n}^{1-c} \Lambda_{n}^{-1}
$$

regarded as a function of μ has a maximum value when

$$
\begin{equation*}
\mu=\frac{(c-1)}{c} \frac{p_{n} \Lambda_{n}}{P_{n}} \tag{3}
\end{equation*}
$$

as is easily shewn by differentiation. Substituting this value for μ, the maximum value is found to be

$$
\left(c \frac{1}{c^{b-1}}\right)^{b} \frac{p_{n}^{b} A_{n}^{b-1}}{P_{n}^{b+c-1}}
$$

With μ having the value given by (3)

$$
a=\mu \frac{\lambda_{n}}{\Lambda_{n}}=\frac{(c-1)}{c} \frac{p_{n} \lambda_{n}}{P_{n}}
$$

satisfies $0<\alpha<1$. Thus it is permissible to take

$$
\mu=\frac{(c-1)}{c} \frac{p_{n} \Lambda_{n}}{P_{n}}=\mu_{n}
$$

[^0]in (2). Having done so, the latter is now
\[

$$
\begin{aligned}
& c \lambda_{n} P_{n}^{1-c} \Lambda_{n}^{b-1} a_{n}^{b} A_{n}^{c-b} \geqq b \mu_{n}^{b-1}\left(P_{n}^{1-c} A_{n}^{c}-P_{n-1}^{1-c} A_{n-1}^{c}\right) \\
&+\frac{(c-1)^{b}}{c^{b-1}} \frac{\lambda_{n} p_{n}^{b} \Lambda_{n}^{b-1} A_{n}^{c}}{P_{n}^{b+c-1}} .
\end{aligned}
$$
\]

Hence, summing for $n=1,2, \ldots, N$

$$
\begin{gather*}
c \sum_{n=1}^{\mathcal{X}} \lambda_{n} P_{n}^{1-c} \Lambda_{n}^{b-1} a_{n}^{b} A_{n}^{c-b} \geqq b \sum_{n=1}^{N-1}\left(\mu_{n}^{b-1}-\mu_{n+1}^{b-1}\right) P_{n}^{1-c} A_{n}^{c} \\
+b \mu_{N}^{b-1} P_{N}^{1-c} A_{N}^{c}+\frac{(c-1)^{b}}{c^{b-1}} \sum_{n=1}^{N} \frac{\lambda_{n} p_{n}^{b} \Lambda_{n}^{b-1} A_{n}^{c}}{P_{n}^{b+c-1}} \tag{4}
\end{gather*}
$$

Since, by hypothesis, $p_{n} \Lambda_{n} / P_{n}$ never increases, it follows that $\mu_{n} \geqq \mu_{n+1}$ always. Accordingly, for all values of N^{r}

$$
b \sum_{n=1}^{N-1}\left(\mu_{n}^{b-1}-\mu_{n+1}^{b-1}\right) P_{i}^{1-c} A_{n}^{c} \geqq 0
$$

Consequently, from (4)

$$
c \sum_{1}^{N} \lambda_{n} P_{n}^{1-c} \Lambda_{n}^{b-1} a_{n}^{b} A_{n}^{c-b}>\frac{(c-1)^{b}}{c^{b-1}} \sum_{1}^{N} \frac{\lambda_{n} p_{n}^{b} \Lambda_{n}^{b-1} A_{n}^{c}}{\bar{P}_{n}^{b+c-1}}
$$

Finally, letting $N \rightarrow \infty$, and dividing across by c

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} P_{n}^{1-c} \Lambda_{n}^{b-1} a_{n}^{b} A_{n}^{c-b} \geqq\left(\frac{c-1}{c}\right)^{b} \sum_{1}^{\infty} \frac{\lambda_{n} p_{n}^{b} \Lambda_{n}^{b-1} A_{n}^{c}}{P_{n}^{b+c-1}} \tag{5}
\end{equation*}
$$

provided the series on the left-hand side converges, and $b \geqq 1, c \geqq 1$.
Now write $p_{n}=1$ for all n, so that $P_{n} \equiv \Lambda_{n}$, and let $b=c$. Then (5) reduces to one of the theorems proved by Copson (in the first paper referred to) namely

If $a_{n}>0, \lambda_{n}>0$ for all n, and $b>1$, then

$$
\sum_{n=1}^{\infty} \lambda_{n} a_{n}^{b} \geqq\left(\frac{b-1}{b}\right)^{b} \sum_{1}^{\infty} \lambda_{n}\left(A_{n} / \Lambda_{n}\right)^{b}
$$

34 Chelmsford Road,
Ranelagh, Dublin.

[^0]: ${ }^{1}$ Copson, Joumal London Math. Society 2 (1927), 9-12; 3 (1928), 49-0̃1. Elliott, lbid., 1 (1926), 93-96; 4 (1929). 21-23.

