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In this case one two-rowed skew Latin square minor always
exists, owing to the fact that p = 4r + 1 can be expressed as the sum
of two squares. Here

.2 3

| 22 4 3%) = — 13.
3 g @

The quadratic residues for p = 4r 4+ 1 always occur in pairs + ¥
and involve only half of the possible set of reduced integers: they
may or may not lead to a non zero minor determinant. For p =13,
the six residues are 4 1, + 3, 4 4: for p = 17 the eight residues are
+1,4+2 44, -8 We have

1 4 3] 2 4 8
4 3 —1|=0, (2 4 8 —1|=17
3 —1 —4| 4 8 —1 —2]

'8 —1 —2 —4
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Inequalities for Positive Series

By C. E. WaLsn.
Let f(x)=(l —a)+battx
dry=at—cf1lx
whereb=1,¢=1,0=a=<1,0<B<1, and x is assumed to lie in
the range (0, 1). By differentiation, or otherwise, it is easily shewn
that f(x) and ¢ (2) have minima when =1 — o and when z =8,
respectively. Hence
(I—2xY +bablx=bab~1 + (1 —b) at
¢ —cpB ez (1 —c)p.
Multiplying the first of these by ¢ ', the second by b a*~!, and
adding, we get
et (1l —a)+babtlar=bat1pt
+b(c—1)yab=1B-1(1 —B) + ¢ (1 —b)a® L.
Dividing across by 3¢~1, this is the same as
c(l—x) Zbadt=L (1—B1=ca¢) +b(c—1)at~ ! (1—B) + ¢ (1—b) a® (1).
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The use of (1) enables us to prove easily some inequalities of the
sort obtained by Copson and Elliot! for positive series. An example
may perhaps be given.

Let A, = % Ma, A= = A, P,— 3 p, A
r=1 r=1 r=1

where, for all 7, a, >0, A,> 0, p,>0. We assume further that
pn An/Pn g pn+1 An+1/Pn+1
always. Now make the following substitutions in (1).
Let x = Au—l,/An: /g = Pn——-l/an a = AnlAy,
where p is positive, and such that a = u A,/A, < 1, but is otherwise
undetermined so far. As a result of these substitutions (1) becomes

A @\? e A1 Pl=¢ Ac (c — 1) w=1 =1 p A,
o) 20 (52 (O -ER )

¢ (1—0)p’ A
+ A
Multiplying across by AL=¢ 4¢ Ab~1 Pl=c gives

¢ Ay PLo¢ Ab=1 gk Ac~b = b ub=1 (PL~¢ Az — P1=¢ Az )

n—1
+ A Ai{b(c— 1) pbtp, Pre+c (1 —b) pb PL=c AT} (2)
Now the last factor on the right, namely
bc—1)pt~rp, P +c (1 —0b)put Plmc AL
regarded as a function of u has a maximum value when
_ -1 p A, 3
® = c P,, (" )

as is easily shewn by differentiation. Substituting this value for u,
the maximum value is found to be

(c—1)0 pb Ab-1

@i T
With p having the value given by (3)
_ /\n . (C - 1) Pr /\n
r=H A, c P,

satisfies 0 <a < 1. Thus it is permissible to take

a1 puhs

P Pn ,'L "

1 Copson, Journal London Math. Society 2 (1927), 9-12; 3 (1928), 49-51. Elliott,
Ihid., 1 (1926), 93-96 ; 4 (1929). 21-23.
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in (2). Having done so, the latter is now
¢ A Py ADThal ATV 2 b plmt (P70 4 — PrTo Al )

(c — 1" Auph A1 4;
cb—1 Pb+e=1

Hence, summing forn =1,2, ...., N

Cc
n

N-1
AN Prme NTrah Aith = b B (T — gty PLT 4G
1 n=1
(c— 1) § Anpy AL 45 ()
Cb~~1 Pz+c—1

n=1

I b

+ b ubt Pye AS +

Since, by hypothesis, p,A,/P, never increases, it follows that
oy = oo always.  Accordingly, for all values of N
N1
b X (W= P4 =0.
n=1

Consequently, from (4)
(c— 1) 2, pb A1 A¢

i

Cb_l 1 PZ+C—1

N .
¢ APl ALt ab A9t
1

H

Finally, letting N — o, and dividing across by ¢

S ) Plec Ab—1 gb Ae—b c— 1Y 2 A, plA! 4
I AP NS e ATz (o] T (5)
- n

provided the series on the left-hand side converges, and b= 1,¢ = 1.
Now write p, = 1 for all n, so that P, = A,, and let 5 = ¢. Then
(5) reduces to one of the theorems proved by Copson (in the first
paper referred to) namely
If @, >0, A, >0 for all »n, and b > 1, then
b—-1.22

M= (27 ) S A, (duf/AL)
=1 ‘ b |

n

34 CHELMSFORD RoabD,
RaNELAGH, DUBLIN.
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