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Abstract

In mathematical programming, an important tool is the use of active set strategies to update
the current solution of a linear system after a rank one change in the constraint matrix. We
show how to update the general solution of a linear system obtained by use of the scaled
ABS method when the matrix coefficient is subjected to a rank one change.

1. Introduction

The ABS methods, introduced by Abaffy, Broyden and Spedicato [1], are a general
class of algorithms for solving linear and nonlinear algebraic systems and have been
extensively applied to several types of linear systems. The basic algorithm works on
a system having the form

Ax = b (A e R m n , x e R n , b e Rm). (1.1)

The scaled ABS method is one of a class of methods (for solving a linear system of
equations) that are generalisations of the basic ABS algorithm, with an extra parameter
vector available at each iteration. It can be seen that the scaled ABS method is a
realisation of a very general class of algorithms ([2, 8]).

On the other hand, in a number of problems, after solving a linear system and
computing solutions of it, we need to find the solutions of a new system where the
coefficient matrix is modified. (Examples of modifications are changing, deleting or
adding rows or columns to the matrix.)

In this paper, we show how to update the general solution of a linear system after a
rank one change in the coefficient matrix of the system. We also show how to compute
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the general solution of a rank one perturbed system

(A + uvT)x =b (A e Rmn,x € Rn,be Rm,m< n), (1.2)

where u e Rm,v e R", if the general solution of (1.1), obtained by the application of
a scaled ABS algorithm, exists.

On the other hand, with an appropriate choice of parameters, almost all important
algorithms for solving linear systems can belong to the scaled ABS method. (For
example (see [2]), the QR method, LU, Huang, Hestenes-Stiefel and Lanczos methods
[6, 7], a number of conjugate gradient-type algorithms and also the Voyevodin class
of methods [9]). The new methods can be used for computing a solution of a system
after a rank one perturbation of the coefficient matrix.

Special instances of system (1.2) may appear in the following forms:

• changing the ith column or the ith row of the coefficient matrix to the zero
vector (by choosing (u = —a,, v = ef) or(« = e,, vT = —a|) respectively);

• changing the ith column or the ith row of the coefficient matrix (by choosing
v = e, or u = e, respectively),

where e, is the ith unit vector with appropriate dimension and at, a- are the ith column
and the ith row of matrix A respectively.

We know that solving the above system is often necessary and very important in
mathematical programming problems, such as methods using the active set strategy,
the simplex method or the dual simplex.

In Section 2, we briefly describe the ABS method and the scaled ABS algorithms
to solve linear systems. In Section 3, we show how to update the solution after a
rank one change and present the resulting algorithm. In Section 4, we demonstrate
an application of the new algorithm for linear programming and an application of the
new algorithm for a family of the secant methods for nonlinear programming.

2. The scaled ABS algorithm for solving a linear system

The scaled ABS algorithm for solving a linear system of equations is a generali-
sation of the basic ABS algorithm (see [2, 8]). A basic ABS algorithm starts with an
initial vector X\ e R" (arbitrary) and a nonsingular matrix H\ e R"*" (Spedicato's
parameter). Given that *, is a solution of the first i — 1 equations, the ABS algorithm
computes the solution of the given equations by performing the following steps (see
[2] or [3]):

(1) Determine z, (Broyden's parameter) such that zjH^ ^ 0 and set pt = Hjzr

(2) Update the solution by xi+i — xt + a,p,, where the step size a, is given by

a, = (h -
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(3) Update the Abaffian matrix //, by

where 10, e R" (Abaffy's parameter) is arbitrary provided that io/'//,-al- ^ 0.

NOTE. It can be shown that

(1) s( = Hidi = 0 if and only if a, is linearly dependent on the vectors au ..., a,_i
(see [2]). Indeed if st = 0 and /, = bt — afxt = 0 then the ith equation is redundant;
if st = 0 and r, ^ 0 then the system of equations is incompatible and hence lacks a
solution.
(2) If the system is compatible, the ABS algorithm computes a solution xm+i of

system (1.1) and a matrix f/m+1 so that Null(//^+1) = Null(A). Hence the general
solution of the system has the form.* = xm+\ + H*+is, s e R".

The scaled ABS family of algorithms is the essential generalisation of the ABS
algorithms obtained by introducing a new parameter, called the scaling vector, at
each iteration. The scaled ABS class of algorithms is formally and computationally
different, but equivalent, in the sense of generating the same set of iterates *,, to some
general procedures for a linear system and shows that a fundamental characterisation
of the scaled ABS algorithm is that it contains all possible algorithms of a very general
iteration that find the solution, from an arbitrary starting point, in a number of steps
no greater than the number of equations.

Now to introduce the scaled ABS class, let us consider, instead of the original
system (1.1), the following scaled system:

KTAx = KTb, (2.1)

where K = (kt,..., km) e Rm-m is an arbitrary nonsingular m x m matrix. Then the
above system is equivalent to system (1.1), any solution of one being a solution of the
other. Note that, by letting £, 6 Rm be the ith column of K, we can write system (2.1)
componentwise in the form

kj Ax = kjb, i = 1,. . . , m,

or, also by introducing the unsealed residual vector r = r(x) e Rm,

r(x) =Ax-b
in the form

kjr{x) = 0, i = l , . . . , m .
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So if we apply the basic ABS algorithm to the scaled system, it is immediately seen
that the relevant recursions are obtained by simply replacing a, and bt respectively by
A Tkj and bTkj. So we get a solution of the original system (1.1).

Notice moreover that the full matrix K does not appear explicitly, since at the ith
step only its ith column is used. Therefore K need not be defined initially, it being
sufficient to define kt at the ith step as an arbitrary vector linearly independent from
k\, ... ,kt-\. The vectors kt are called scaling vectors.

Note that if xx is a solution for system (2.1) and p is a vector in the null space of
KTA, then x = x\ + ap, for any scalar a, will also be a solution to (2.1). Thus if H
is a matrix, the columns of which span the null space of KTA, then x = x\ + aHz,
for arbitrary scalar a and vector z, solves the system (2.1).

Let K' = (£ ] , . . . , kt) and assume that yt, the current approximation in iteration i
is a solution for the first i — 1 equations in (2.1), that is,

K'TAy, = K'Tb. (2.2)

We choose the matrix //, € /?"*" so that the columns of //, span the null space of
K'TA, that is, equivalent with H{A

Tkj = 0, 1 < j < i — 1, then we let

yi+1 = y, - a,H*Zi, (2.3)

where z, € R", a, € R.
It is clear that yi+\ satisfies K' Ayi+i — K' b. We determine the scalar a, e R so

that yi+\ satisfies the ith equation as well, that is,

Kl+lTAyM = Kl+iTb. (2.4)

Defining r,- = Ayj — b and considering (2.3), (2.4) is equivalent to

kfr, = a,kjAPl, j < i, (2.5)

where p, = Hjn is the search direction defined at the ith iteration. In (2.4), for j = i
we have

kJrt=ttikjApt. (2.6)

(Note that if kjApi ^ 0 then a, = kjn/kj
For j < i - 1, using the induction hypothesis (2.2), (2.5) becomes

atkjApi = 0, j < i - 1,

or

(HiA
TkJ)

T(aiZi) = 0, j < i - l .
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So the following property is needed:

HiA
Tkj=0, j < i - l . (2.7)

Assume Ht to have this property. Let Hi+i be defined as //,+1 = //, + gif,T, where
/ , , gi 6 R" are defined so that they also satisfy (2.7). We must then have

(Hi + g J l
T ) A T k j = l , j < i - l .

To achieve the above, it will suffice to define gi = —HjATkj and/, = HTwt, where
wt € R" satisfies

wjHiATki = 1. (2.8)

Therefore we obtain

Hi+\ = Hi-HiA
Tkiu>]Hi. (2.9)

The relations (2.3), (2.6), (2.8) and (2.9) define the scaled ABS algorithm. Below, we
give an outline of this algorithm for solving a linear system.

THE SCALED ABS ALGORITHM.

(1) Given x\ e R", k\ arbitrary nonzero vectors, and H{ e Rnx" an arbitrary
nonsingular matrix, set / = 1.
(2) Compute the vector s, = HiATkt. If s, # 0 go to (3). If s, = 0, compute

r. = rjkr If T, = 0, set xi+l = xh Hi+X — Ht and go to (6), the ith equation is
redundant, otherwise stop, the system has no solution.
(3) Determine z, e R" such that zjHiA

Tki £ 0 and set pt — Hjzr

(4) Update the estimate of the solution by xi+\ = xt — or,/?,, where

(5) Update the Abaffian matrix Ht by

Hl+l = H{ = Hi A TkiwjHh (2.10)

where wt € R" is arbitrary and satisfies wjHiATki = 1.
(6) If r, = 0, stop, *,+i solves the system. Otherwise give a vector ki+l e R" linearly

independent from k\,... ,ks. Increment i by one and go to (2).

We now list some properties of the scaled ABS algorithm (see [2, 8]).

• Let Hi 6 R"*" be an arbitrary nonsingular matrix, a\,... ,am be linearly
independent vectors in R" (m < n) and //, be a sequence of matrices generated by the
update formula (2.10) in the scaled ABS algorithm. Then
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(a) For i <j < m, the vectors HtA
Tkj are nonzero and linearly independent.

(b) For/ = 1 , . . . , m, the vectors ATk\,..., ATk,are nonzero and linearly indepen-
dent, and form a basis for Null(//,+1).

• The residual vector in xi+\ is orthogonal to the first / columns of K, that is,
K'Tri+i = 0 where K' = (k\, ..., kt) and any vector v such that the residual r(y) is
orthogonal to the first i columns of K has the form

y=xi+x + Hl+ls (seRn). (2.11)

Moreover any such vector v can be obtained at the ith step of the scaled ABS as xi+i

by suitable choice of z,.
So in particular, xi+\ solves the first i equations of system (1.1) and every solution
of the first i equations of (1.1) can be written in the form (2.11). In particular, the
general solution of (1.1) is given by x = xm+\ + H*+ls, s € R".

• If rank(A) = q < m and the system has a solution then the scaled ABS
algorithm computes a solution in q steps (in exact arithmetic). In addition, all solutions
of (1.2) have the formi = xq+l + Hj+ls, s e R", where Hq+\ is the Abaffian obtained
by an application of the scaled ABS algorithm to the independent rows of matrix A.

3. Solving rank one perturbed linear systems

We now consider the following perturbed system:

(A + uvT)x =b, x e R".

This system can be transformed into the following form:

= fc, xeRn, (3.1)

where lm € Rmxm is the identity matrix. Assume that the system is a determined or
an undetermined system (m < n). The system (3.1) is equivalent to the following
systems of m + n + 1 equations:

[/m u]y = b, yeRm+\ (3.2a)

=y, xeR". (3.2b)

The general solution of (3.2a) is characterised by the following theorem.

THEOREM 3.1. The general solution of (3.2a) has the form
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PROOF. First observe that (3.3) satisfies

[/„ u]y = [lm u

Conversely, let y be a solution of the system (3.2a) and let

Then we have y = b — ut so

Now, by substituting (3.3) into (3.2b) we obtain

[A] [b-ui]

or

Ax = b — ut, (3.4a)

vTx = t. (3.4b)

Using the search directions of the original system (1.1) (obtained by the application
of a scaled ABS algorithm), the solution of the system (3.4a) can be written as

xm+i(t) =
1=1

where the step size a, is a linear function of t, that is,
f) _ ,T (b-ut-AxM

and
i-i

So, if we let xx be a linear function of r (t e R), that is, x}(t) = jcf + ,̂'f,
*{, A:f e /?, then it is obvious that a,-(/) and jc,-(r) are linear functions of t, that is, for
every i = 1 , . . . , m, a,(r) = a] + a\t and xt(t) = xf + x]t. Accordingly, we have

1=1
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Thus xm+x(t) = r2 + rxt, where

, A kf(u + Axj)

1=1 ' ' (3.5)
"kf(b-Axf)

Therefore the general solution of (3.4a) has the following form:

x = x m + i ( t ) + H * + l z , zeR",t<=R,

=» x = r2 + rxt + Hl+Xz, zeRn,t e R .

We thus have the following result.

THEOREM 3.2. The general solution of the system Ax = b — ut is given by

Z = rt + rxt + HT
mMz, (z € R", te R), (3.6)

where rx, r2 are given by (3.5).

Now, by substituting (3.6) into (3.4b) we can obtain the general solution of the
perturbed system (1.2). After substituting we obtain

vrH^+lz + vTnt + vTn = t. (3.7)

We consider the following two cases.
Case 1. Hm+]v = 0 implying that vT is a linear combination of the rows of the
matrix A.

In this case, (3.7) is written as

(1 - vTr{)t = vTr2. (3.8)

There are three possibilities for (3.8) as we outline below,

(a) (vTr\ ^ 1). In this situation, the general solution of (1.2) is given by

' = r i + ( T ~ ^ T ; ) n + "-+«*• zeRn-
(b) (wrr, = 1 and vTr2 = 0). Then (3.7) becomes vTr2 = (1 - vTrx)t = 0. Since

vTr2 = 0, then (3.7) is satisfied for any arbitrary value of t. Therefore in this case the
general solution is given by

x = r2 + rxt + H * + l z , zeRn,teR

o r

x = (tfmV,) Q + r2 = HTg + r2, gz /T+1.
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(c) (vTrt = 1 and vTr2 ^ 0). Then the system (1.2) has no solution.

Case 2. Hm+lv ^ 0.
In this case, we use the basic ABS method and its properties (respectively with the

choice km+i = em+l in the scaled ABS method). Set

Pm + 1 = UZ+lzm+l, where zl+iHm+lv jL 0,

, . , , , t-vTxm+1(t)
Xm+i(t) = xm+l(t) + am+]pm+u where am+1 = ,

V'Pm+l

Hm+i = Hm+l + Hm+lvwl+lHm+v where wT
m+,Hm+iv jt 0

so the general solution of the total system (1.2) is

* = xa+2«) + Hl+2q

(vTn - l)t + vTr2 T

= rxt + r1 pm+1 + Hm+2q

Now, considering the above results, we propose the following algorithm for solving
the perturbed system (1.2).

ALGORITHM 1.

(1) Let Hm+\ be the Abaffian matrix and p\,..., pm be the search vectors obtained
by applying the scaled ABS algorithm for (1.1). Let*, = x\t+x] be a linear function
of / (t e R).

(2) For ii := 1 until m do

, , kJju + Ax)) 2 k[ib-Axf)
Xi+i l=Xi ~ kjAPi

 P" Xi+l :Z=X> + kjAPi
 Ph

(3) Computes = Hm+{v.
(4) If (s ^ 0) then compute p = H^+lzm+i, where z£+1 Hm+l v £ 0 and then

vTr2 I" T 1 — vTr\ "1
x = r2 Z Pm+1, H = Hm+2rl "! T Pm+i

vTpm+\ L vTpm+i J

Else [s = 0).
If(urr, ^ 1) then compute

X =
V 1 - vTr, J
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If (urri = 1 and vTr2 ^ 0) then system (1.2) has no solution and stop.
If (uTr, = 1 and vTr2 = 0) then set

- „ . * - (» - • ) .

(5) Stop.

(If the perturbed system has a solution, then the general solution of system (1.2) is
given by x = x + HTg, (g e Rn+1 OR g e R").)

REMARK 1. It can be seen that the algorithm, after substituting b for b, without
changing the other steps, can solve the system (A + uvT)x = b, x e R", using the
solution of system (1.1) (where b e Rm is an arbitrary vector).

REMARK 2. In the case when the coefficient matrix A and vector b are integer and
we need to find the integer solution of a system, a similar problem was solved by
Amini and Mahdavi-Amiri [3].

4. Applications of the algorithm

4.1. Application of the algorithm to linear programming Consider the following
linear programming problem:

min cTx s.t.

wherex e R", A e Rmn, n>m.
At any iteration of the simplex algorithm (or dual-simplex), assume that B and N

are the basic and nonbasic matrices respectively and cB, cN are the vectors of elements
corresponding to B, N. We know that in simplex or dual-simplex methods, at any
stage we need the information below ([4]):

x = B~1b, c=cT
B-cT

BB-xN.

So we need solutions of the systems Bx = b and BTy = cB- So, in any iteration, in
the time at which a new variable is added to the basic elements (x,-) and one variable
exits the basic elements (XJ), the basic matrix B is revised by a one rank change
B = B + vej, where v = a, — a,.

So we need to find solutions of the following systems:

(S + vef)x = b and (BT + eiVT)y = cB.

The algorithm in Section 3 can be used to solve these systems.
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4.2. Application of the algorithm to nonlinear programming An important
class of known optimisation methods is the quasi-Newton methods, and one of the
important and effective subclasses of this family is the secant method. This type of
method is like Newton's method with line search, except that Gk is replaced by a
symmetric positive definite matrix Bk, which is corrected or updated from iteration to
iteration. Thus the &th iteration has the following basic structure:

(a) Set sk to be one solution of system Bksk = —gk.
(b) Line search along sk giving xk+i = xk + aksk.
(c) Update Bk giving Bk+l.

The initial matrix can be any positive definite matrix ([5]).
Generally, the matrix Bk+i can be computed from Bk by a rank one update or a rank

two update.
The most important rank one update is given by

t {y - Bk8){y - Bk8)T

t>k+l = Dk-i - ,
(y - Bk8)T8

where 8 = xk+\ — xk and y = gk+i — gk. Here gk is the gradient vector in xk.
Now for computing sk, Bk at any stage, we can use Algorithm 1 for generating the

solutions of system Bksk = —gk using the solutions of the previous system.

NOTE. It is necessary that we use the scaled ABS method in the first step for solving
the first system.

REMARK 3. If Bk+] is computed from Bk by a two rank update (for example a DFP
or BFGS update [5]), we can use Algorithm 1 twice in any step.

References

[1] J. Abaffy, C. G. Broyden and E. Spedicato, "A class of direct methods for linear equations", Numer.
Math. 45(1984)361-376.

[2] J. Abaffy and E. Spedicato, ABS projection algorithms: mathematical techniques for linear and
nonlinear equations (Ellis Harwood, Chichester, 1989).

[3] K. Amini and N. Mahdavi-Amiri, "Solving rank one perturbed linear Diophantine systems by the
ABS methods", submitted.

[4] M. S. Bazaraa, J. Jarvis and H. D. Sherali, Linear programming and network flows (John Wiley and
Sons, New York, 1990).

[5] R. Fletcher, Practical methods of optimization (John Wiley and Sons, Chichester, 1991).
[6] M. R. Hestense and E. Stiefel, "Methods of conjugate gradient for solving linear system", J. Research

Nat. Bur. Standards 49 (1952) 409-436.

https://doi.org/10.1017/S1446181100013808 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013808


236 KeyvanAmini [12]

[7] C. Lanczos, "Solution of systems of linear equations by minimized iterations", J. Research Nat. Bur.
Standards 49 (1952) 33-53.

[8] E. Spedicato, "Numerical methods for linear and nonlinear equations and nonlinear programming",
Report DMSIA 98/4, University of Bergamo.

[9] V. V. Voyevodin, Linear algebra (Mir, Moscow, 1983).

https://doi.org/10.1017/S1446181100013808 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013808

