A QUESTION OF C. R. HOBBY ON REGULAR *p*-GROUPS

by I. D. MACDONALD (Received 14th January 1972)

In (2) a finite p-group G is said to be nearly regular if it has the following two properties:

(i) There exists a central subgroup Z of order p and G/Z is regular.

(ii) If $x \in G$ and $y \in \gamma_2(G)$, then $gp\{x, y\}$ is regular.

(For unfamiliar notation we refer to (1).) C. R. Hobby proved in (2) that (i) implies (ii) when p = 2 or 3, and an open question is whether (i) implies (ii) for $p \ge 5$. It has been suggested in (3) and (4) that this is a deep problem, comparable to the Hughes problem perhaps, though the solution is in fact quite simple; it seems worth while to set the record straight with the present note. We shall exhibit, for any $p \ge 5$, a finite *metabelian p*-group with (i) but not (ii).

In considering the structure of a metabelian *p*-group *G* with property (i) but not (ii) we shall be guided by the necessary and sufficient conditions given in (1) for a nilpotent metabelian *p*-group to be regular, namely that $\gamma_p(H) \leq \gamma_2(H)^p$ for every two-generator subgroup *H*. Such a group has of course $p \geq 5$ and G/Z will not have exponent *p*.

Let us suppose that G is generated by $\{a, b\}$ and that G has class p+1, more precisely that $Z = \gamma_{p+1}(G)$. It follows according to (i) that $\gamma_p(G) \leq \gamma_2(G)^p Z$,

which implies that $\gamma_{p+1}(G) \leq \gamma_3(G)^p$, and so $\gamma_p(G) \leq \gamma_2(G)^p$. Let us define the subgroup K as $gp\{x, y\}$, where x = a and y = [a, b]; K is to be the non-regular subgroup appearing in (ii). Let us make K non-regular by arranging that $\gamma_p(K) \leq \gamma_2(K)^p$ is false. We have $\gamma_p(K) \leq \gamma_{p+1}(G) \leq \gamma_3(G)^p$ and so we must not allow $\gamma_3(G)^p \leq \gamma_2(K)^p$; in particular $\gamma_3(G)^p \neq 1$. Since G/Z is regular we have $\gamma_p(K) \leq \gamma_2(K)^pZ$, however, and the fact that Z has order p now implies that $Z \leq K$. Note that $\gamma_p(K)$ cannot be 1 as K is non-regular, so it seems reasonable to put $Z = gp\{z\}$, where z = [a, b, (p-1)a].

We return to $\gamma_3(G)^p \leq \gamma_2(K)^p$. Since

$$\gamma_2(K)^p = gp\{[a, b, ia]^p : 1 \leq i < p\}$$

we shall aim to have $[a, b, b]^p \notin \gamma_2(\overline{K})^p$. Earlier remarks indicate that we must avoid $z \in \gamma_2(\overline{K})^p$. Since $\gamma_p(G) \leq \gamma_2(G)^p$ we face the problem of specifying [a, b, ia, (p-2-i)b] as an element of $\gamma_2(G)^p$, for $0 \leq i \leq p-2$.

We put

$$[a, b, (p-2)a] = [a, b, b]^{p}z,$$

a relation which implies $z = [a, b, a, b]^p$ and therefore $[a, b, (p-2)a] \in \gamma_2(G)^p$,

I. D. MACDONALD

without obviously entailing $z \in \gamma_2(K)^p$. We note the further consequence $[a, b, a, b]^{p^2} = 1$.

Next we put

[a, b, b, b] = [a, b, a, a, b] = 1

and this trivially yields [a, b, ia, (p-2-i)b] = 1 for $0 \le i < p-2$. Such relations as we have mentioned do not imply that G is a p-group, and so we put $a^{p^2} = b^{p^2} = 1$.

If H is a proper subgroup of G and if H has 2 generators, then the relations give the fact that, modulo Z, H has class p-1; so G/Z is regular by the criterion of (1), and we have (i), if Z has order p. It therefore remains to establish that $z \neq 1$ and that $[a, b, b]^p \notin \gamma_2(K)^p$, in order to prove (i) and disprove (ii).

At this point a construction, which we shall merely outline, is called for. We start with symbols c_{00} , c_{10} , ..., $c_{p-1,0}$, c_{01} , c_{11} which we suppose generate an abelian group of exponent p^2 , and we impose the further relations

$$c_{20}^{p} = c_{30}^{p} = \dots = c_{p-1,0}^{p} = 1,$$

$$c_{p-2,0} = c_{01}^{p} c_{11}^{p}, c_{p-1,0} = c_{11}^{p}.$$

There results a group of order p^{p+4} . From this we may obtain the required example G by adjoining elements a and b, using extension theory, so that

$$a^{p^2} = b^{p^2} = 1, \quad [a, b] = c_{00},$$

 $[c_{ij}, a] = c_{i+1, j}, \quad [c_{ij}, b] = c_{i, j+1},$

where $c_{i+1, j}$ and $c_{i, j+1}$ are 1 if not in the initial set of symbols. Then G will have order p^{p+8} . Once this is established it is clear that $z = c_{p-1, 0}$ has order p and that $[a, b, b]^p = c_{01}^p \notin \gamma_2(K)^p$ where $K = gp\{a, c_{00}\}$ and $\gamma_2(K)^p = gp\{c_{10}^p\}$. Hence:

Theorem. There is a metabelian p-group, for each $p \ge 5$, that satisfies (i) and does not satisfy (ii).

This group does not satisfy the conclusion of Hobby's theorem in (2) about nearly regular *p*-groups either; a fact which may be verified directly by means of Corollary 2.3 of (1) for instance.

REFERENCES

(1) WARREN BRISLEY and I. D. MACDONALD, Two classes of metabelian *p*-groups, *Math. Z.* 112 (1969), 5-12.

(2) C. R. HOBBY, Nearly regular p-groups, Canad. J. Math. 19 (1967), 520-522.

(3) I. D. MACDONALD, The Hughes problem and others, J. Austral. Math. Soc. 10 (1969), 475-479.

(4) I. D. MACDONALD, Solution of the Hughes problem for finite *p*-groups of class 2*p*-2, *Proc. Amer. Math. Soc.* 27 (1971), 39-42.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF STIRLING STIRLING, SCOTLAND

https://doi.org/10.1017/S0013091500009937 Published online by Cambridge University Press

208