A QUESTION OF C. R. HOBBY ON REGULAR p-GROUPS

by I. D. MACDONALD
(Received 14th January 1972)

In (2) a finite p-group G is said to be nearly regular if it has the following two properties:
(i) There exists a central subgroup Z of order p and G / Z is regular.
(ii) If $x \in G$ and $y \in \gamma_{2}(G)$, then $g p\{x, y\}$ is regular.
(For unfamiliar notation we refer to (1).) C. R. Hobby proved in (2) that (i) implies (ii) when $p=2$ or 3 , and an open question is whether (i) implies (ii) for $p \geqq 5$. It has been suggested in (3) and (4) that this is a deep problem, comparable to the Hughes problem perhaps, though the solution is in fact quite simple; it seems worth while to set the record straight with the present note. We shall exhibit, for any $p \geqq 5$, a finite metabelian p-group with (i) but not (ii).

In considering the structure of a metabelian p-group G with property (i) but not (ii) we shall be guided by the necessary and sufficient conditions given in (1) for a nilpotent metabelian p-group to be regular, namely that $\gamma_{p}(H) \leqq \gamma_{2}(H)^{p}$ for every two-generator subgroup H. Such a group has of course $p \geqq 5$ and G / Z will not have exponent p.

Let us suppose that G is generated by $\{a, b\}$ and that G has class $p+1$, more precisely that $Z=\gamma_{p+1}(G)$. It follows according to (i) that

$$
\gamma_{p}(G) \leqq \gamma_{2}(G)^{p} Z,
$$

which implies that $\gamma_{p+1}(G) \leqq \gamma_{3}(G)^{p}$, and so $\gamma_{p}(G) \leqq \gamma_{2}(G)^{p}$. Let us define the subgroup K as $g p\{x, y\}$, where $x=a$ and $y=[a, b] ; K$ is to be the non-regular subgroup appearing in (ii). Let us make K non-regular by arranging that $\gamma_{p}(K) \leqq \gamma_{2}(K)^{p}$ is false. We have $\gamma_{p}(K) \leqq \gamma_{p+1}(G) \leqq \gamma_{3}(G)^{p}$ and so we must not allow $\gamma_{3}(G)^{p} \leqq \gamma_{2}(K)^{p}$; in particular $\gamma_{3}(G)^{p} \neq 1$. Since G / Z is regular we have $\gamma_{p}(K) \leqq \gamma_{2}(K)^{p} Z$, however, and the fact that Z has order p now implies that $Z \leqq K$. Note that $\gamma_{p}(K)$ cannot be 1 as K is non-regular, so it seems reasonable to put $Z=g p\{z\}$, where $z=[a, b,(p-1) a]$.

We return to $\gamma_{3}(G)^{p} \nsubseteq \gamma_{2}(K)^{p}$. Since

$$
\gamma_{2}(K)^{p}=g p\left\{[a, b, i a]^{p}: 1 \leqq i<p\right\}
$$

we shall aim to have $[a, b, b]^{p} \notin \gamma_{2}(K)^{p}$. Earlier remarks indicate that we must avoid $z \in \gamma_{2}(K)^{p}$. Since $\gamma_{p}(G) \leqq \gamma_{2}(G)^{p}$ we face the problem of specifying $[a, b, i a,(p-2-i) b]$ as an element of $\gamma_{2}(G)^{p}$, for $0 \leqq i \leqq p-2$.

We put

$$
[a, b,(p-2) a]=[a, b, b]^{p} z,
$$

a relation which implies $z=[a, b, a, b]^{p}$ and therefore $[a, b,(p-2) a] \in \gamma_{2}(G)^{p}$,
without obviously entailing $z \in \gamma_{2}(K)^{p}$. We note the further consequence

$$
[a, b, a, b]^{p^{2}}=1
$$

Next we put

$$
[a, b, b, b]=[a, b, a, a, b]=1
$$

and this trivially yields $[a, b, i a,(p-2-i) b]=1$ for $0 \leqq i<p-2$. Such relations as we have mentioned do not imply that G is a p-group, and so we put $a^{p^{2}}=b^{p^{2}}=1$.

If H is a proper subgroup of G and if H has 2 generators, then the relations give the fact that, modulo Z, H has class $p-1$; so G / Z is regular by the criterion of (1), and we have (i), if Z has order p. It therefore remains to establish that $z \neq 1$ and that $[a, b, b]^{p} \notin \gamma_{2}(K)^{p}$, in order to prove (i) and disprove (ii).

At this point a construction, which we shall merely outline, is called for. We start with symbols $c_{00}, c_{10}, \ldots, c_{p-1,0}, c_{01}, c_{11}$ which we suppose generate an abelian group of exponent p^{2}, and we impose the further relations

$$
\begin{aligned}
& c_{20}^{p}=c_{30}^{p}=\ldots=c_{p-1,0}^{p}=1 \\
& c_{p-2,0}=c_{01}^{p} c_{11}^{p}, c_{p-1,0}=c_{11}^{p} .
\end{aligned}
$$

There results a group of order p^{p+4}. From this we may obtain the required example G by adjoining elements a and b, using extension theory, so that

$$
\begin{aligned}
& a^{\mathbf{p}^{2}}=b^{\boldsymbol{p}^{2}}=1, \quad[a, b]=c_{00} \\
& {\left[c_{i j}, a\right]=c_{i+1, j}, \quad\left[c_{i j}, b\right]=c_{i, j+1}}
\end{aligned}
$$

where $c_{i+1, j}$ and $c_{i, j+1}$ are 1 if not in the initial set of symbols. Then G will have order p^{p+8}. Once this is established it is clear that $z=c_{p-1,0}$ has order p and that $[a, b, b]^{p}=c_{01}^{p} \notin \gamma_{2}(K)^{p}$ where $K=g p\left\{a, c_{00}\right\}$ and $\gamma_{2}(K)^{p}=g p\left\{c_{10}^{p}\right\}$. Hence:

Theorem. There is a metabelian p-group, for each $p \geqq 5$, that satisfies (i) and does not satisfy (ii).

This group does not satisfy the conclusion of Hobby's theorem in (2) about nearly regular p-groups either; a fact which may be verified directly by means of Corollary 2.3 of (1) for instance.

REFERENCES

(1) Warren Brisley and I. D. Macdonald, Two classes of metabelian p-groups, Math. Z. 112 (1969), 5-12.
(2) C. R. Hobsy, Nearly regular p-groups, Canad. J. Math. 19 (1967), 520-522.
(3) I. D. Macdonald, The Hughes problem and others, J. Austral. Math. Soc. 10 (1969), 475-479.
(4) I. D. Macdonald, Solution of the Hughes problem for finite p-groups of class 2p-2, Proc. Amer. Math. Soc. 27 (1971), 39-42.

Department of Mathematics
The University of Stirling
Stirling, Scotland

