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AN ALTERNATE STATISTICAL INTERPRETATION OF THE 
STRENGTH OF SNOW 
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(Eidg. Institut fur Schnee- und Lawinenforschung, 7260 W eissftuhjochJDavos, Switzerland) 

ABSTRACT. The basic features of the statistical models to d escribe brittle and ductile strength of snow are outlined and discussed. The concept of the " fundamental unit" is introduced. The models are applied to estimate the development of slab stability during heavy snowfall s and to simulate m easurements of the tensile strength of snow using the centrifugal method as a function of the load rate. The models developed in this paper are compared with Sommerfeld's applications of statistical m ethods to es timate the strength of snow in the starting zone of a slab avalanche. 
R EsuME. Modeles statistiques POUT caractiriser la resistance a la rupture de la neige. Les proprietes fondamentales de quelques modeIes sta tistiques qui caracterisent la resistance duc tile et cassante it la rupture de la neige sont decrites et discutees. L ' idee des unites elementaires est introduite. A partir de ces modeles on estime le developpement de la stabilite dans la zone de decrochement d'une plaque de neige pendant une importa nte chute de neige. De m eme, la resistance de la neige it la traction qui est mesuree avec une centrifugeuse est simulee en fonction de la vitesse d 'applica tion de la charge. Les modeIes decrits sont compares it ceux que Sommerfeld a utilises pour determiner la resistance clans la zone de decrochement de plaques de neige. 
ZUSAMMENFASSUNG. Statistische Interpretation der Festigkeit von Schnee. Die grundlegenden Eigenschaften von statistischen Modellen zur Beschreibung der Sprod- und Zahbruchfestigkeit von Schnee werden beschrieben und diskutiert. Das K onzept der Elementareinheit wird eingefiihrt. Aufgrund der Modelle werden die Stabilitatsentwicklung im Anrissgebiet einer Schneebrettlawine wahrend eines Grosschneefalles sowie die M essung der Zugfestigkeit von Schnee mittels einer Zentrifuge als Funktion del' Spannungsgeschwindigkeit simuliert. Die beschriebenen Modelle werden mit Sommerfeld's Anwendung sta tistischer Methoden zu r Bestimmung der Festigkeit in Anrissgebieten von Schneebrettlawinen verglichen. 

I NTRODUCTION 

In different papers Sommerfeld (1973, 1974, 1976) proposes statistical methods to extrapolate from sampled tensile and shear strengths to the tensile strength a t the crown and the shear strength in the bed of a slab avalanche. In this paper the influence of the type of distribution used to describe the sample strength on the extrapolation to the snow strength is discussed . The concept of "fundamental units" instead of the macroscopic samples is introduced. The statistical models are modified considering the fundamental units instead of the macroscopic samples . The results are compared with Sommerfeld's conclusions. The stability development of a snow slab during a heavy snowfall and the m easurement of tensile strength using the centrifugal method are simulated on the basis of the models introduced. 

DEFINITION OF THE FUNDAMENTAL UNIT 

Snow can be considered as a network of grains connected by ice bonds. At least in lowdensity snow, there does not exist any structural order of p eriodicity. Nevertheless the models discussed in this paper propose that the mechanical properties of snow can be traced back to the features of fundamenta l units. The viscoelastic properties of snow have been described on the basis ofa similar model by Kry ( I97s[a] , [b] ) . 
The basic features of the fundamental units are: (a) The snow may be subdivided in fundamental units. (b ) Each fundamental unit acts as a force-conducting element in the snow. (c) As regards their positions, the properties of the fundamental uni ts are distribu ted at random. (d) The properties (e.g. strength) of the fundamental units are defined by a distribution. (e) The properties ofa distinct snow type may be calculated as a function of the density distribution of the corresponding features among the fundamental units, of the number density of the fundamental units, and the stress- or strain-rate. 

343 

https://doi.org/10.3189/S0022143000013897 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013897


344 JOURNAL OF GLACIOLOGY 

The basic elements of the fundamental units are proposed to be chains of grains. A chain 
is defined as a series of connected grains, transmitting a single force, terminated either by a 
structural element of higher connectivity or by a branch to other chains. The fundamental 
unit may be reinforced by additional parallel structural elements of higher connectivity (Kry, 
1975[a]; Gubler, 1978). 

DESCRIPTION OF BRITTLE STRENGTH BY EXTREME-VALUE STATISTICS 

The following concept holds for macroscopic samples defined as elementary force
conducting links (Sommerfeld, 1973) as well as for the fundamental units as defined above. 

(a) If the body is loaded, the initial fracture of one link propagates elastically through the 
whole body and leads immediately to its fracture. The load rate has to be high enough 
to avoid mechanical relaxation or a rearrangement of the forces between the surviving 
links. 

(b) Crack healing is impossible. 
(c) The applied stress field is homogeneous; all weak links are equally stressed. 

In general assumption (c) will not be fulfilled. Knowing the stress distribution among the 
links, proposition (c) may be replaced by a modification of the integral probability for the 
fracture of a single link F( a). With the strength distributionf(s) of the separated links of the 
specimen under consideration, the integral probability F(a) that any separated link fractures 
as the load increases to a (proposition (c) fulfilled) results in 

00 

F(a) = J f (s) ds. 
o 

If condition (c) is replaced by a density distribution g( a, x) of the link stresses (where a is the 
mean stress and x an independent variable) F ( a) is modified to 

o 00 

F (a) = f f (s) ( J g(a, x) dX) ds. 
$ = 0 x = s 

For the following calculations proposition (c) is considered to be fulfilled. This implies that 
the function g is the Dirac 8-function 

g(a, x) = 8(a-x) . 

1 - F( a) is the probability that a separated link survives a load increase to a. The probability 
that the n weak links of a body survive a load a is given by 

P(a) = ( I - F(a))n. 

The corresponding probability density for the strength is: 

d 
p(a) = da [I -( I - F(cr)) "J. 

(3) 

The most probable strength am of a body with n weak links results from the maXimum 
condition: 

dp (am ) 
~= o. 

From Equations (I), (3), (4), and (5) it follows that 

df( am) 
da [l - F(am )] - p (crm)(n- I ) = o. 

(5) 

(6) 
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The variance fL of the body-strength distribution IS gIven by the second moment of p (cr) 
relative to the mean value cro of a (first moment) : 

fL = J (a - cro)2p (cr) da 
o 

= J (a- cro)2nf(cr )( 1 _ F(cr)) 1H da, 

o 

where cro is given by 
co 

ao = J crp (cr) dcr 
o 

= J crrif(cr)( 1 - F (a)) n- I dcr. (8) 
o 

The lower limits of a ll integrals with respect to cr have to be set equal to 0 and not as usual - OCJ 

to avoid integration of negative strength values. This condition is very important for link 
strength distribution functions which are not zero for negative strengths as, e.g. the normal 
distribution would be. 

To be able to calculate p (cr) and the ratio of the most probable body fracture strength crm 
to the most probable link fracture strength Srn as a function of n for any distribution function 
f (s), a desk-calculator program was written which solves the equations by numerical methods 
and plots the results:f(s), p(cr, n) , [arn /srn](n). 

D EFI NITION AND FEATURES OF THE INVESTIGATED LINK STRENGTH DISTRIBUTIONSf(s) 

I . Weibull distribution 

f (s) = r [s ~sur- I exp - [s~Str for s ~ Su, } (9) 

f (s) = 0 for s < suo 

Apparently W eibull (Weibull, 1939[a] , Cb] ) chose this distribution for mathematical tracta
bility. This distribution proposes the existence of a minimal link strength. There are no links 
with zero or almost zero strength . r, Su, !::;. are the distribution parameters. The most probable 
link strength is given by the relation 

Srn = !::;. [ I r~ I Tlr + su. (10) 

The mos t probable value of p( cr) d ecreases as n- 1/r, the variance as n - 2/r (Epstein , 1948). 

2 . Normal distribution 

f (s) = (2;) t ~ exp _ ;. [s ~so] 2 

f (s) = 0 

for s ~ 0, } 

for s < o. 

To avoid finite probabilities for negative strength, f (s) is set equal zero for s < o . But it 
retains a finite probability for zero link strength. 

am decreases as (In n)' , the variance of p(cr) is given by 7T2cr2/ 12 log n (Epstein, 1948). 
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3. Log-normal distribution 
I I [In s- In so] 2 

f (s) = (27T)! In ~ exp - ; In ~ . 

This type of distribution is known to be typical for stereological parameters such as, e.g. 
particle-size distributions. The probability for zero strength is zero, but is finite for any 
s > o. 

DISCUSSION OF THE NUMERICAL COMPUTATIONS 

p ( er) and the ratio errn /srn were calculated as functions of n. s and ~ were normalized to 
Srn (the most probable value of s). The range of n is I to 105, the range of s/sm 0 to 2 , the rela
tive deviation ~/sm is 0 .2. Using the Weibull distribution, ~/sm is multiplied by about 1.7 
to get similar widths as for the normal distributions. For the Weibull distributions, r is set 
equal to 1.6, Srn = I . In Figures 1- 3 the weak-link strength distributionsf(s) are plotted with 
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Fig. I . Brittle strellgth model: Ratio of brittle strength of snow am to the mean strength of the separated fundamental units: 
- - for a Weibull type of distribution if strength, - - - - - as a function of the number of fimdamental units qf the 
test volume. t:;. /Sm = 0 . 2 , p (a) is plottedfor n = I04. 

broken curves, the body strength distributions p(er ) and the ratio errn/srn (starting at 1.0) with 
full curves. Only the Weibull distribution (Fig. I ) shows an almost constant ratio of body 
to link strength for high n whose limiting value is determined by the parameters rand suo 

T his result implies the existence of a critical volume of a specimen, a bove which the body 
strength would be a lmost independen t of further volume increase. This behaviour follows 
directly from the definition of a minimum strength. For small r ( ;:::;; I) the distributions are 
very asymetric (steep rises from Su to srn). For constant ~/sm the asymptotic value of errn /srn 
decreases with increasing r. 

For the log-normal distributions (Fig. 2) with comparable deviations errn /srn never reaches 
a constant value > 0 independent of n (for n --+ 00, errn /srn --+ 0), but the decrease for high n is 
quite slow. For the normal distribution (Fig. 3) errn /srn already equals zero for finite n. 
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Fig . 2. Brittle strength model: Equivalent conditions as for Figure [ butJor log-normal distribution qf strength oJ the separated Jllndalllentalunits. 
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ApPLICATION OF SMALLEST-VALUE STATISTICS TO SNOW 

The magnitude of the minimal strain-rate in medium-density snow to initiate a brittle 
fracture may be estimated from different investigations (Salm, 1971 , Gubler, 1976). It turns 
out that dissipative processes are negligible only for strain rates E ~ I S- I. The strain-rates 
involved in natural releases of slab avalanches are smaller by at least five orders of magnitude. 
Therefore the natural initiation of primary fractures in starting zones of slab avalanches 
cannot be described with the model under consideration. Even pressure waves originating 
from detonations (E ~ 10- 3 S- I) do not initiate perfectly brittle fractures. Only the secondary 
fracture spreading out from the primary fracture volume is of the brittle type. The propaga
tion velocity of the secondary fracture is of the same order of magnitude as the propagation 
velocity of the stress wave (approximately the velocity of sound) , therefore relaxation processes 
at the crack front seem to be impossible. The highly stressed volume of snow at the front of 
the crack which has to be considered for an estimation of the number of stressed fundamental 
units n will be quite small (n ~ 104 to 105, corresponding to a small number of rows offunda
mental units in front of the propagating crack). Estimates of the relative width of the density 
distributionf(s) of the strengths of the fundamental units result in values of (10-30) % (Kry, 
1975) . Various reasons favour a log-normal type for the strength distribution (which is the 
type of distribution of bond and grain diameters in sintered materials) . These propositions 
lead to ratios of the most probable brittle strength of snow at the front of the propagating 
secondary fracture to the mean strength of the separated fundamental units of 0.35 to 0.8. 

A STATISTICAL MODEL TO ESTIMATE DUCTILE STRENGTH 

Basic features of the model 

Daniels (1945) developed a model to describe the strength of a bundle of threads. The 
main performance of this model is given by the fact that during loading a stress rearrange
ment from fractured threads to the surviving stronger threads is possible. A small generaliza
tion leads to the following concept: 

(a) If a load is applied slowly, mechanical relaxation causes equal stress for every link. 
If the load is increased further, the weakest of the equally stressed links fractures and 
the total load is redistributed among the remaining links. The load increase has to be 
slow enough to allow a uniform stress distribution between all surviving links at any 
time. 

(b) Body strength is reached when a redistribution of the stresses is no longer possible. 
(c) The healing of fractured links is not possible. 

Condition (a) may be slightly modified by requiring a defined stress distribution among 
the surviving links instead of eq ual stress for every link. As regards condition (c), in low
density snow, crack healing or the healing of broken bonds between the ice grains is not an 
important mechanism. In most cases the separation of the fracture surfaces impedes the 
healing of the broken bond. The growth of the existing bonds as well as the formation of new 
bonds which lead to strength increases of the fundamental units can be included by choosing 
a time-dependent strength distribution function for the fundamental units. 

STATISTICAL TREATMENT 

Knowing the strength distribution functionf (s) of the separated elements of the specimen, 
the number n" of the surviving links per unit area with strengths larger than cr (stress increased 
to cr) may be calculated. For equally stressed links it follows that 
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00 

nu = n J ] (s) ds, 

where n is the total number of links per unit area before any fracture occurred. 
The introduction of a density distribution g(s, x) for the link stresses (s is the mean stress, 

x the independent variable) modifies nu to 
00 00 

nu = n { I - J (f(X) f g(a, x) dX) dS} . 
s = o x=s 

With g(s, x) = 8(s- x), Equation (14) results again in Equation (13) 
00 00 00 

nu = n {I - f (](x) J 8(a - x) dX) dS} = n I ] (s) ds. 
s = o x =s • 

For the following calculations proposition (a ) is considered to be fulfilled. 
If the load per link is increased to a, the (n- nu) links with strength less than a are broken 

and the load L per unit area is redistributed among the remaining nu links: 
00 

L = nua = an f ] (s) ds. ( 15) 

The maximum possible load L, that is the strength of the specimen p er unit area results 
from the condition : 

( 16) 

To be able to compare the resulting specimen strength Lm with the most probable link 
strength Srn the quotient Lrn/nSm is calculated for different link strength distributions and 
widths: 

<Xl 

Lrn am I - = - ] (s) ds, 
IlS rn Srn 

Gill 

where am is the maximum mean link stress given by Equation (16). This gives L m /IlS rn as a 
function of the distribution width and type. The distribution ] (s) and the development of 
the quotient L/n during the loading process are plotted with the help of a desk-calculator 
program. 

DISCUSSION OF THE NUMERICAL COMPUTATION 

S and ~ were normalized to Srn (the most probable value of s). All distribution integra l 
functions are normalized to one in the range from 0 to ( I O ~ /So ) + I. The range of s/srn is 0 to 3. 
The relative deviations ~/arn vary from o. I to 0.5 in steps of o. I. For the W eibull distribution 
~/crrn is multiplied by c. 1.7 to get simila r widths as for the log-normal distributions. For 
the Weibull distribution m is set equal to 1.6, Srn equals 1. In Figures 4 to 6 the link streng th 
distributions f (s) are plotted with dashed lines, the functions L ( cr) and the ra tio Lm/Srn with 
full lines. The ratios Lrn /Srn for the norma l and the log-normal link-strength distribution 
show a simila r dependence on NSrn . They gecrease from I (normal distribution) to a mini
mum value for ~/srn ~ 0.5 and increase afterwards again. For the norma l distribution this 
increase is caused by the zero assumed for f (s) for s < o. For the log-normal distribution the 
increase results from its asymmetric behaviour. For the Weibull distribution the decrease of 
Lrn /Srn as a function of ~/sm is slower and in the interesting range of ~/srn there is no re-increase. 
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ApPLICATION OF THE STATISTICAL TREATMENT OF DUCTILE STRENGTH TO SNOW 

The ductile type of strength is responsible for most natural and artificially-induced 
fractures in snow (Salm, 197 I; Gubler, 1976). The smaller the strain-rate E the better the 
redistribution of the loads among the surviving links, the smaller the remaining internal 
forces. The ductile strength depends only on the relative width of the link strength distribu
tion and is independent of the macroscopic test volume. The density of the fundamental units 
for low-density snow is of the order of 10- 10 m- 3. The brittle strength of 1 m 3 of snow under 
these conditions amounts to one-fifth of the mean strength of the fundamental units 
(I:l. jsm = 0.3, log-normal type of strength distribution), whereas the corresponding ratio for 
the ductile strength is 0.7. From this estimate a ratio of ductile to brittle strength of 3.5 
follows. For the above calculation the strength of the fundamental units was considered to be 
independent of strain-rate . 

SIMULATION OF THE PRIMARY FRACTURE PROCESS OF A SLAB AVALANCHE USING A TIME-DEPENDENT 

DISTRIBUTION FUNCTION FOR THE STRENGTHS OF THE FUNDAMENTAL UNITSf(s, t ) 

The snow cover of a potential fracture zone of a slab avalanche is composed of sections of 
different stress states, stress magnitudes, and stabilities. The initial fracture will occur in the 
section with lowest stability relative to a ductile fracture. The section has to be small enough 
so that its macroscopic stress field can be considered to be homogeneous. We define this 
section as the primary fracture volume of the slab avalanche. Strength and stress in this primary 
fracture volume change continuously with time. The ductile fracture of this volume may 
propagate to the neighbouring sections of the snow cover (brittle fracture) and release the 
slab. The stability development in the primary fracture volume will now be investigated 
using a time-dependent strength distribution functionf (s, t). 

To simulate a strength increase of the unbroken elements by sintering (constant tempera
ture metamorphism) and by the formation of new bonds, the density distribution of the 

4 
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strengths of the fundamental units may be mod ified. For the following estimates the strength 
development in the slab bed is considered to be mainly responsible for the natural release of 
slab avalanches (Sommerfeld, 1976). 

To describe the strength increase as a function of time the following time dependences may 
be involved: 

Sintering: S ex t 2 / 5 (theoretical growth of bond cross-sections). 
Settling : Probably has no effect on the thin lubricating layers. Density dependence of 

shear strength for low-density snow seems to be low. 
Increase of normal pressure: For low shear strength and normal pressures in the range 

from zero to a maximum pressure less than the shear strength (new snow) . A. Roch 
(Sommerfeld, 1976) found an almost linear dependence of shear strength on normal 
pressure. 

Figure 7 shows an example of the development of L.rn /n as a function of a time-dependent 
log-normal link-strength distribution function. In the examples the relative deviation is kept 
constant. The most probable element strength Srn is increased from I to 2 either proportional 
to t2/ S or t within a time t = 0 to I. 

Assuming a linear stress increase in time (such as provided by continuous snowfall for 
24 h (t = I) starting at zero for t = 0, avalanche ( I) (Table I ) starts after 5.1 h, avalanche 
(2) after 11.8 h, avalanche (3) after 14.1 h , avalanche (4) after 18 h, avalanches (5) and (6) 
will not occur if precipitation stops after 24 h. 
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Fig. 7. Theoretical development if the reciprocal stability (ratio of stress to strength) for a linear increase if the mean strength 
of the fundamental units as a function of time and constant precipitation (example I in Table 1) . 

TABLE I. TIME OF FAILURE AS A FUNCTION OF THE TIME DEPENDENCE 

OFf (s,t ) 

sm 
srn oc. t: 

time if failure 
0.22 ( I ) 

0·59 (3) 
> 2.00 (5) 

Strength 
1.22 

1.59 
> 3.00 

srn oc. /0 .4: 
time if failure 

0.49 (2) 
0·75 (4) 
1.28 (6) 

Strength 

I.49 
L75 
2.28 
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These very theoretical estimates should show how important the exact determination of the 
relative deviation of the link-strength distribution and of the time dependence of the strength 
increase are. 

If the conditions of the models described in this paper can be proved definitely by experi
ments, some additional conclusions may be drawn from the model calculations. 

I. The higher the relative width of the strength distribution of the fundamental units, the 
higher the ratio of ductile to brittle strength, and the easier the spreading of the 
secondary fracture from a natural induced primary fracture. 

2. The higher the relative width of the strength distribution of the fundamental units, the 
lower the probability of a natural avalanche release. But if a natural or artificially 
induced primary fracture occurs, the resulting low stability to secondary fracture may 
lead to enlarged slabs. 

SIMULATION OF BRITTLE AND D UCTILE STRENGTH TESTS USING THE CENTRIFUGAL METHOD 

The brittle and ductile strength measurements of samples using the centrifugal method 
can be simulated on a desk calculator. 

Because of the lack of exact information, the strength distributions of the fundamental 
units are considered to be i,ndependent of the stress rate. The integral probability of the 
sample strength is plotted as a function of the spinning frequency for brittle strength. The 
ductile strength is marked by a vertical line (Figs 8 and 9). 

The calculation of the brittle strength of the sample is based on Equation (3) : 

P (cr) = ( I - F (cr)) n 

(for equally stressed fundamental units) . P(cr) is the probability that a unit volume of the snow 
sample has a strength equal to cr. n is defined as the number density of the fundamental units. 

For the calculation of the sample strength in the stress field of a spinning cylinder, the 
sample cylinder is thought of as cut into equally thick slices. The probability that a slice of 
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Fig. 9. Simulation of centrifugal tensile strength tests as a function of sample size. The ratio of the cross-sectional areas oj 
sample I to sample 2 amounts to 4. The corresponding ratios of ductile to brittle strength are : f or the larger sample 2.9, 
for the smaller sample 2.6. 

thickness fl.L at a mean distance l from the spinning axis survives an increase of the spinning 
frequency to v is given by 

u(/, . ) 

P(v, l ) = { I - J f (s) dS} nv., 

o 

w here nVs is the number of links in the slice (= t TTd2nfl.L) . P(vh for the whole sample results 
as the product of a ll P(v, l)s 

(19) 

The result has to b e squared to take both ends of the sample cylinder into account : 

L u(/, . ) 

P(v) = U{ 1- J f (s) ds}2nv
8. 

o 

For the calculation of the ductile str ength, only the fundamental units in the mid-pla n e of the 
cylinder have to be considered (the number of the fundamental units in the cross-section has 
to b e high enough to allow a statistical description) . T he resulting str ength is well defin ed and 
the failure occurs in the mid-plane of the sample cylinder. 

F igure 8 shows the dependence of the brittle strength on the number density of the 
fundamental units for two snow typ es of equiva len t ductile streng th. Figure 9 shows the 
dep endence of the ratio of ductile to brittle strength on the sample size. In Figure 10 m easured 
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data of the tensile strength are plotted as a function of the load rate. These experimental 
results show a significant increase of strength with decreasing stress-rate. The estimate of 
brittle and ductile strength on the base of the statistical models furnish only extreme values 
for the strengths. 

as 10 4 N/m2] 

5 

---
~ - - --- -

,.-

!: V/ 

/ 0 

6 

l 
I 

3 

2 

- '~'-' - ._. -?-
--' 0 

/ -({ 
/ 

Y' 

::J _",,- -- 0 -- - - -- - -9--
\J. ' 
&':1 

lOO 200 300 1. 00 t [51 

Fig. 10. Tensile strength measured by the centrifugal method as a function of the time between the start of the centrifuge and 
failure of the sample for different types of snow. 

DISCUSSION OF SOMMERFELD'S ESTIMATE ON T H E BASIS OF STATISTICAL MODELS FOR THE STRENGTHS 

T here are two very important differences in the application of the statistical models to 
snow in this paper and the estimate given by Sommerfeld (1973, 1974, 1976) 

(a) Sommerfeld considers the measured sample strengths to be the link strengths . 
(b) Sommerfeld uses the Weibull distribution fitted to the strength distribution of his 

tensile-strength measurements as the basis for the brittle model, and the norma l 
distribution fitted to the strength distribution of the shear-strength measurements as 
the base for the ductile strength model. 

Sommerfeld performed centrifugal tensile tests on 0.5 X 10- 3 m 3 and 2.3 X 10- 3 m 3 samples 
of cylindrica l sha pe with diameters of6 X 10- 2 a nd 12 X 10- 2 m. From the strength distribution 
of these samples he wanted to estimate the bri ttle tensile strength at the crown of a slab 
avalanche. 

In the natural snow cover there may be la rge fl aws produced by wind action during 
precipitation, by rocks, gliding, a nd settling. These large fl aws led to zero or almost zero 
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strength measurements. To eliminate the effect of large flaws Sommerfeld designed the larger 
2.3 X 10- 3 m3 sample tube. Nevertheless, to reduce systematic errors further, the three lowest 
strengths of each measured distribution were not used in the Weibull determination 
(Sommerfeld, 1974). In some cases the Weibull parameters were significantly changed by this 
data reduction but at the same time the fits were improved. Sommerfelds' calculations result 
in a snow strength (for volumes larger than 1 m3) with an integral fracture probability of 
0.999 of about 1.1 times the minimum sample strength. This strength ratio corresponds to a 
volume or link-number ratio of about 3 to 4 orders of magnitudes (Sommerfelds' critical 
volume being about 1 m3 and the effective sample volume some 10- 4 m3). His Weibull 
parameter r changed from 0.9 to 1.6. Different problems arise from Sommerfeld's sampling 
method: The natural strain-rate differs by some orders of magnitude from the test strain-rate. 
The samples have to be small enough to guarantee a homogeneous natural stress distribution 
over the sample size. It is likely that brittle tensile strength is only involved in the propaga
tion of the secondary fracture. The additionally stressed volume at the front of the crack is 
probably of a comparable size to the sample volumes mentioned. The weak flaws defined 
above may occasionally act as primary fracture volumes. They cannot be considered to be 
distributed at random even relative to critical volumes of 1 m3. From the strong dependence 
of the strength distribution on the sample size, it follows that the link definition ofSommerfeld 
is very critical. Sommerfeld found that brittle strength has to be volume independent for 
volumes larger than about 1 m3. This volume independence characterizes the Weibull 
distribution. But because of the necessarily high strain-rates to produce brittle failure the 
volume to be considered in front of a brittle crack is limited by the propagating stress front 
and the stress distribution and will be much smaller than I mJ. If the sample strength of 
Sommerfeld is thought to be log-normally distributed, the resulting brittle strength will be 
significantly changed. Also the knowledge of the strong dependence of the sample strengths 
on the stress-rate shows that the more or less accidental definition of the link unit by 
Sommerfeld is not optimal. It seems to us that the arbitrary size of the test samples has to be 
replaced by some kind of fundamental units as defined at the beginning of this paper in order 
to obtain consistent results. 

Sommerfeld proposes an application of the ductile strength model to describe the shear 
strength in the bed of a slab avalanche. He mentioned the following points to justify the 
application of the thread model: "During shear failure, the failing parts are in contact and 
friction and crack healing due to new bond formation impedes crack growth. For these 
reasons a quasi-failure is the likely initiating event. There is a strong possibility that a failure 
in a small part of the bed surface would not propagate elastically, and that the whole bed 
surface would not fail." 

Sommerfeld considered the shear-frame area as the link unit. Shear-strength data 
measured by Perla were fitted to a normal distribution with a relative standard deviation of 
about 0.5. On the basis of the ductile strength model he arrived at a shear strength in the slab 
bed reduced by a factor 0.53 compared with the mean shear-frame strength. He thought of 
this result as an explanation of the stability factor defined by Roch (Sommerfeld, 1976). The 
stability factor is defined as the ratio of the mean sample shear strength corrected for normal 
pressure to the shear stress component parallel to the slope at a distinct point of the slope at 
the moment ofa natural avalanche release. The shear strength was also measured with a shear 
frame. The stability factor given by Roch is about 2. This is indeed a very good agreement. 
But what happens if the measurements are performed with a different shear-frame size? Perla 
found a dependence of the measured shear strength of the sample volume or sample area: 
The larger the volume the lower the mean measured shear strength. This fact sustains the 
proposition that Perla measured brittle shear strength and at the same time that the shear
frame area cannot be considered as a link unit. Besides this fact it has been shown in this paper 
that the ductile stnmgth of snow depends strongly on the type of distribution of the strength of 
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the links independent of the distribution width. The normal distribution applied by 
Sommerfeld for the link strength presumes a considerable probability for links of zero strength. 
This again sustains the conclusion that the chosen link size is not in agreement with the model 
rules. Therefore it seems that the above-mentioned agreement is accidental. The stability 
factor measured by Roch and its high relative standard deviation is likely to be at least in part 
a consequence of the method of sampling shear strength with the shear frame. Even if the 
shear strength of a thin lubricating layer could be de termined correctly and simultaneously 
with the avalanche release, we do not know if we have really sampled the shear strength in the 
primary fracture volume. 

CONCLUSIONS 

Statistical models to estimate the strength of snow together with consistent definitions of 
the fundamental unit may lead to a better understanding of brittle and ductile strength of 
snow in terms of structural or stereological parameters. 
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