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A Geometric Extension of Schwarz’s
Lemma and Applications

Galatia Cleanthous

Abstract. Let f be a holomorphic function of the unit disc D, preserving the origin. According
to Schwarz’s Lemma, ∣ f ′(0)∣ ≤ 1, provided that f (D) ⊂ D. We prove that this bound still holds,
assuming only that f (D) does not contain any closed rectilinear segment [0, e iϕ], ϕ ∈ [0, 2π], i.e.,
does not contain any entire radius of the closed unit disc. Furthermore, we apply this result to the
hyperbolic density and give a covering theorem.

1 Introduction and Statement of Results

Let f ∶D → D be a holomorphic self-map of the unit disc D = {z ∈ C ∶ ∣z∣ < 1} with
f (0) = 0. _e classical Scwharz Lemma asserts that

(1.1) ∣ f ′(0)∣ ≤ 1.

Numerous geometric variations and extensions of Schwarz’s Lemma have been
proved; see, for example, [2–6, 8, 14] and [11, Chapter 4].

Herewewill prove a geometric extension of Schwarz’s Lemma, inspired by a recent
theorem of Solynin [14,_eorem 4].

Let Aϕ be the rectilinear segment [0, e iϕ], ϕ ∈ [0, 2π]. Our purpose is to prove that
the bound (1.1) still holds under the assumption Aϕ∖ f (D) ≠ ∅, for every ϕ ∈ [0, 2π].
_is hypothesis is, of course, weaker than f (D) ⊂ D and geometrically means that
the image f (D) does not contain any of the closed radii [0, e iϕ], ϕ ∈ [0, 2π], of the
unit disc.

_eorem 1.1 Let f ∶D → C be a holomorphic function with f (0) = 0. Assume that
Aϕ ∖ f (D) ≠ ∅, for all ϕ ∈ [0, 2π]. _en

(1.2) ∣ f ′(0)∣ ≤ 1.

Further, equality holds in (1.2) if and only if f has the form f (z) = cz, where c ∈ C and
∣c∣ = 1.

_e main vehicles for the proof are polarization with respect to circles and the
hyperbolic density (see Section 2).
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As Solynin did in [14], we will present two equivalent formulations of_eorem 1.1
(cf. [14, Corollaries 1 and 2]). _e ûrst one involves the density of the hyperbolicmet-
ric, which is presented in Section 2.

Corollary 1.2 Let Ω be a hyperbolic domain in C. Suppose that there exists a point
z0 ∈ Ω for which λ(z0 ,Ω) ≤ k, for some k > 0. _en Ω either contains a closed segment
with one endpoint at z0 and length 2/k, or it coincides with the disk of radius 2/k and
center z0.

_is is proved by applying_eorem 1.1 to the function f (z) = k
2 (G(z)−z0),where

G∶D→ Ω is a universal covering map of Ω with G(0) = z0 .
Furthermore, _eorem 1.1 can be adapted to a covering theorem for radial seg-

ments.

Corollary 1.3 Let f ∶D→ C be holomorphic with f (0) = 0. If ∣ f ′(0)∣ ≥ 1, then either
f (D) = D, or f (D) contains a closed segmentwith one endpoint at the origin and length
1.

Covering properties of holomorphic functions are a classical subject in geometric
function theory. We refer to [7, §§10-11] and references therein for more information.

_e article is organized as follows. In Section 2 we present the basic tools of our
proofs: the hyperbolic density and polarization with respect to circles. In Section 3
we prove_eorem 1.1. _roughout this article we will denote by D(z0 , r) the disc of
radius r > 0 centred at z0 ∈ C, by rD the disc D(0, r), and by Cr its boundary.

2 Preliminaries

2.1 Hyperbolic Density

Let Ω be a hyperbolic domain in the extended complex planeC∞; that is, the comple-
mentC∞∖Ω ofΩ contains at least three points. _en the hyperbolic density λ( ⋅ ,Ω)
(the density of the Hyperbolic or Poincaré metric for Ω) is deûned as follows. Let
h∶D → Ω be a holomorphic universal covering map (see e.g., [1, p. 41], [10, p. 680]).
_en

(2.1) λ(h(z),Ω)∣h′(z)∣ = 2
1 − ∣z∣2 , for every z ∈ D.

For example if Ω = D, then (2.1) gives

(2.2) λ(z,D) = 2
1 − ∣z∣2 , for every z ∈ D.

_e Principle of the Hyperbolic metric (see [10, p. 682], [12, p. 49]) implies that if
D,Ω are hyperbolic domains and f ∶D → Ω is a holomorphic function, then

(2.3) λ( f (z),Ω)∣ f ′(z)∣ ≤ λ(z,D), for every z ∈ D,
with equality if and only if f is a covering map (this result can be found also in [1, p.
43] as the general version of the Schwarz–Pick lemma).
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_e inequality (2.3) easily implies that for hyperbolic domains D ⊂ Ω,

(2.4) λ(z,Ω) ≤ λ(z,D), for every z ∈ D.

Equality occurs if and only if D = Ω.
For more information about the hyperbolic density, we refer the reader to [1] and

[10, Chapter 9].

2.2 Polarization with Respect to Circles

Let r > 0 and Cr be the circle with radius r and center at the origin. Let also z ∈ C,
z ≠ 0. _e symmetric point of z with respect to the circle Cr , is the point z̃ = r2

z . We
also set 0̃ =∞, ∞̃ = 0.

_e polarization of a set Ω ⊂ C with respect to the circle Cr is deûned as

PCr(Ω) = ((Ω ∪ Ω̃) ∩ rD) ∪ ((Ω ∩ Ω̃) ∩ (C ∖ rD)) ,
where Ω̃ = {z̃ ∶ z ∈ Ω}, is the re�ection of the set Ω with respect to Cr .

Remark 2.1 By describing the polarization of Ω with respect to Cr we have that a
point z belongs to PCrΩ if at least one of the followings holds:
(i) z ∈ Ω and ∣z∣ ≤ r,
(ii) z̃ ∈ Ω and ∣z∣ ≤ r,
(iii) z, z̃ ∈ Ω.

_e next result follows by a theorem of Solynin [13], which gives the behaviour of
hyperbolic density under polarization with respect to circles. Let Ω be a hyperbolic
domain containing the origin and Cr the circle as above. _en

(2.5) λ(0, PCrΩ) ≤ λ(0,Ω).
Equality holds in (2.5) if and only if Ω = PCrΩ or Ω = P̃CrΩ.

We mention here that the hyperbolic density λ(z, PCrΩ) of PCrΩ is deûned for
every connected component of PCrΩ.
For more information about polarization, we refer the reader to [7, 13] and the

references therein.

3 Proof of Theorem 1.1

We consider the family F of holomorphic functions f ∶D → C, with f (0) = 0 and
Aϕ ∖ f (D) ≠ ∅, for all ϕ ∈ [0, 2π].
By applyingMontel’s normality criterion,we see thatF is a normal family (cf. [14]).

Lemma 3.1 _e family F is compact.

Proof As F is a normal family we only have to prove that the limit of every locally
uniformly convergent subsequence belongs to F. Let { fn}n≥1 ⊂ F be a sequence that
converges locally uniformly to a function f . _e function f is holomorphic inDwith
f (0) = limn→∞ fn(0) = 0. It remains to show that for all ϕ ∈ [0, 2π],Aϕ ∖ f (D) ≠ ∅.
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Suppose that there exists ϕ ∈ [0, 2π] such that Aϕ ∖ f (D) = ∅. But fn ∈ F for all
n ∈ N, so for all n ∈ N there existswn ∈ Aϕ ∖ fn(D). Since Aϕ is compact, there exists
a subsequence wnk converging to a point w0 ∈ Aϕ . Also, Aϕ ⊂ f (D); so there exists
z0 ∈ D such that f (z0) = w0 .

Since z0 is a root of the nonconstant holomorphic function f (z)−w0, there exists
r > 0 such that f (z) ≠ w0 for all z ∈ D(z0 , r) ∖ {z0}, where D(z0 , r) ⊂ D. Let

m = min{∣ f (z) −w0∣ ∶ ∣z − z0∣ = r}.
As fn converges to f uniformly in D(z0 , r), there exists k1 ∈ N such that

∣ fnk(z) − f (z)∣ <
m
2
, for all k ≥ k1 and for all z ∈ D(z0 , r).

Also, as wnk → w0, there exists k2 ∈ N such that

∣wnk −w0∣ < m
2
, for all k ≥ k2 .

Let k0 = max{k1 , k2}. _en for all z with ∣z − z0∣ = r and for all k ≥ k0,

∣ ( fnk(z) −wnk) − ( f (z) −w0) ∣ ≤ ∣ fnk(z) − f (z)∣ + ∣w0 −wnk ∣ <
m
2
+ m

2
≤ ∣ f (z) −w0∣ .

_erefore, by Rouche’s theorem, for k suõciently large, the function fnk(z)−wnk has
zero in D(z0 , r), a contradiction.

We are now ready to proceed with the proof of our main result.

Proof of_eorem 1.1 Since F is a normal and compact family, there exists F ∈ F

such that
∣F′(0)∣ = sup

f ∈F
∣ f ′(0)∣.

As the function h(z) = z belongs to the family F, we deduce that

(3.1) ∣F′(0)∣ ≥ 1.

Let Ω = F(D) and letG∶D→ Ω be the universal coveringmap ofΩ,withG(0) = 0
and G′(0) > 0 (see e.g., [1, p. 41]). _e function G belongs to the family F, because
G(D) = Ω. _e general analytic functionG−1 maps Ω intoD, and hence by [9,_eo-
rem 2.20], F is subordinate to G. By the theorem of subordination [9,_eorem 2.21],
∣F′(0)∣ ≤ ∣G′(0)∣, and since F is the maximal function for the family F, we have the
equality ∣F′(0)∣ = G′(0). By (2.3) and (2.2)

λ(0,Ω)∣F′(0)∣ = λ(0,Ω)G′(0) = λ(0,D) = 2.

Hence, by the equality case of relation (2.3), F is a holomorphic covering of D to
Ω with F(0) = 0 and

(3.2) ∣F′(0)∣ = 2
λ(0,Ω) .

Let M = D ∖Ω and

α = inf{∣z∣ ∶ z ∈ M}, β = sup{∣z∣ ∶ z ∈ M}.
Since F(0) = 0, we have α > 0.
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We consider the following cases.

Case 1: α = β. _en for all z ∈ M, ∣z∣ = α and hence M ⊆ Cα . We claim that M = Cα .
Suppose that there exists z0 = αe iϕ0 ∉ M. _en z0 ∈ Ω and as Aϕ0 ∖ Ω ≠ ∅, there
exists r ∈ [0, 1] ∖ {α} such that z1 = re iϕ0 ∉ Ω and therefore z1 ∈ M. But if ∣z1∣ =
r < α, then inf z∈M ∣z∣ ≤ r < α; a contradiction. In the same way, if ∣z1∣ = r > α, then
supz∈M ∣z∣ ≥ r > α, which also gives a contradiction. Hence, M = Cα .

If α ∈ (0, 1), then there exists z ∈ Ω with ∣z∣ > α. _is is absurd, because Ω is
connected, Cα ∩Ω = ∅ and 0 ∈ Ω. _erefore, α = 1.
As Ω is connected, we conclude that Ω ⊂ D. Hence, by Schwarz’s Lemma,

∣F′(0)∣ ≤ 1. By (3.1), ∣F′(0)∣ = 1. So we have equality in Schwarz’s Lemma. _erefore,
F(z) = cz, where c ∈ C with ∣c∣ = 1 and Ω = D.

Case 2: 0 < α < β ≤ 1. We are going to show that this case cannot occur.
We set γ = √

αβ. Note that α < γ < β, and so 0 < γ < 1.
LetCγ be the circlewith center at the origin of radius γ and let Ω1 be the connected

component containing 0 of the polarization of Ω with respect to the circle Cγ .
Let F1∶D → Ω1 be the holomorphic universal covering of Ω1 with F1(0) = 0 and

F′1(0) > 0. We show that F1 ∈ F.
Let ϕ ∈ [0, 2π]. It suõces to prove that Aϕ ∖ Ω1 ≠ ∅. Since F ∈ F, there exists

zϕ ∈ Aϕ ∖Ω. Let z̃ϕ be the symmetric of the point zϕ with respect to the circle Cγ .
● If z̃ϕ ∉ Ω, then zϕ ∉ PCγΩ ⊃ Ω1 , so Aϕ ∖Ω1 ≠ ∅.
● If z̃ϕ ∈ Ω and zϕ is in the exterior of the circle Cγ , then zϕ ∉ PCγΩ ⊃ Ω1 , and as
before Aϕ ∖Ω1 ≠ ∅.

● If z̃ϕ ∈ Ω and zϕ is in the interior of the circle Cγ , then z̃ϕ ∉ PCγΩ ⊃ Ω1. It remains
to show that 0 < ∣z̃ϕ ∣ ≤ 1. But α ≤ ∣zϕ ∣ ≤ β; hence

0 < α = αβ
β

≤ ∣z̃ϕ ∣ = γ2

∣zϕ ∣ =
γ2

∣zϕ ∣ ≤
αβ
α

= β ≤ 1.

So in all cases, Aϕ ∖Ω1 ≠ ∅, which gives F1 ∈ F.
Since F1∶D→ Ω1 by (2.3) and (2.2), we get

(3.3) F′1(0) =
2

λ(0,Ω1) .

But from (2.5),

(3.4) λ(0,Ω1) ≤ λ(0,Ω).
So combining (3.2), (3.3), and (3.4)we have that F′1(0) ≥ ∣F′(0)∣, and as F is amaximal
function for the family F, we have F′1(0) = ∣F′(0)∣. _erefore, we have equality in
(3.4), and hence by the equality case of (2.5), we have either Ω = Ω1 or Ω = Ω̃1. _e
latter case is rejected because Ω̃1 contains∞ and F is holomorphic, hence Ω = Ω1 .

We now consider the set Ω2 = Ω∪γD. Since α < γ, there exists z0 ∈ M with ∣z0∣ < γ
and hence Ω ≠ Ω2 . _erefore, (2.4) gives

(3.5) λ(0,Ω2) < λ(0,Ω).
We will prove that Ω2 has the geometric property Aϕ ∖ Ω2 ≠ ∅, for every ϕ ∈

[0, 2π]. We assume conversely that there exists a ϕ ∈ [0, 2π] such that Aϕ ∖ Ω2 = ∅.
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_is means that Ω2 contains the set Bϕ = {re iϕ ∶ γ ≤ r ≤ 1}. But since Ω = Ω1 is
polarizedwith respect to Cγ and Bϕ lies in the exterior of Cγ ,we have that PCγBϕ ⊂ Ω
and so {re iϕ ∶ γ2 ≤ r ≤ 1} ⊂ Ω. By the fact that Aϕ ∖Ω ≠ ∅, there exists a z0 ∈ Aϕ ∖Ω,
with modulus ∣z0∣ < γ2 ≤ α. But this means that z0 ∈ M and ∣z0∣ < α, which is a
contradiction. So Aϕ ∖Ω2 ≠ ∅ for every ϕ ∈ [0, 2π].

We consider the holomorphic universal covering F2∶D → Ω2 with F2(0) = 0 and
F′2(0) > 0. _en F2 ∈ F and therefore by (2.3), (2.2), (3.3), and the fact that F1 is a
maximal function

2
λ(0,Ω2) = F′2(0) ≤ F′1(0) =

2
λ(0,Ω1) ,

which contradicts (3.5). So Case 2 cannot occur.
_erefore, for every f ∈ F, ∣ f ′(0)∣ ≤ ∣F ′(0)∣ = 1.
If ∣ f ′(0)∣ = 1 for some f ∈ F, then f is a holomorphic covering of f (D). If we

consider again the set M and the cases α = β and α < β as above, we conclude that
f (z) = cz for a constant c ∈ C with ∣c∣ = 1 and the proof is complete.
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