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EDWARDS-WALSH RESOLUTIONS OF
COMPLEXES AND ABELIAN GROUPS

KATSUYA YOKOI

We give a necessary and sufficient condition for the existence of an Edwards-Walsh
resolution of a complex. Our theorem is an extension of Dydak-Walsh's theorem
to all simplicial complexes of dimension ^ n + 2. We also determine the structure
of an Abelian group with the Edwards-Walsh condition, (which was introduced by
Koyama and the author).

1. INTRODUCTION

We recall that the covering dimension dim X of a compactum X is the smallest
natural number n such that there exists an (n -I- l)-fold covering by arbitrarily fine open
sets. The characterisation of dimension in terms of mappings to spheres led to the coho-
mological characterisation of dimension under the assumption of finite-dimensionality
of a space [8]. This characterisation was the point of departure for cohomological
dimension theory. We give below the definition of cohomological dimension. The co-
homological dimension c-dimc X of a compactum X with coefficients in an Abelian
group G is the largest integer n such that there exists a closed subset A of X with
Hn(X, A; G) ^ 0, where Hn( ; G) means the Cech cohomology with coefficients in G.
Clearly, dim X ^ n implies that c-dimG X ^ n for all G. Alexandroff formulated the
theory in his paper [1].

Recent progress in cohomological dimension theory follows from Edwards' theorem
[6] (details can be found in [13]). The theorem is based on an excellent idea, which is
the so-called Edwards-Walsh modification. An equivalent reformulation below caused
the advances: associating to each simplicial complex L, a combinatorial resolution
u): EWG(L,TI) —• \L\ (see Definition 2.1 below) specified that c-dimcX ^ n if and
only if for every simplicial complex L and map f:X-*L, there exists an approximate
lift f: X -¥ E W G (L,n) of / ; see [5]. Recent analysis of the theory led to a need for
those resolutions for general groups. Dydak-Walsh [5, Theorem 3.1] stated a necessary
and sufficient condition for the existence of an Ed wards-Walsh resolution of an (n + 1)-
dimensional simplicial complex. They [5, Theorem 4.1] also analysed the modification
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and investigated a general property of an Abelian group G that admits such a resolution
of a complex.

Because of a difficulty, Koyama and the author [11] introduced a property of an
Abelian group G that induces the existence of an Edwards-Walsh resolution of a sim-
plicial complex: an Abelian group G has property (EW) provided that there exists a
homomorphism a: Z —t G such that

(EWi) a ® id: Z <g> G —> G <g> G is an isomorphism, and
(EW 2 ) a*: Horn (G, G) -» Horn (Z, G) is an isomorphism.

In Section 2, we give a necessary and sufficient condition for the existence of such a
resolution for all simplicial complexes of dimension ^ n+2, that is, (EW2) is the neces-
sary and sufficient condition. The groups Z, Z/p and Z(p) satisfy such a condition. As
we have previously stated, property (EW) seems very strong to construct a resolution.
However, the condition group-theoretically give us an interesting future. In Section 3,
we see that the condition characterises the group of integers and the Bockstein groups
except quasi-cyclic ones.

Throughout this paper, Z is the additive group of all integers and Q is the additive
group of all rational numbers. Z(p) is the ring of integers localised at a subset P of
V = {all prime numbers}. We denote by Z/p, Z/p°° and Zp the cyclic group of order
p, the quasi-cyclic group of type p°° and the group of p-adic integers, respectively.

For a brief historical view of cohomological dimension theory, we refer the reader
to [2, 4, 9, 10].

2. EDWARDS-WALSH RESOLUTIONS OF COMPLEXES

An important tool for characterising compacta X with finite cohomological di-
mension with respect to G is an Edwards-Walsh resolution u>: E W G (L, n) —» \L\ of
a simplicial complex L. For G = Z, these resolutions were formulated in [13]. The
relation of Edwards-Walsh resolutions to cohomological dimension theory and their
existence for certain other groups were discussed in [3] and [5].

DEFINITION 2.1: Let G be an Abelian group and L a simplicial complex. An
Edwards- Walsh resolution of L in the dimension n is a pair ( E W G (L, n), UJ) consisting
of a CW-complex E W G {L,n) and a combinatorial map io: E W G (L,n) -> \L\ (that
is, w~1(|L/|) is a subcomplex for each subcomplex V of L) such that

(i) LJ^QL^I) = |L(")| and w||I / (n) | is the identity map of |L<n)| onto itself,

(ii) for every simplex a of L with dime- > n, the preimage cj~1(a) is an
Eilenberg-MacLane complex of type ( 0 G, n ) , where the sum here is
finite, and
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(iii) for every simplex a of L with dim a > n , the inclusion u>~1(da) —>•
w~1(a) induces an epimorphism Hn(w~1(a)\G) —> Hn(u~1(da)\G).

Dydak-Walsh established a property of G that characterises those groups for which
such resolutions exist for all (n + 1)-dimensional simplicial complexes.

THEOREM. [5, Theorem 3.1] Let G be an Abelian group and n ^ 1. An Edwards-
Walsh resolution u): EWG (L, n) —> \L\ exists for all simplicial complexes L with
dim L ^ n + 1 if and only if there exists an integer TO ̂  1 and a homomorphism
a: Z -» Gm such that any homomorphism 0: Z -> G factors as 0 — 0 o a for some

We extend the theorem above to all simplicial complexes of dimension ^ n + 2.
Before stating our theorem, we recall a proposition in [11].

PROPOSITION 2 . 2 . Let a be an (n + 2)-simplex and (K{G,n),Sn) a pair
of an Eilenberg-MacLane complex of type (G,n) and an n -dimensional sphere S" in
K(G, n). Let E be the CW-complex obtained by replacing each (n + 1) -face r of da
by (K(G,n),Sn) along dr ^ 5" . Then we have

Hn(E)*(G/Ima)>

n+2

and an exact sequence

n+3 n+2

where a = 7rn(5n <-*• K(G,n)) and Aa and q are given by

and

q((9o, 5ii • • • 19n+2J) = (bo], 5i + So, • • •, 9n+2 + 9o) •

PROOF: We write da as the union TOUTIU- • -\JTn+2, where each TJ is an (n + 1)-
face of a. Then by the construction,

E = Jf (Go, n) U *-(Gi, n) U • • • U * - (G n + 2 l n)

and
iiT(Gi,n)ni ; i :(Gj!n) = Tinr,- for each pair i,j € { 0 , 1 , . . . , n + 2},

where Gi = G. We note by use of Mayer-Vietoris exact sequences that

Hn(K(Gun) U • • • U K(Gn+2,n)) « Hn{K(Gi,n)) © • • • 0 Hn(K(Gn+2:n))
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Next, let us take the following Mayer-Vietoris sequence of the couple {K(GQ, n), K(Gi,n)

U---UK(Gn+2,n)}:

Hn(K{GQ,n)n(K(Gi,n)u---\JK(Gn+2,n)))

-> Hn(K(G0, n)) © Hn(K(Gu n) U • • • U K(Gn+2, n))

-»• H n ( E ) 4 H n _ i ( # ( G 0 , n ) n ( t f ( G i , n ) U • • • U tf(Gn+2! n ) ) ) - > • • • .

Since dr0 = K(Go,n) n (AT(Gi,n) U •••U if(Gn+2,n)), the sequence above can be
reduced to the exact one:

> #„(£) -> 0.

The homomorphism q: Go © Gi ffi • • • © Gn+2 -*• (Go/ Im a) © Gi © • • • © Gn+2 given by

q(9o,gi, • • -,9n+2) = ([go],9i +flo,- • ->5n+2 +5o)

clearly induces a homomorphism q: (G © • • • © G)/ Im AQ -t (G/ Im a) © G © • • • ffi G,
where [g], g € G, is the equivalence class of g in G/Ima. Then we have easily that q
is an isomorphism. D

PROPOSITION 2 . 3 . Let a: Z -»• G be a homomorphism from the group of inte-
gers to an Abelian group G. Then the homomorphism a*: Horn (G, G) -> Horn (Z, G)
induced by a is a monomorphism if and only if Horn (G/Im a, G) = 0.

THEOREM 2 . 4 . Let a: Z —> G be a homomorphism from the group of integers
to an Abelian group G. Then the following are equivalent:

(1) there exists an Edwards-Walsh resolution w. EWG (L,n) —t \L\ of each
simplicial complex L with dim L ^ n + 2 such that

(iv) the inclusion-induced homomorphism 7rn(w
-1(9T)) —» 7rn(w~1(r))

is a for each (n + 1) -simplex r of L, and
(v) the inclusion-induced homomorphism •Rn(u>~1(da)) -^ Trn(u>~1(cr))

maps the subgroup G/lma to zero for any [n + 2)-simplex a
of L (where if n — 1, we consider the Abelianisation of the
fundamental groups),

(2) the homomorphism a*: Horn(G,G) —> Hom(Z,G) induced by a is an
isomorphism.

REMARK 2.5. The subgroup G/Ima in condition (v) above depends upon the enu-
meration of (n+1)-faces of each (n + 2)-simplex, since we calculate the group by
Proposition 2.2. We also note that (v) is natural for constructing our desired resolu-
tion.
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P R O O F : We first establish the necessity of the group condition. Suppose that there
exists an Edwards-Walsh resolution w: E W G (a, n) —¥ a of an (n + 2) -simplex a with
(iv) and (v). By (iii) of Definition 2.1 and (iv), a* is an epimorphism. To show that
a* is a monomorphism, it suffices to prove Horn (G/ Im a, G) = 0 by Proposition 2.3.

Let 7 e Horn (G,G) with 7 ( Ima) = 0.

Let T0,.. -, Tn + 2 be all (n + 1) -faces of a and w~1 (T^) = K(Gk, n ) , where Gk =G.
We can suppose, if necessary by changing the enumeration of Tj, that the subgroup
G o / I m a maps to zero in nn(ij~

1(a)) by condition (v) and Proposition 2.2.

Choose a continuous map fy: (K(Goyn),dTo) —¥ (K(G,n),*) which represents
the homotopy class 7 with 7 ( Ima) = 0 [14, p.244, Theorem 7.2].

Extend the composite Tow|u-i( f f(n)\: w " 1 ^ " 5 ) -»• K(G,n) to the map F: u~l{da)

-¥ K(G,n), where T: a^ —> K{G,n) is the constant map to *, defined by

F\n(Gk,n) i s the constant map to * for k = 1 , . . . , n + 2,

and

F\K(G0,n) = f-f

Let F: u>~l{a) -» K(G,n) be an extension of F by (iii) of Definition 2.1. We note
by (v) and the Hurewicz theorem that for each g € G, i«(([ff],0,.. -,0)) = 0 on the
n-dimensional homology groups, where i: cj~1(dcr) <->• u)~x[a).

Go © Gi © • • • © G n + 2

'I
Hn(uj~1{da)) «Go/Ima<

-1
Therefore, for g e Go = G, we have

= F» o </(((?, - 3 , . . . , —g)) by Proposition 2.2

- 7(5)-

This means that 7 is trivial. Therefore Hom(G/Ima, G) = 0.

Conversely, we suppose that a* is an isomorphism. The construction is similar

to that in previous works [5, 3, 11], that is, our task is only to state the Fact below
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without condition (EW i) in the Introduction. However, we again give a detailed proof
for completeness.

We first consider the case n > 1 and dimL < oo. Proceed by induction on
m = dimL. If m < n, we define EWG (L,n) = \L\ and u> — id^i.

Suppose that m = n + 1. Attaching via the identity map the mapping cylinder
M(a) of the map da -* K(G,n) induced by a on the subcomplex da of |L^^| for
each (n + 1)-simplex a of L, we have the CW-complex EWg (L(-n+1\n). The map
u) is chosen so that u>(M(a) \ da) C a \ da and w is an extension of the identity map
id,L(n),. Conditions (i) and (ii) of Definition 2.1 and (iv) are trivial. Condition (iii)
of 2.1 follows from the surjectiveness of a* and the universal coefficient theorem for
cohomology.

We next consider the case m = n + 2. Suppose inductively that we have con-
structed the Edwards-Walsh resolution w: EWG (L(n+1),n) -> |L ( n + 1 ) | with condition
(iv). Then we have the homology group Hn{w~l(da)) « (G/Ima) © G © • • • © G by
Proposition 2.2. n+2

Since tj~1(da) is simply connected, and Hk(v~l(da)) is trivial for k < n - 1,

Trn(uj-l(da)) « (G/Ima) ©

by the Hurewicz isomorphism theorem. Construct an Eilenberg-MacLane space of type
n+2 \
® G, n 1 from w x(9cr) by attaching (n + 1)-cells to kill the subgroup G/Ima, and

I /
next attaching cells of dimension ^ n + 2 to kill higher dimensional homotopy groups.
Moreover, extend the map u> such that the interior of each cell used to construct the
Eilenberg-MacLane space is mapped into a\da. We use the same notation w for the
extension.

Conditions (i) and (ii) of Definition 2.1 have been built in. For checking condition
(iii) of 2.1, we show that for every (n + 2)-simplex a G L, each map / : uj~1(da) —•
K(G,n) extends over v~1(a). By the construction,

u-1(a)ln+1)=u-l(da)in+1)u\jBn+1,
Pi

where & represents an element of G / Ima in irn{(j~1(da)). So, we have /*([/%]) = 0 in

nn(K(G,n)) by Proposition 2.3. Hence / can be extended over w-1(a) ("+ 1 ) . Therefore

we have an extension of / over u~l{a) by the triviality of the higher homotopy groups

of K(G, n). Condition (v) is satisfied by the construction.

Finally we consider the case m ^ n + 3. Suppose that we have constructed the

Ed wards-Walsh resolution w: E W G ^ ' " 1 " 1 ' , ) ! ) -4 IL^"1-1^ with conditions (iv) and
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(v). Furthermore we assume that for n + 1 ^ d imr = k ^ m — 1, UJ~1(T) is an

Eilenberg-MacLane space of type I ® G, n I, where r C s = (r\/s\(r - s)!). Then we

can state the following:

FACT. Hn(u)~1(da)) « G © • • • © G for any m-simplex u of L.

PROOF: For our purpose we show the statement for any face T <o with dimr ^

n + 3.

Let dimT = n + 3. We write 9 r as the union r0 U Tj U • • • U r n + 3 , where each Tj

is an (n -I- 2) -face of T . Then we have the following Mayer-Vietoris exact sequence:

By Hom(G/ Ima ,G) = 0 and algebraic calculations based on Proposition 2.2, the

sequence can be easily reduced to the exact sequence:

m a © (G 8 • • • © G) ( ^ £ } (G © • • • © G) © (G © • • • © G)

n+2

where homomorphisms z and j are defined by

and

Thus the exact sequence means that the statement is true for dim T = n + 3.

For d imr = n + k ^ m (/c ^ 3), we can easily show the following by double

induction starting from the case above, using Mayer-Vietoris exact sequences: Let

r0, T i , . . . , rn+k be all (n + k — l)-faces of r . Then for i ^ n + 2,

Gffi---© 0 G,
I i

and for n + 3 ̂  j ^ n + /:,

n+fc-lCn+l *-2Co

HB(w-1(T1U-"UTi))« 0 Gffi---© 0 G.
l l
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Furthermore, we state that the inclusion u~1(dT0) -»• w~1(n U • • • U rn+k) induces the
next homomorphism on the ra-dimensional homology groups up to automorphisms:

(91, •••,9n+k..1cn+1) '—> (91, • • • > 3 n + f c _ 1 c n + 1 , 0 , . . . , 0 ) .

Then we have, by the Mayer-Vietoris exact sequence (*) in case of dimr = m,

n+k-lCn+l k-2c0

Hn(u>-l(dT)) a 0 G e - 9
1

n+kCn+l

1

This completes the proof of the fact. D

Let us return to the construction. Recall that m ^ ra + 3. We have nn(u~1(d(r)) as
G © • • • © G for every m-simplex a of L by the Fact and the Hurewicz isomorphism

theorem. Hence construct an Edwards-Walsh resolution of L by attaching cells of
dimension greater than n + 1 to w~1(da) for dima = m, and extending the map UJ
such that the interior of new cell is mapped into a \ da. The extending map satisfies
the property:

Here we note that

for any m-simplex a of L. Then conditions (i) and (ii) of Definition 2.1 for L = l/m)
are easily seen to be true. Condition (iii) of 2.1 follows from (*) and properties of
K(G, n). Conditions (iv) and (v) are our inductive assumption.

If dim L = 00, by applying the previous construction inductively, we can have our
desired Edwards-Walsh resolution.

In case n — 1, it suffices to apply an argument of the Abelianisation (for details,
see [5], [11,Theorem 2.3]). D

REMARK. In works [5, 11], condition (EWi), which appeared in the Introduction, was

essentially used to show the Fact above.

The groups Z, Z/p and Z(p) satisfy such a condition, that is, there are such

resolutions with respect to the groups. (These are well-known, [13, 5] and [2, 3].)

EXAMPLE. If G = Z/p© Z(g) or Zp, where p ^ q, then Edwards-Walsh resolutions
w. E W G (L, n) —> \L\ exist for all n and all simplicial complexes.
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3. P R O P E R T Y (EW) AND ABELIAN GROUPS

THEOREM 3 . 1 . Let G be an Abelian group with property (EW). Then the
group is precisely either a cyclic group or a localisation of the integer group at some
prime numbers.

REMARK. We note that if G is either a cyclic group or a localisation of the integer
group at some prime numbers, then G has property (EW).

The following fact essentially comes from our previous paper [11]. We give a proof
for completeness.

PROPOSITION 3 . 2 . Let G be an Abelian group with property (EW). Then
we have the following properties.

(i) The group G/ Im a is a torsion group.
(ii) If Im a is an infinite cyclic group, G is torsion-free.

(iii) If Im a is a finite cyclic group, G — Im a .

P R O O F : (i) If G / I m a has an element of infinite order, so does G. However, this
is a contradiction by the triviality of (G/ Im a)<g)G, which follows by the surjectiveness
of (EWi) .

(ii) Suppose that the group G has an element of order p. Then the group has
a direct summand Z/pk for some 1 ^ k ^ oo by [12, Corollary 3]. Since (Ima) n
Gv = {0} by the assumption of (ii), G/Ima also contains Z/pk as a direct summand.
Therefore Horn ( G / I m a , G) has a copy of the non-trivial group Hom(Z/pf c ,Z/pf c) .
This is a contradiction by the injectiveness of (EW2). It follows that G is torsion free.

(iii) We note by (EW 1) that a induces an isomorphism G « Z ® G « G ® G .

The hypothesis of (iii) means that I m a = Z/q for some positive integer q. Then
we have

G « Z 0 G « (Ima) 0 G « G/qG.

Namely, G = Gq. Furthermore the group G is the direct sum of finite cyclic groups by
[7, Theorem 61.3]. If Ima ^ G, then so is G/Ima.

Suppose (G/ Im a)p is non-trivial. Then G and G/ Im a contain pk and pl cyclic
groups as direct summands, respectively. But this is a contradiction by Horn (G/ Ima, G)
= 0. Therefore Ima = G. D

LEMMA 3 . 3 . The group G is divisible by a prime number p from P = {p :

P R O O F : Let p € P• Then G / I m a has a direct summand Z/pk for some 1 ^ fc ^
00 by [12, Corollary 3]. It follows from the surjectiveness of (EWj) that Z/pk<S>G = 0.
Thus G =pG. If k = 00, use that G is torsion free by Proposition 3.2 (iii) and (ii). D
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PROOF OF THEOREM 3.1: If G/Ima = 0, the group G is a cyclic group.

Let G/lma / 0. Put P = V\P, where V is the set of all primes. Then we define

a function / : Z(Pj —• G by f(n/m) — na(l)/m. Here, we note that for each product

q of numbers from P and g € G, there exists a unique element z € G such that qz = g

by Lemma 3.3 and Proposition 3.2 (iii) and (ii). We easily see that the function is an

isomorphism. D
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