EDWARDS-WALSH RESOLUTIONS OF COMPLEXES AND ABELIAN GROUPS

Katsuya Yokoi

Abstract

We give a necessary and sufficient condition for the existence of an Edwards-Walsh resolution of a complex. Our theorem is an extension of Dydak-Walsh's theorem to all simplicial complexes of dimension $\geqslant n+2$. We also determine the structure of an Abelian group with the Edwards-Walsh condition, (which was introduced by Koyama and the author).

1. Introduction

We recall that the covering dimension $\operatorname{dim} X$ of a compactum X is the smallest natural number n such that there exists an ($n+1$)-fold covering by arbitrarily fine open sets. The characterisation of dimension in terms of mappings to spheres led to the cohomological characterisation of dimension under the assumption of finite-dimensionality of a space [8]. This characterisation was the point of departure for cohomological dimension theory. We give below the definition of cohomological dimension. The cohomological dimension $c-\operatorname{dim}_{G} X$ of a compactum X with coefficients in an Abelian group G is the largest integer n such that there exists a closed subset A of X with $H^{n}(X, A ; G) \neq 0$, where $H^{n}(; G)$ means the Čech cohomology with coefficients in G. Clearly, $\operatorname{dim} X \leqslant n$ implies that $c-\operatorname{dim}_{G} X \leqslant n$ for all G. Alexandroff formulated the theory in his paper [1].

Recent progress in cohomological dimension theory follows from Edwards' theorem [6] (details can be found in [13]). The theorem is based on an excellent idea, which is the so-called Edwards-Walsh modification. An equivalent reformulation below caused the advances: associating to each simplicial complex L, a combinatorial resolution $\omega: \mathrm{EW}_{G}(L, n) \rightarrow|L|$ (see Definition 2.1 below) specified that $c-\operatorname{dim}_{G} X \leqslant n$ if and only if for every simplicial complex L and map $f: X \rightarrow L$, there exists an approximate lift $\tilde{f}: X \rightarrow \mathrm{EW}_{G}(L, n)$ of f; see [5]. Recent analysis of the theory led to a need for those resolutions for general groups. Dydak-Walsh [5, Theorem 3.1] stated a necessary and sufficient condition for the existence of an Edwards-Walsh resolution of an ($n+1$)dimensional simplicial complex. They [5, Theorem 4.1] also analysed the modification

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.
and investigated a general property of an Abelian group G that admits such a resolution of a complex.

Because of a difficulty, Koyama and the author [11] introduced a property of an Abelian group G that induces the existence of an Edwards-Walsh resolution of a simplicial complex: an Abelian group G has property (EW) provided that there exists a. homomorphism $\alpha: \mathbf{Z} \rightarrow G$ such that
$\left(\mathrm{EW}_{1}\right) \quad \alpha \otimes \mathrm{id}: \mathbf{Z} \otimes G \rightarrow G \otimes G$ is an isomorphism, and
$\left(\mathrm{EW}_{2}\right) \quad \alpha^{*}: \operatorname{Hom}(G, G) \rightarrow \operatorname{Hom}(\mathbf{Z}, G)$ is an isomorphism.
In Section 2, we give a necessary and sufficient condition for the existence of such a resolution for all simplicial complexes of dimension $\geqslant n+2$, that is, $\left(\mathrm{EW}_{2}\right)$ is the necessary and sufficient condition. The groups $\mathbf{Z}, \mathbf{Z} / p$ and $\mathbf{Z}_{(p)}$ satisfy such a condition. As we have previously stated, property (EW) seems very strong to construct a resolution. However, the condition group-theoretically give us an interesting future. In Section 3, we see that the condition characterises the group of integers and the Bockstein groups except quasi-cyclic ones.

Throughout this paper, \mathbf{Z} is the additive group of all integers and \mathbf{Q} is the additive group of all rational numbers. $\mathbf{Z}_{(P)}$ is the ring of integers localised at a subset P of $\mathcal{P}=\{$ all prime numbers $\}$. We denote by $\mathbf{Z} / p, \mathbf{Z} / p^{\infty}$ and $\widehat{\mathbf{Z}}_{p}$ the cyclic group of order p, the quasi-cyclic group of type p^{∞} and the group of p-adic integers, respectively.

For a brief historical view of cohomological dimension theory, we refer the reader to $[\mathbf{2}, \mathbf{4}, \mathbf{9}, \mathbf{1 0}]$.

2. Edwards-Walsh resolutions of complexes

An important tool for characterising compacta X with finite cohomological dimension with respect to G is an Edwards-Walsh resolution ω : $\mathrm{EW}_{G}(L, n) \rightarrow|L|$ of a simplicial complex L. For $G=\mathbf{Z}$, these resolutions were formulated in [13]. The relation of Edwards-Walsh resolutions to cohomological dimension theory and their existence for certain other groups were discussed in [3] and [5].

Definition 2.1: Let G be an Abelian group and L a simplicial complex. An Edwards-Walsh resolution of L in the dimension n is a pair ($\left.\mathrm{EW}_{G}(L, n), \omega\right)$ consisting of a CW-complex $\mathrm{EW}_{G}(L, n)$ and a combinatorial map $\omega: \mathrm{EW}_{G}(L, n) \rightarrow|L|$ (that is, $\omega^{-1}\left(\left|L^{\prime}\right|\right)$ is a subcomplex for each subcomplex L^{\prime} of L) such that
(i) $\quad \omega^{-1}\left(\left|L^{(n)}\right|\right)=\left|L^{(n)}\right|$ and $\left.\omega\right|_{\left|L^{(n)}\right|}$ is the identity map of $\left|L^{(n)}\right|$ onto itself,
(ii) for every simplex σ of L with $\operatorname{dim} \sigma>n$, the preimage $\omega^{-1}(\sigma)$ is an Eilenberg-MacLane complex of type $(\bigoplus G, n)$, where the sum here is finite, and
(iii) for every simplex σ of L with $\operatorname{dim} \sigma>n$, the inclusion $\omega^{-1}(\partial \sigma) \rightarrow$ $\omega^{-1}(\sigma)$ induces an epimorphism $H^{n}\left(\omega^{-1}(\sigma) ; G\right) \rightarrow H^{n}\left(\omega^{-1}(\partial \sigma) ; G\right)$.

Dydak-Walsh established a property of G that characterises those groups for which such resolutions exist for all $(n+1)$-dimensional simplicial complexes.

Theorem. [5, Theorem 3.1] Let G be an Abelian group and $n \geqslant 1$. An EdwardsWalsh resolution $\omega: \mathrm{EW}_{G}(L, n) \rightarrow|L|$ exists for all simplicial complexes L with $\operatorname{dim} L \leqslant n+1$ if and only if there exists an integer $m \geqslant 1$ and a homomorphism $\alpha: \mathbf{Z} \rightarrow G^{m}$ such that any homomorphism $\beta: \mathbf{Z} \rightarrow G$ factors as $\beta=\tilde{\beta} \circ \alpha$ for some $\tilde{\beta}: G^{m} \rightarrow G$.

We extend the theorem above to all simplicial complexes of dimension $\geqslant n+2$. Before stating our theorem, we recall a proposition in [11].

Proposition 2.2. Let σ be an ($n+2$)-simplex and ($K(G, n), S^{n}$) a pair of an Eilenberg-MacLane complex of type (G, n) and an n-dimensional sphere S^{n} in $K(G, n)$. Let E be the $C W$-complex obtained by replacing each $(n+1)$-face τ of $\partial \sigma$ by ($K(G, n), S^{n}$) along $\partial \tau \cong S^{n}$. Then we have

$$
H_{n}(E) \approx(G / \operatorname{Im} \alpha) \oplus \underbrace{G \oplus \cdots \oplus G}_{n+2}
$$

and an exact sequence

$$
\mathbf{Z} \stackrel{\Delta_{a}}{G \oplus \cdots \oplus G} \underbrace{G}_{n+3} \xrightarrow{q}(G / \operatorname{Im} \alpha) \oplus \underbrace{G \oplus \cdots \oplus G}_{n+2} \longrightarrow 0
$$

where $\alpha=\pi_{n}\left(S^{n} \hookrightarrow K(G, n)\right)$ and Δ_{α} and q are given by

$$
\Delta_{\alpha}(j)=(\alpha(j),-\alpha(j), \ldots,-\alpha(j))
$$

and

$$
q\left(\left(g_{0}, g_{1}, \ldots, g_{n+2}\right)\right)=\left(\left[g_{0}\right], g_{1}+g_{0}, \ldots, g_{n+2}+g_{0}\right)
$$

Proof: We write $\partial \sigma$ as the union $\tau_{0} \cup \tau_{1} \cup \cdots \cup \tau_{n+2}$, where each τ_{i} is an $(n+1)$ face of σ. Then by the construction,

$$
E=K\left(G_{0}, n\right) \cup K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)
$$

and

$$
K\left(G_{i}, n\right) \cap K\left(G_{j}, n\right)=\tau_{i} \cap \tau_{j} \text { for each pair } i, j \in\{0,1, \ldots, n+2\}
$$

where $G_{i}=G$. We note by use of Mayer-Vietoris exact sequences that

$$
\begin{aligned}
H_{n}\left(K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)\right) & \approx H_{n}\left(K\left(G_{1}, n\right)\right) \oplus \cdots \oplus H_{n}\left(K\left(G_{n+2}, n\right)\right) \\
& \approx G_{1} \oplus \cdots \oplus G_{n+2}
\end{aligned}
$$

Next, let us take the following Mayer-Vietoris sequence of the couple $\left\{K\left(G_{0}, n\right), K\left(G_{1}, n\right)\right.$ $\left.\cup \cdots \cup K\left(G_{n+2}, n\right)\right\}$:

$$
\begin{aligned}
& H_{n}\left(K\left(G_{0}, n\right) \cap\left(K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)\right)\right) \\
& \rightarrow H_{n}\left(K\left(G_{0}, n\right)\right) \oplus H_{n}\left(K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)\right) \\
& \rightarrow H_{n}(E) \xrightarrow{\partial} H_{n-1}\left(K\left(G_{0}, n\right) \cap\left(K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)\right)\right) \rightarrow \cdots
\end{aligned}
$$

Since $\partial \tau_{0}=K\left(G_{0}, n\right) \cap\left(K\left(G_{1}, n\right) \cup \cdots \cup K\left(G_{n+2}, n\right)\right)$, the sequence above can be reduced to the exact one:

$$
\mathrm{Z} \xrightarrow{\Delta \alpha} G_{0} \oplus \cdots \oplus G_{n+2} \rightarrow H_{n}(E) \rightarrow 0
$$

The homomorphism $q: G_{0} \oplus G_{1} \oplus \cdots \oplus G_{n+2} \rightarrow\left(G_{0} / \operatorname{Im} \alpha\right) \oplus G_{1} \oplus \cdots \oplus G_{n+2}$ given by

$$
q\left(g_{0}, g_{1}, \ldots, g_{n+2}\right)=\left(\left[g_{0}\right], g_{1}+g_{0}, \ldots, g_{n+2}+g_{0}\right)
$$

clearly induces a homomorphism $\tilde{q}:(G \oplus \cdots \oplus G) / \operatorname{Im} \Delta_{\alpha} \rightarrow(G / \operatorname{Im} \alpha) \oplus G \oplus \cdots \oplus G$, where $[g], g \in G$, is the equivalence class of g in $G / \operatorname{Im} \alpha$. Then we have easily that \tilde{q} is an isomorphism.

Propositidn 2.3. Let $\alpha: Z \rightarrow G$ be a homomorphism from the group of integers to an Abelian group G. Then the homomorphism $\alpha^{*}: \operatorname{Hom}(G, G) \rightarrow \operatorname{Hom}(\mathbf{Z}, G)$ induced by α is a monomorphism if and only if $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)=0$.

THEOREM 2.4. Let $\alpha: \mathrm{Z} \rightarrow G$ be a homomorphism from the group of integers to an Abelian group G. Then the following are equivalent:
(1) there exists an Edwards-Walsh resolution $\omega: \mathrm{EW}_{G}(L, n) \rightarrow|L|$ of each simplicial complex L with $\operatorname{dim} L \geqslant n+2$ such that
(iv) the inclusion-induced homomorphism $\pi_{n}\left(\omega^{-1}(\partial \tau)\right) \rightarrow \pi_{n}\left(\omega^{-1}(\tau)\right)$ is α for each $(n+1)$-simplex τ of L, and
(v) the inclusion-induced homomorphism $\pi_{n}\left(\omega^{-1}(\partial \sigma)\right) \rightarrow \pi_{n}\left(\omega^{-1}(\sigma)\right)$ maps the subgroup $G / \operatorname{Im} \alpha$ to zero for any ($n+2$)-simplex σ of L (where if $n=1$, we consider the Abelianisation of the fundamental groups),
(2) the homomorphism $\alpha^{*}: \operatorname{Hom}(G, G) \rightarrow \operatorname{Hom}(\mathbf{Z}, G)$ induced by α is an isomorphism.

Remark 2.5. The subgroup $G / \operatorname{Im} \alpha$ in condition (v) above depends upon the enumeration of $(n+1)$-faces of each $(n+2)$-simplex, since we calculate the group by Proposition 2.2. We also note that (v) is natural for constructing our desired resolution.

Proof: We first establish the necessity of the group condition. Suppose that there exists an Edwards-Walsh resolution $\omega: \mathrm{EW}_{G}(\sigma, n) \rightarrow \sigma$ of an $(n+2)$-simplex σ with (iv) and (v). By (iii) of Definition 2.1 and (iv), α^{*} is an epimorphism. To show that α^{*} is a monomorphism, it suffices to prove $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)=0$ by Proposition 2.3.

Let $\gamma \in \operatorname{Hom}(G, G)$ with $\gamma(\operatorname{Im} \alpha)=0$.
Let $\tau_{0}, \ldots, \tau_{n+2}$ be all $(n+1)$-faces of σ and $\omega^{-1}\left(\tau_{k}\right)=K\left(G_{k}, n\right)$, where $G_{k}=G$. We can suppose, if necessary by changing the enumeration of τ_{i}, that the subgroup $G_{0} / \operatorname{Im} \alpha$ maps to zero in $\pi_{n}\left(\omega^{-1}(\sigma)\right)$ by condition (v) and Proposition 2.2.

Choose a continuous map $f_{\gamma}:\left(K\left(G_{0}, n\right), \partial \tau_{0}\right) \rightarrow(K(G, n), *)$ which represents the homotopy class γ with $\gamma(\operatorname{Im} \alpha)=0[14$, p.244, Theorem 7.2].

Extend the composite $\left.T o \omega\right|_{\omega^{-1}\left(\sigma^{(n)}\right)}: \omega^{-1}\left(\sigma^{(n)}\right) \rightarrow K(G, n)$ to the map $F: \omega^{-1}(\partial \sigma)$ $\rightarrow K(G, n)$, where $T: \sigma^{(n)} \rightarrow K(G, n)$ is the constant map to *, defined by

$$
\left.F\right|_{K\left(G_{k}, n\right)} \text { is the constant map to } * \text { for } k=1, \ldots, n+2
$$

and

$$
\left.F\right|_{K\left(G_{0}, n\right)}=f_{\gamma} .
$$

Let $\widetilde{F}: \omega^{-1}(\sigma) \rightarrow K(G, n)$ be an extension of F by (iii) of Definition 2.1. We note by (v) and the Hurewicz theorem that for each $g \in G, i_{*}(([g], 0, \ldots, 0))=0$ on the n-dimensional homology groups, where $i: \omega^{-1}(\partial \sigma) \hookrightarrow \omega^{-1}(\sigma)$.

$$
\begin{gathered}
G_{0} \oplus G_{1} \oplus \cdots \oplus G_{n+2} \\
H_{n}\left(\omega^{-1}(\partial \sigma)\right) \approx G_{0} / \stackrel{q}{\operatorname{Im} \alpha \oplus G_{1} \oplus \cdots \oplus G_{n+2} \xrightarrow{F_{*}} G} \begin{array}{c}
i_{*} \\
H_{n}\left(\omega^{-1}(\sigma)\right)
\end{array}
\end{gathered}
$$

Therefore, for $g \in G_{0}=G$, we have

$$
\begin{aligned}
0=\tilde{F}_{*} \circ i_{*}(([g], 0, \ldots, 0)) & =F_{*}(([g], 0, \ldots, 0)) \\
& =F_{*} \circ q((g,-g, \ldots,-g)) \quad \text { by Proposition } 2.2 \\
& =\left(f_{\gamma}\right)_{*}(g)+0 \\
& =\gamma(g)
\end{aligned}
$$

This means that γ is trivial. Therefore $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)=0$.
Conversely, we suppose that α^{*} is an isomorphism. The construction is similar to that in previous works $[5,3,11]$, that is, our task is only to state the Fact below
without condition (EW_{1}) in the Introduction. However, we again give a detailed proof for completeness.

We first consider the case $n>1$ and $\operatorname{dim} L<\infty$. Proceed by induction on $m=\operatorname{dim} L$. If $m \leqslant n$, we define $\mathrm{EW}_{G}(L, n)=|L|$ and $\omega=\mathrm{id}_{|L|}$.

Suppose that $m=n+1$. Attaching via the identity map the mapping cylinder $M(\sigma)$ of the map $\partial \sigma \rightarrow K(G, n)$ induced by α on the subcomplex $\partial \sigma$ of $\left|L^{(n)}\right|$ for each $(n+1)$-simplex σ of L, we have the CW-complex $\mathrm{EW}_{G}\left(L^{(n+1)}, n\right)$. The map ω is chosen so that $\omega(M(\sigma) \backslash \partial \sigma) \subseteq \sigma \backslash \partial \sigma$ and ω is an extension of the identity map $\mathrm{id}_{\left|L^{(n)}\right|}$. Conditions (i) and (ii) of Definition 2.1 and (iv) are trivial. Condition (iii) of 2.1 follows from the surjectiveness of α^{*} and the universal coefficient theorem for cohomology.

We next consider the case $m=n+2$. Suppose inductively that we have constructed the Edwards-Walsh resolution $\omega: \mathrm{EW}_{G}\left(L^{(n+1)}, n\right) \rightarrow\left|L^{(n+1)}\right|$ with condition (iv). Then we have the homology group $H_{n}\left(\omega^{-1}(\partial \sigma)\right) \approx(G / \operatorname{Im} \alpha) \oplus \underbrace{G \oplus \cdots \oplus G}_{n+2}$ by
Proposition 2.2 .

Since $\omega^{-1}(\partial \sigma)$ is simply connected, and $\tilde{H}_{k}\left(\omega^{-1}(\partial \sigma)\right)$ is trivial for $k \leqslant n-1$,

$$
\pi_{n}\left(\omega^{-1}(\partial \sigma)\right) \approx(G / \operatorname{Im} \alpha) \oplus\left(\bigoplus_{1}^{n+2} G\right)
$$

by the Hurewicz isomorphism theorem. Construct an Eilenberg-MacLane space of type $\left(\bigoplus_{1}^{n+2} G, n\right)$ from $\omega^{-1}(\partial \sigma)$ by attaching $(n+1)$-cells to kill the subgroup $G / \operatorname{Im} \alpha$, and next attaching cells of dimension $\geqslant n+2$ to kill higher dimensional homotopy groups. Moreover, extend the map ω such that the interior of each cell used to construct the Eilenberg-MacLane space is mapped into $\sigma \backslash \partial \sigma$. We use the same notation ω for the extension.

Conditions (i) and (ii) of Definition 2.1 have been built in. For checking condition (iii) of 2.1, we show that for every $(n+2)$-simplex $\sigma \in L$, each map $f: \omega^{-1}(\partial \sigma) \rightarrow$ $K(G, n)$ extends over $\omega^{-1}(\sigma)$. By the construction,

$$
\omega^{-1}(\sigma)^{(n+1)}=\omega^{-1}(\partial \sigma)^{(n+1)} \cup \bigcup_{\beta_{i}} B^{n+1}
$$

where β_{i} represents an element of $G / \operatorname{Im} \alpha$ in $\pi_{n}\left(\omega^{-1}(\partial \sigma)\right)$. So, we have $f_{*}\left(\left[\beta_{i}\right]\right)=0$ in $\pi_{n}(K(G, n))$ by Proposition 2.3. Hence f can be extended over $\omega^{-1}(\sigma)^{(n+1)}$. Therefore we have an extension of f over $\omega^{-1}(\sigma)$ by the triviality of the higher homotopy groups of $K(G, n)$. Condition (v) is satisfied by the construction.

Finally we consider the case $m \geqslant n+3$. Suppose that we have constructed the Edwards-Walsh resolution $\omega: \mathrm{EW}_{G}\left(L^{(m-1)}, n\right) \rightarrow\left|L^{(m-1)}\right|$ with conditions (iv) and
(v). Furthermore we assume that for $n+1 \leqslant \operatorname{dim} \tau=k \leqslant m-1, \omega^{-1}(\tau)$ is an Eilenberg-MacLane space of type $\left({\underset{1}{k} C_{n+1}}_{\nmid}^{\left({ }_{1}\right)} n\right)$, where ${ }_{r} C_{s}=(r!/ s!(r-s)!)$. Then we can state the following:

FACT. $H_{n}\left(\omega^{-1}(\partial \sigma)\right) \approx \underbrace{G \oplus \cdots \oplus G}_{m C_{n+1}}$ for any m-simplex σ of L.
Proof: For our purpose we show the statement for any face $\tau \preceq \sigma$ with $\operatorname{dim} \tau \geqslant$ $n+3$.

Let $\operatorname{dim} \tau=n+3$. We write $\partial \tau$ as the union $\tau_{0} \cup \tau_{1} \cup \cdots \cup \tau_{n+3}$, where each τ_{i} is an $(n+2)$-face of τ. Then we have the following Mayer-Vietoris exact sequence:
$(*) \quad H_{n}\left(\omega^{-1}\left(\partial \tau_{0}\right)\right) \longrightarrow H_{n}\left(\omega^{-1}\left(\tau_{0}\right)\right) \oplus H_{n}\left(\omega^{-1}\left(\tau_{1} \cup \cdots \cup \tau_{n+3}\right)\right)$

$$
\longrightarrow H_{n}\left(\omega^{-1}(\partial \tau)\right) \longrightarrow 0
$$

By $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)=0$ and algebraic calculations based on Proposition 2.2, the sequence can be easily reduced to the exact sequence:

$$
\begin{aligned}
G / \operatorname{lm} \alpha \oplus \underbrace{(G \oplus \cdots \oplus G)}_{n+2} \stackrel{(i,-j)}{\longrightarrow} \underbrace{(G \oplus \cdots \oplus G)}_{n+2} \oplus \underbrace{(G \oplus \cdots+1}_{n+3} & \\
& \longrightarrow H_{n}\left(\omega^{-1}(\partial \tau)\right) \longrightarrow 0
\end{aligned}
$$

where homomorphisms i and j are defined by

$$
i\left(\left(\left[g_{0}\right], g_{1}, \ldots, g_{n+2}\right)\right)=\left(g_{1}, \ldots, g_{n+2}\right)
$$

and

$$
j\left(\left(\left[g_{0}\right], g_{1}, \ldots, g_{n+2}\right)\right)=\left(g_{1}, \ldots, g_{n+2}, 0, \ldots, 0\right)
$$

Thus the exact sequence means that the statement is true for $\operatorname{dim} \tau=n+3$.
For $\operatorname{dim} \tau=n+k \leqslant m(k \geqslant 3)$, we can easily show the following by double induction starting from the case above, using Mayer-Vietoris exact sequences: Let $\tau_{0}, \tau_{1}, \ldots, \tau_{n+k}$ be all $(n+k-1)$-faces of τ. Then for $i \leqslant n+2$,

$$
H_{n}\left(\omega^{-1}\left(\tau_{1} \cup \cdots \cup \tau_{i}\right)\right) \approx \bigoplus_{1}^{n+k-1 C_{n+1}} G \oplus \cdots \oplus \bigoplus_{1}^{n+k-1-(i-1) C_{n+1-(i-1)}} G
$$

and for $n+3 \leqslant j \leqslant n+k$,

$$
H_{n}\left(\omega^{-1}\left(\tau_{1} \cup \cdots \cup \tau_{j}\right)\right) \approx \bigoplus_{1}^{n+k-1} C_{n+1} G \oplus \cdots \oplus \bigoplus_{1}^{k-2} C_{0} G
$$

Furthermore, we state that the inclusion $\omega^{-1}\left(\partial \tau_{0}\right) \rightarrow \omega^{-1}\left(\tau_{1} \cup \cdots \cup \tau_{n+k}\right)$ induces the next homomorphism on the n-dimensional homology groups up to automorphisms:

$$
\left(g_{1}, \ldots, g_{n+k-1} C_{n+1}\right) \longmapsto\left(g_{1}, \ldots, g_{n+k-1} C_{n+1}, 0, \ldots, 0\right)
$$

Then we have, by the Mayer-Vietoris exact sequence (*) in case of $\operatorname{dim} \tau=m$,

This completes the proof of the fact.
Let us return to the construction. Recall that $m \geqslant n+3$. We have $\pi_{n}\left(\omega^{-1}(\partial \sigma)\right) \approx$ $\underbrace{G \oplus \cdots \oplus G}_{m C_{n+1}}$ for every m-simplex σ of L by the Fact and the Hurewicz isomorphism theorem. Hence construct an Edwards-Walsh resolution of L by attaching cells of dimension greater than $n+1$ to $\omega^{-1}(\partial \sigma)$ for $\operatorname{dim} \sigma=m$, and extending the map ω such that the interior of new cell is mapped into $\sigma \backslash \partial \sigma$. The extending map satisfies the property:

$$
\omega\left(\mathrm{EW}_{G}\left(L^{(m)}, n\right) \backslash \mathrm{EW}_{G}\left(L^{(m-1)}, n\right)\right) \subseteq\left|L^{(m)}\right| \backslash\left|L^{(m-1)}\right|
$$

Here we note that

$$
\omega^{-1}(\partial \sigma)^{(n+1)}=\omega^{-1}(\sigma)^{(n+1)}
$$

for any m-simplex σ of L. Then conditions (i) and (ii) of Definition 2.1 for $L=L^{(m)}$ are easily seen to be true. Condition (iii) of 2.1 follows from (\star) and properties of $K(G, n)$. Conditions (iv) and (v) are our inductive assumption.

If $\operatorname{dim} L=\infty$, by applying the previous construction inductively, we can have our desired Edwards-Walsh resolution.

In case $n=1$, it suffices to apply an argument of the Abelianisation (for details, see [5], [11,Theorem 2.3]).

Remark. In works [5,11], condition ($E W_{1}$), which appeared in the Introduction, was essentially used to show the Fact above.

The groups $\mathbf{Z}, \mathbf{Z} / p$ and $\mathbf{Z}_{(p)}$ satisfy such a condition, that is, there are such resolutions with respect to the groups. (These are well-known, $[13,5]$ and $[2,3]$.)

Example. If $G=\mathbf{Z} / p \oplus \mathbf{Z}_{(q)}$ or $\widehat{\mathbf{Z}}_{p}$, where $p \neq q$, then Edwards-Walsh resolutions $\omega: \mathrm{EW}_{G}(L, n) \rightarrow|L|$ exist for all n and all simplicial complexes.

3. Property (EW) and Abelian groups

Theorem 3.1. Let G be an Abelian group with property (EW). Then the group is precisely either a cyclic group or a localisation of the integer group at some prime numbers.

Remark. We note that if G is either a cyclic group or a localisation of the integer group at some prime numbers, then G has property (EW).

The following fact essentially comes from our previous paper [11]. We give a proof for completeness.

Proposition 3.2. Let G be an Abelian group with property (EW). Then we have the following properties.
(i) The group $G / \operatorname{Im} \alpha$ is a torsion group.
(ii) If $\operatorname{Im} \alpha$ is an infinite cyclic group, G is torsion-free.
(iii) If $\operatorname{Im} \alpha$ is a finite cyclic group, $G=\operatorname{Im} \alpha$.

Proof: (i) If $G / \operatorname{Im} \alpha$ has an element of infinite order, so does G. However, this is a contradiction by the triviality of $(G / \operatorname{Im} \alpha) \otimes G$, which follows by the surjectiveness of $\left(E W_{1}\right)$.
(ii) Suppose that the group G has an element of order p. Then the group has a direct summand \mathbf{Z} / p^{k} for some $1 \leqslant k \leqslant \infty$ by [12, Corollary 3]. Since $(\operatorname{Im} \alpha) \cap$ $G_{p}=\{0\}$ by the assumption of (ii), $G / \operatorname{Im} \alpha$ also contains \mathbf{Z} / p^{k} as a direct summand. Therefore $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)$ has a copy of the non-trivial group $\operatorname{Hom}\left(\mathbf{Z} / p^{k}, \mathbf{Z} / p^{k}\right)$. This is a contradiction by the injectiveness of $\left(\mathrm{EW}_{2}\right)$. It follows that G is torsion free.
(iii) We note by (EW_{1}) that α induces an isomorphism $G \approx \mathrm{Z} \otimes G \approx G \otimes G$.

The hypothesis of (iii) means that $\operatorname{Im} \alpha=\mathbf{Z} / q$ for some positive integer q. Then we have

$$
G \approx \mathbf{Z} \otimes G \approx(\operatorname{Im} \alpha) \otimes G \approx G / q G
$$

Namely, $G=G_{q}$. Furthermore the group G is the direct sum of finite cyclic groups by [7, Theorem 61.3]. If $\operatorname{Im} \alpha \neq G$, then so is $G / \operatorname{Im} \alpha$.

Suppose $(G / \operatorname{Im} \alpha)_{p}$ is non-trivial. Then G and $G / \operatorname{Im} \alpha$ contain p^{k} and p^{l} cyclic groups as direct summands, respectively. But this is a contradiction by $\operatorname{Hom}(G / \operatorname{Im} \alpha, G)$ $=0$. Therefore $\operatorname{Im} \alpha=G$.

Lemma 3.3. The group G is divisible by a prime number p from $\widetilde{P}=\{p$: $\left.(G / \operatorname{Im} \alpha)_{p} \neq 0\right\}$.

Proof: Let $p \in \widetilde{P}$. Then $G / \operatorname{Im} \alpha$ has a direct summand \mathbf{Z} / p^{k} for some $1 \leqslant k \leqslant$ ∞ by [12, Corollary 3]. It follows from the surjectiveness of ($E W_{1}$) that $\mathbf{Z} / p^{k} \otimes G=0$. Thus $G=p G$. If $k=\infty$, use that G is torsion free by Proposition 3.2 (iii) and (ii). $]$

Proof of Theorem 3.1: If $G / \operatorname{Im} \alpha=0$, the group G is a cyclic group.
Let $G / \operatorname{Im} \alpha \neq 0$. Put $P=\mathcal{P} \backslash \widetilde{P}$, where \mathcal{P} is the set of all primes. Then we define a function $f: \mathbf{Z}_{(P)} \rightarrow G$ by $f(n / m)=n \alpha(1) / m$. Here, we note that for each product q of numbers from \widetilde{P} and $g \in G$, there exists a unique element $z \in G$ such that $q z=g$ by Lemma 3.3 and Proposition 3.2 (iii) and (ii). We easily see that the function is an isomorphism.

References

[1] P.S. Alexandroff, 'Dimensionstheorie, ein Beitrag zur Geometrie der abgesehlossenen Mengen', Math. Ann. 106 (1932), 161-238.
[2] A.N. Dranishnikov, 'Homological dimension theory', Russian Math. Surveys 43 (1988), 11-63.
[3] A.N. Dranishnikov, 'K-theory of Eilenberg-MacLane spaces and cell-like mapping problem', Trans. Amer. Math. Soc. 335 (1993), 91-103.
[4] J. Dydak, 'Cohomological dimension theory', in Handbook of Geometric Topology, 1997 (to appear).
[5] J. Dydak and J. Walsh, 'Complexes that arise in cohomological dimension theory: A unified approach', J. London Math. Soc. 48 (1993), 329-347.
[6] R.D. Edwards, 'A theorem and a question related to cohomological dimension and cell-like map', Notices Amer. Math. Soc. 25 (1978), A-259.
[7] L. Fuchs, Infinite abelian groups (Academic Press, New York, 1970).
[8] W. Hurewicz and H. Wallman, Dimension theory (Princeton University Press, Princeton, N.J., 1941).
[9] Y. Kodama, 'Cohomological dimension theory', in Appendix to K. Nagami, Dimension theory (Academic Press, New York, 1970).
[10] W.I. Kuzminov, 'Homological dimension theory', Russian Math. Surveys 23 (1968), 1-45.
[11] A. Koyama and K. Yokoi, 'Cohomological dimension and acyclic resolutions', Topology Appl. (to appear).
[12] T. Szele, 'On direct decompositions of abelian groups', J. London Math. Soc. 28 (1953), 247-250.
[13] J.J. Walsh, 'Dimension, cohomological dimension, and cell-like mappings', in Shape theory and geometric topology (Dabrovnik, 1981), Lecture Notes in Math. 870 (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 105-118.
[14] G.W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61 (Springer-Verlag, Berlin, Heidelberg, New York, 1978).

Department of Mathematics
Interdisciplinary Faculty of Science and Engineering
Shimane University
Matsue, 690-8504
Japan
e-mail: yokoi@math.shimane-u.ac.jp

[^0]: Received 14th February, 2000
 The author was partially supported by the Ministry of Education, Science, Sports and Culture under Grant-in-Aid for Encouragement of Young Scientists, (No.11740035, 1999-2000).

