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Abstract

In this paper we obtain some equivalent conditions and sufficient conditions for the local
and nonlocal asymptotics of the ϕ-moments of the overshoot and undershoot of a random
walk, where ϕ is a nonnegative, long-tailed function. By the strong Markov property, it
can be shown that the moments of the overshoot and undershoot and the moments of the
first ascending ladder height of a random walk satisfy some renewal equations. Therefore,
in this paper we first investigate the local and nonlocal asymptotics for the moments of the
first ascending ladder height of a random walk, and then give some equivalent conditions
and sufficient conditions for the asymptotics of the solutions to some renewal equations.
Using the above results, the main results of this paper are obtained.
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1. Introduction

Assume that {Xi, i ≥ 1} is a sequence of independent, identically distributed (i.i.d.) random
variables (RVs) with common distribution F and finite mean µF = −m < 0. Set S0 = 0 and
Sn = ∑n

i=1Xi, n ≥ 1. Then {Sn, n ≥ 0} is a random walk generated by {Xi, i ≥ 1}. For a
level x ≥ 0, denote the first passage time over x by

τx = inf{n ≥ 1 : Sn > x},
where, by convention, inf ∅ = ∞. Then Sτx−x is the overshoot and x−Sτx−1 is the undershoot
of the random walk at level x.

It is well known that the overshoot and undershoot are among the main features of random
walks and they have many applications in risk theory, queueing theory, branching process theory,
etc. There is considerable literature on the overshoot and undershoot of random walks. Janson
(1986) gave necessary and sufficient conditions for the existence of moments for the first passage
and last exit times, and related quantities for random walks with positive drift. Borovkov and
Foss (2000) presented estimates for the magnitude of the overshoot over an arbitrary boundary
and the weak convergence of the distribution of the overshoot. Klüppelberg et al. (2004)
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formulated the insurance risk process in a general Lévy process setting, and gave general
theorems for the ruin probability and the asymptotic distribution of the overshoot of the process
above a high level. Doney and Kyprianou (2006) used a new fluctuation identity for a general
Lévy process and gave the asymptotic overshoot distribution of a Lévy process. Tang (2007)
obtained uniform asymptotics of the overshoot of a random walk with negative drift, and the
local uniform asymptotics of the overshoot of a random walk have been investigated in Chen et
al. (2008). Many of the aforementioned works focus on the study of the asymptotics for the
distributions of the overshoot and undershoot of a random walk. In this paper we will investigate
the local and nonlocal asymptotics for the moments of the overshoot and undershoot of a random
walk. These results indicate the average asymptotics of the overshoot and undershoot of a
random walk. In particular, the asymptotics of the corresponding distribution can be given.

Throughout this paper, we assume that ϕ is a nonnegative function supported on [0,∞). For
any 0 < T ≤ ∞, set �T = (0, T ] and x+�T = (x, x+ T ]; if T = ∞ then let �∞ = (0,∞)

and x + �∞ = (x,∞). When 0 < T < ∞, the asymptotics of

E ϕ(Sτx − x)1{Sτx∈x+�T } and E ϕ(x − Sτx−1)1{Sτx∈x+�T }

are called the local asymptotics for the ϕ-moments of the overshoot and undershoot of a random
walk; whenT = ∞, they are called the nonlocal asymptotics for theϕ-moments of the overshoot
and undershoot of a random walk.

We first recall a related result. Using the theory of ascending ladder heights, Cheng et
al. (2002) obtained nonlocal asymptotics for the ϕ-moments of the deficit at the ruin time in the
renewal risk model. In other words, they obtained nonlocal asymptotics for E ϕ(Sτx−x)1{τx<∞},
where they required the condition that ϕ is nondecreasing, which made it convenient for them
to prove their results using integration by parts. Also, using the nondecreasing property of ϕ,
a simple proof of the results of Cheng et al. (2002) for the heavy-tailed case has been given
(see Cui and Wang (2007)). But, in order to extend the scope of applications and also for the
mathematical interest, in this paper we will let ϕ be a long-tailed function (see the definition
below), which may not be nondecreasing. In this paper we will also consider the undershoot
of a random walk, and we will investigate not only the nonlocal asymptotics but also the local
asymptotics for the ϕ-moments of the overshoot and undershoot of a random walk with heavy-
tailed increments. Since the overshoot, Sτx − x, and the undershoot, x − Sτx−1, may often not
be very large in practice, the latter is more interesting than the former.

Since ϕ may not be nondecreasing, we cannot use the method of Cheng et al. (2002). We
will use the renewal equations to prove our results. Using the strong Markov property, we
find that the moments of the overshoot and undershoot and the moments of the first ascending
ladder height of a random walk satisfy some renewal equations. So we first consider the local
and nonlocal asymptotics for the moments of the first ascending ladder height of a random
walk, and then give some equivalent conditions and sufficient conditions for the asymptotics
of the solutions to some renewal equations. On the basis of the above results, some equivalent
conditions and sufficient conditions for the local and nonlocal asymptotics of the moments of
the overshoot and undershoot of a random walk are obtained. For example, under some mild
conditions, Theorem 2.1, below, presents some equivalent conditions for the following local
asymptotics:

lim
x→∞

E ϕ(Sτx − x)1{Sτx∈x+�T }
F(x)

= C0,

where C0 is a positive constant. In particular, when ϕ ≡ 1, the above result can describe the
local asymptotics of the distribution of the overshoot. Thus, it can describe the asymptotics of
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the local ruin probability in the renewal risk model (see Remark 2.2, below). The results of this
paper can also be applied to other fields of applied probability.

Recently, Park and Maller (2008) considered the nonlocal asymptotics of theβ-order moment
of the overshoot and undershoot of a Lévy process with drifts to −∞ almost surely (here β
is a positive constant). Since a Lévy process is different from a random walk, in forthcoming
papers we will investigate the uniform local asymptotics of a Lévy process and its overshoot
and undershoot, and the local asymptotics of the ϕ-moments of the overshoot and undershoot
of a Lévy process.

The paper is organized as follows. In Section 2 we will present our main results, i.e. equiva-
lent conditions and sufficient conditions for the local and nonlocal asymptotics of the moments
of the overshoot and undershoot of a random walk. In Section 4 we will investigate the local
and nonlocal asymptotics of the moments of the first ascending ladder height of a random walk.
For this, in Section 3, two general results about asymptotics of the moments of a random walk
will be given. In Section 5 we will give some equivalent conditions and sufficient conditions
for the asymptotics of the solutions to some renewal equations. Using the results of Sections 4
and 5, the main results of this paper will be proved in Section 6.

2. Main results

In order to give the main results of this paper, we will introduce some notions and notation,
which will be valid throughout the rest of this paper.

Unless stated otherwise, in this paper a limit is taken as x → ∞ and, for a given func-
tion or distribution, we assume that its support is D = (−∞,∞) or [0,∞). Let f1(x)

and f2(x) be nonnegative functions. We write f1(x) ∼ f2(x) if lim f1(x)/f2(x) = 1;
f1(x) = O(1)f2(x) if lim sup f1(x)/f2(x) < ∞; f1(x) � f2(x) if lim sup f1(x)/f2(x) ≤ 1;
f1(x) ≈ f2(x) if f1(x) = O(1)f2(x) and f2(x) = O(1)f1(x); and f1(x) = o(1)f2(x) if
lim f1(x)/f2(x) = 0. For a distribution V , let V = V (∞) − V and let V I (x) = V (∞) −
min{V (∞),

∫ ∞
x
V (y) dy}, x ≥ 0, be the integrated distribution of V . Denote the n-fold

convolution of V by V ∗n, n = 0, 1, 2, . . . , where V ∗1 = V and V ∗0 is the distribution
degenerated at 0.

Since asymptotics of the moments of the overshoot and undershoot of a random walk have
a close relation with the corresponding distribution, we will introduce some function classes
and distribution classes. We say that a nonnegative function f ∈ Ld(γ ) for some γ ≥ 0 if f
is eventually positive and, for all y ∈ (−∞,∞),

f (x − y) ∼ eγyf (x).

We say that a nonnegative function f ∈ Sd(γ ) for some γ ≥ 0 if

f ∈ Ld(γ ), 0 < a =
∫ ∞

0
f (y) dy < ∞, and

∫ x

0
f (x − y)f (y) dy ∼ 2af (x).

In particular, we call Ld(0) the long-tailed function class and Sd(0) the subexponential function
class, denoted by Ld and Sd , respectively. For the properties and applications of Ld(γ ) and
Sd(γ ), we refer the reader to Klüppelberg (1989), Wang and Wang (2006), and Wang and
Wang (2009), among others.

We say that a distribution V ∈ L(γ ) for some γ ≥ 0 if V ∈ Ld(γ ). We say that a proper
distribution V ∈ S(γ ) for some γ ≥ 0 if V ∈ L(γ ) and there exists a positive constant c
such that V ∗2(x) ∼ 2cV (x). When V is defective, i.e. V (∞) < 1, we say that V ∈ S(γ )
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for some γ ≥ 0 if V/V (∞) ∈ S(γ ). Let gV (−s) = ∫
D

esyV (dy) for any s ≥ 0. Foss and
Korshunov (2007) have shown that c = gV (−γ ) for the case in which D = [0,∞). Recently,
Yu et al. (2009) obtained some corresponding results for the case in whichD = (−∞,∞). We
call S(γ ), γ ≥ 0, the convolution equivalent distribution class. Specifically, we call L(0) the
long-tailed distribution class and S(0) the subexponential distribution class, denoted by L and
S, respectively. The class S(γ )was introduced in Chistyakov (1964) and Chover et al. (1973a),
(1973b) for distributions on [0,∞), and in Pakes (2004) for distributions on (−∞,∞). Bertoin
and Doney (1996) pointed out that in the definition of L(γ ), when γ > 0 and V is a lattice
distribution, x and y should be taken to be an integer multiple of the span, which we will assume
to be the case in the following. In addition, Klüppelberg (1988) introduced a subclass of S,
denoted by S∗. We say that a distribution V ∈ S∗ if V ∈ Sd. Klüppelberg (1988) showed that
if a distribution V ∈ S∗ then V ∈ S and V I ∈ S. But Denisov et al. (2004) pointed out that
the converse proposition is not true, that is to say there exists a distribution V with finite mean
such that V ∈ S and V I ∈ S, but V /∈ S∗.

Asmussen et al. (2003) introduced some local distribution classes. For a distribution V , let
g(x) = V (x + �T ) for some 0 < T ≤ ∞. We say that V ∈ L�T

if g ∈ Ld. For a proper
distribution V on [0,∞), we say that V ∈ S�T

if V ∈ L�T
and V ∗2(x + �T ) ∼ 2V (x + �T ).

When V is defective, i.e. V (∞) < 1, we say that V ∈ S�T
if V/V (∞) ∈ S�T

. Asmussen et
al. (2003) called L�T

the local long-tailed distribution class and S�T
the local subexponential

distribution class. Asmussen et al. (2003) systematically investigated the properties of L�T
and

S�T
, and gave applications to random walks, the key renewal theorem, the compound Poisson

process, infinitely divisible laws, and Bellman–Harris branching processes. Furthermore,
Wang et al. (2005) investigated the closure of the local subexponential distribution class under
convolution roots and gave an application to infinitely divisible laws. Denisov and Shneer (2007)
obtained local asymptotics of the cycle maximum of a random walk with local subexponential
increments. Using the local subexponential distribution class, Wang et al. (2007) studied the
local asymptotics for random sums and gave applications to infinitely divisible laws. Chen et
al. (2008) obtained uniform local asymptotics of the distribution of the overshoot of a random
walk with heavy-tailed increments. Gao and Wang (2009) obtained equivalent conditions for
the asymptotics of the local ruin probability in the random multi-delayed renewal risk model,
among others. In the above studies, these local distribution classes are often not only the
sufficient condition but also the necessary condition for the local asymptotics.

Recall that τx, x ≥ 0, is given in Section 1. In particular, write τ+ = τ0. We call τ+ the
first ascending ladder epoch and Sτ+ the first ascending ladder height of the random walk. As
τ+, we denote the first weak descending ladder epoch of the random walk by

τ− = inf{n ≥ 1 : Sn ≤ 0},

and call Sτ− the first weak descending ladder height. Let F+ and F− be the distributions of
Sτ+ and Sτ− , respectively. It is well known (see, e.g. Asmussen (2003, Chapter VIII)) that,
when m > 0, F− is proper and F+ is defective, i.e. α = F+(∞) = 1 − e−B < 1, where
B = ∑∞

n=1 n
−1 P(Sn > 0) < ∞. In this case we define the proper distribution of F+ by

Fp+(x) = P(Sτ+ ≤ x | τ+ < ∞) = α−1F+(x), x ≥ 0.

For any s ≥ 0, set g+(−s) = gF+(−s) and g−(−s) = gF−(−s).
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In the following we give some equivalent conditions and sufficient conditions for the local
and nonlocal asymptotics of the ϕ-moments of the overshoot and undershoot of a random walk.
They will be presented for the heavy-tailed and light-tailed cases.

2.1. Heavy-tailed case

We first give the local asymptotic results, which are the main results of this section.

Theorem 2.1. Assume that ϕ ∈ Ld , that ϕ is continuous and satisfies the conditions
∫ ∞

0
ϕ(y)F (y) dy < ∞ and ϕ(x) = O(1) inf

y≥x ϕ(y), (2.1)

and that, for any a > 0,
ϕa ≡ sup

y∈[0,a]
ϕ(y) < ∞. (2.2)

Also, let F ∈ L. Then the following assertions are equivalent:

(i) F ∈ S∗;

(ii) FI ∈ S�T
for all 0 < T < ∞;

(iii) U0 ∈ L, F ∈ L, FI (x) ≈ U0(x), and

E ϕ(Sτx − x)1{Sτx∈x+�T } ∼ (IT −1(1 − α)−1 + C)m−1FI (x + �T )

∼ (I (1 − α)−1 + CT )m−1F(x) for all 0 < T < ∞,

where

I =
∫ ∞

0
E ϕ(Sτ+ − y)1{Sτ+∈y+�T } dy and C = T −1

∫ T

0
ϕ(y) dy.

Here we note that for (ii) to imply (i) we only need FI ∈ S�T
for some 0 < T < ∞.

Theorem 2.2. Assume that ϕ ∈ Ld , that ϕ(x) → a, and that ϕ satisfies (2.1). Also, let
F ∈ L�T1

for some 0 < T1 < ∞, and define z1(x) = E ϕ(x − Sτ+−1)1{Sτ+∈x+�T1 }, x ≥ 0.
Case 1. If 0 < a < ∞, F ∈ S∗, and z1(x) is directly Riemann integrable, then

E ϕ(x − Sτx−1)1{Sτx∈x+�T1 } ∼ ((1 − α)−1IT −1
1 + a)m−1FI (x + �T1)

∼ ((1 − α)−1I + aT1)m
−1F(x), (2.3)

where I = ∫ ∞
0 z1(y) dy.

Case 2. If a = ∞ and z1 ∈ Sd , then

E ϕ(x − Sτx−1)1{Sτx∈x+�T1 } ∼ m−1
∫ ∞

x

ϕ(y)F (y + �T1) dy. (2.4)

Remark 2.1. If ϕ ≡ 1 in Theorem 2.1 or case 1 of Theorem 2.2, then an interesting result can
be obtained, i.e.

P(Sτx ∈ x + �T1) ∼ ((1 − α)−1I + T1)m
−1F(x), (2.5)

where I = α
∫ T1

0 Fp+(y) dy = ∫ T1
0 F+(y) dy. From (2.5) we find that the above local

asymptotics are different from the local asymptotics for the supremum of the random walk.
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Denote the supremum of a random walk by M . Asmussen et al. (2002) have shown that if
F ∈ S∗ then

P(M ∈ x + �T1) ∼ T1m
−1F(x). (2.6)

Foss and Zachary (2003, Theorem 1) pointed out that F ∈ S∗ is also necessary for (2.6). By
(2.5) and (2.6), we know that P(Sτx ∈ x+ �T1) is larger than P(M ∈ x+ �T1) eventually. But
Wang et al. (2008) showed that (2.5) is equivalent to F ∈ S∗. Thus, (2.5) is equivalent to (2.6).

Remark 2.2. In the renewal risk model, assume that in an insurance company the claim sizes
are i.i.d. RVs {ξi, i ≥ 1} with finite mean E ξ1, and that the claim interarrival times are also
i.i.d. RVs {ηi, i ≥ 1} with finite mean E η1, which are independent of {ξi, i ≥ 1}. Let x be the
initial capital of the insurance company. Let the constant c be the so-called premium income
rate that satisfies the safety loading condition c E η1 − E ξ1 > 0. Let Xi = ξi − cηi, i ≥ 1,
and let M = supn≥0 Sn. The number of claims in the interval [0, t] is denoted by

N(t) = sup

{
n ≥ 1 :

n∑
i=1

ηi ≤ t

}
, t ≥ 0,

where, by convention, sup ∅ = 0. It is well known (see, e.g. Embrechts et al. (1997, Chapter 1))
that the infinite-time ruin probability is

ψ(x) = P

(
sup
t≥0

(N(t)∑
i=1

ξi − ct

)
> x

)

= P(τx < ∞)

= P(M > x).

For some 0 < T < ∞, let
ψT (x) = P(Sτx ∈ x + �T ).

Hence, by (2.5) and (2.6), we find that ψT (x) is larger than P(M ∈ x + �T ) eventually, and
we think that it is reasonable to use ψT (x) to define the local ruin probability of an insurance
company. It follows from Theorem 2(B) of Veraverbeke (1977) or (2.8), below, that

ψ(x) ∼ m−1FI (x).

Hence, ψT (x) = o(1)ψ(x). Also, as above, the deficit at the ruin time, i.e. the overshoot
Sτx − x, is often not very large in practice. Therefore, it is necessary to investigate the local
ruin probability ψT (x). The results of this paper, especially (2.5), give the asymptotics of the
local ruin probability.

The following results are the nonlocal asymptotic results.

Theorem 2.3. Assume that ϕ ∈ Ld , that ϕ(x) → a, and that ϕ satisfies (2.1) and (2.2). Also,
let FI ∈ L�T

for some 0 < T < ∞.
Case 1. If 0 < a < ∞ then the following assertions are equivalent:

(i) F I ∈ S; (ii) E ϕ(Sτx − x)1{τx<∞} ∼ am−1FI (x).

Case 2. If a = ∞ and G ∈ S, where G(x) = min{1, ∫ ∞
0 ϕ(y)F (x + y) dy}, x ≥ 0, then

E ϕ(Sτx − x)1{τx<∞} ∼ m−1
∫ ∞

0
ϕ(y)F (x + y) dy. (2.7)
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Theorem 2.4. Assume that ϕ ∈ Ld , that ϕ(x) → a, and that ϕ satisfies (2.1). Also, let
FI ∈ L.

Case 1. If 0 < a < ∞ then the following assertions are equivalent:

(i) F I ∈ S; (ii) E ϕ(x − Sτx−1)1{τx<∞} ∼ am−1FI (x). (2.8)

Case 2. If a = ∞ and G ∈ S, where G(x) = min{1, ∫ ∞
x
ϕ(y)F (y) dy}, x ≥ 0, then

E ϕ(x − Sτx−1)1{τx<∞} ∼ m−1
∫ ∞

x

ϕ(y)F (y) dy. (2.9)

Remark 2.3. We find that E ϕ(Sτx − x)1{τx<∞} and E ϕ(x − Sτx−1)1{τx<∞} in case 1 of
Theorems 2.3 and 2.4 have the same asymptotics. But the conditions of Theorem 2.4 are
weaker than those of Theorem 2.3.

2.2. Light-tailed case

It is well known that in the light-tailed case, it is not necessary to investigate the local
asymptotics. Therefore, in this subsection we will give only the nonlocal asymptotics for the
moments of the overshoot and undershoot in the light-tailed case.

Theorem 2.5. Assume that ϕ ∈ Ld , that
∫ ∞

0 ϕ(y)F (y) dy < ∞, and that ϕ is continuous.
Also, assume that F has a density f ∈ Ld(γ ) for some 0 < γ < ∞, that gF (−γ ) < 1,
and that F(x)eγ x↓, i.e. there exists a positive constant C (independent of x) such that, for any
y ≥ x,

F(y)eγy ≤ CF(x)eγ x.

Then the following assertions are equivalent:

(i) F ∈ S(γ );

(ii) F ∈ L(γ ) and

E ϕ(Sτx − x)1{τx<∞}

∼
(
γ

∫ ∞

0
ϕ(y)e−γy dy + I (1 − g+(−γ ))−1

)
(1 − gF (−γ ))−1F(x),

where I = γ
∫ ∞

0 eγy E ϕ(Sτ+ − y)1{Sτ+>y} dy.

Theorem 2.6. Assume that ϕ ∈ Ld , that ϕ(x) → a, and that
∫ ∞

0 ϕ(y)F (y) dy < ∞. Also,
let F ∈ L(γ ) for some 0 < γ < ∞ and let gF (−γ ) < 1.

Case 1. If 0 < a < ∞ then the following assertions are equivalent:

(i) F ∈ S(γ );

(ii) F ∈ L(γ ) and

E ϕ(x − Sτx−1)1{τx<∞} ∼ (a + I (1 − g+(−γ ))−1)(1 − gF (−γ ))−1F(x),

where I = γ
∫ ∞

0 eγy E ϕ(y − Sτ+−1)1{Sτ+>y} dy.

Case 2. If a = ∞ and G ∈ S(γ ), where G(x) = min{1, ∫ ∞
x
ϕ(y)F (y) dy}, x ≥ 0, then

E ϕ(x − Sτx−1)1{τx<∞} ∼ (1 − gF (−γ ))−1ϕ(x)F (x). (2.10)
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3. Two lemmas

In order to investigate asymptotics for the moments of the first ascending ladder height
of a random walk, we will give two general results about asymptotics for the moments of a
random walk as lemmas in this section. The first lemma is Proposition 3.1 of Wang and Wang
(2006), which is inspired by Lemma 3 of Asmussen et al. (2003). For any given function u
and some 0 < T ≤ ∞, let uT (x) = u(x) − u(x + T ), U(x) = ∫ ∞

x
u(y) dy, and UT (x) =

U(x) − U(x + T ), x ∈ (−∞,∞). Recall that the random walk {Sn, n ≥ 0} is given in
Section 1. Let 	n = {Sj ≤ 0 : 0 ≤ j ≤ n}, n ≥ 1 and 	0 = 
.

Lemma 3.1. (Wang and Wang (2006, Proposition 3.1).) Assume that U(0) < ∞ and UT ∈
Ld; thatu on (−∞,∞) is an eventually positive, nonincreasing function for some 0 < T < ∞;
and that u(x) = u1(x)u2(x), x ∈ (−∞,∞), for T = ∞, where u1 ∈ Ld and u2 is an
eventually positive, nonincreasing function. Then

I (x) =
∞∑
n=0

E uT (x − Sn)1	n ∼ (1 − α)m−1UT (x). (3.1)

Now we give a light-tailed version of Lemma 3.1.

Lemma 3.2. For some γ > 0, let gF (−γ ) < 1. Assume that the function l on D belongs to
Ld(γ ) and that

∫ ∞
0 l(y) dy < ∞. Then

I (x) =
∞∑
n=0

E l(x − Sn)1	n ∼ (1 − g−(−γ ))−1l(x), (3.2)

and, thus, I ∈ Ld(γ ).

Proof. It follows from l ∈ Ld(γ ) for some γ > 0 and Karamata’s theorem that

l(x) ∼ γ

∫ ∞

x

l(y) dy. (3.3)

We consider the taboo renewal functionH(B) = ∑∞
n=0Hn(B) for the setB ⊂ (−∞, 0], where

H0(B) = 1{0∈B} and Hn(B) = P(	n, Sn ∈ B) for all n ≥ 1. It follows from Theorem 2.3(b)
of Asmussen (2003) that

H(B) =
∞∑
n=0

(F−)∗n(B). (3.4)

Since gF (−γ ) < 1, by Wiener–Hopf factorization, we obtain g−(−γ ) < 1. Hence, by (3.4)
we know that

gH (−γ ) = (1 − g−(−γ ))−1. (3.5)

By (3.4) and the Blackwell renewal theorem, we have, for m > 0 and each a > 0,

H(−x + a)−H(−x) → m−1a(1 − α). (3.6)
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Now we deal with I (x). For any fixed positive integer N , by Fubini’s theorem we have

I (x) =
∞∑
n=0

∫ 0

−∞
l(x − y)P(Sn ∈ dy,	n)

=
∫ 0

−∞
l(x − y)H(dy)

=
(∫ 0

−N
+

∫ −N

−∞

)
l(x − y)H(dy)

=: I1(x)+ I2(x). (3.7)

By l ∈ Ld(γ ) and the dominated convergence theorem,

I1(x) ∼ l(x)

∫ 0

−N
eγyH(dy). (3.8)

By (3.6), l ∈ Ld(γ ), Karamata’s theorem, and (3.3), when N is sufficiently large, for any
x > 0,

I2(x) =
∞∑
j=N

∫ −j

−j−1
l(x − y)H(dy)

=
∞∑
j=N

∫ 0

−1
l(x + j − z)dH(z− j)

≤ 2
∞∑
j=N

l(x + j)

∫ 0

−1
eγ z dH(z− j)

≤ 2
∞∑
j=N

l(x + j)(H(−j)−H(−j − 1))

≤ 3m−1(1 − α)

∞∑
j=N

l(x + j)

≤ 4m−1(1 − α)γ (1 − e−γ )−1
∞∑
j=N

∫ j+1

j

l(x + y) dy

= 4m−1(1 − α)γ (1 − e−γ )−1
∫ ∞

x+N
l(y) dy

≤ 5m−1(1 − α)(1 − e−γ )−1l(x +N). (3.9)

By (3.5) and (3.7)–(3.9), first letting x → ∞ and then letting N → ∞, we know that (3.2)
holds.

4. Asymptotics for the moments of the first ascending ladder height

In this section we will investigate the local and nonlocal asymptotics for the moments of the
first ascending ladder height of a random walk for the heavy-tailed and light-tailed cases.
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4.1. Heavy-tailed case

Theorem 4.1. Assume that ϕ ∈ Ld . Then the following assertions hold.

(i) If FI ∈ L�T
for some 0 < T < ∞ then

E ϕ(Sτ+)1{Sτ+∈x+�T } ∼ (1 − α)m−1
∫ x+T

x

ϕ(y)F (y) dy. (4.1)

(ii) If FI ∈ L�T1
for some 0 < T1 < ∞ and

∫ ∞
0 ϕ(y)F (y) dy < ∞, then

E ϕ(Sτ+)1{Sτ+>x} ∼ (1 − α)m−1
∫ ∞

x

ϕ(y)F (y) dy. (4.2)

Taking ϕ ≡ 1 in Theorem 4.1(i), we can obtain Lemma 3 of Asmussen et al. (2002), i.e.

P(Sτ+ ∈ x + �T ) ∼ (1 − α)m−1
∫ x+T

x

F (y) dy.

Theorem 4.2. (i) If FI ∈ L�T
for some 0 < T < ∞, ϕ ∈ Ld, and ϕ satisfies (2.1) and (2.2),

then

E ϕ(Sτ+ − x)1{Sτ+>x} ∼ (1 − α)m−1
∫ ∞

0
ϕ(y)F (y + x) dy. (4.3)

(ii) If FI ∈ L�t for any 0 < t < ∞ and ϕ is Riemann–Stieltjes integrable on every compact
subset of [0,∞), then, for any 0 < T < ∞,

E ϕ(Sτ+ − x)1{Sτ+∈x+�T } ∼ (1 − α)m−1
∫ T

0
ϕ(y)F (y + x) dy. (4.4)

Theorem 4.3. Assume that ϕ ∈ Ld . Then the following assertions hold.

(i) If FI ∈ L and (2.1) is satisfied, then

E ϕ(x − Sτ+−1)1{Sτ+>x} ∼ (1 − α)m−1
∫ ∞

x

ϕ(y)F (y) dy. (4.5)

(ii) If F ∈ L�T1
for some 0 < T1 < ∞ and

∫ ∞
0 ϕ(y)F (dy) < ∞, then

E ϕ(x − Sτ+−1)1{Sτ+∈x+�T1 } ∼ (1 − α)m−1
∫ ∞

x

ϕ(y)F (y + �T1) dy. (4.6)

Taking ϕ ≡ 1 in Theorem 4.3(i), we can obtain the following result of Theorem 10 of
Borovkov (1976, Chapter 4):

P(Sτ+ > x) ∼ (1 − α)m−1FI (x).

Proof of Theorem 4.1. (i) Taking u = F in Lemma 3.1, we obtainU(x) = FI (x), UT (x) =
FI (x + �T ), and uT (x) = F(x + �T ). Since FI ∈ L�T

, then the conditions of Lemma 3.1
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are satisfied. It follows from ϕ ∈ Ld that

E ϕ(Sτ+)1{Sτ+∈x+�T } =
∞∑
n=1

E ϕ(Sn)1{Sτ+∈x+�T , τ+=n}

=
∞∑
n=1

∫ 0

−∞

∫ x−y+T

x−y
ϕ(z+ y)F (dz)P(Sn−1 ∈ dy,	n−1)

=
∞∑
n=0

∫ 0

−∞

∫ T

0
ϕ(x + t)F (x − y + dt)P(Sn ∈ dy,	n)

∼ ϕ(x)

∞∑
n=0

∫ 0

−∞
F(x − y + �T )P(Sn ∈ dy,	n). (4.7)

By Lemma 3.1 and FI ∈ L�T
, we obtain

∞∑
n=0

∫ 0

−∞
F(x − y + �T )P(Sn ∈ dy,	n) =

∞∑
n=0

E uT (x − Sn)1	n

∼ (1 − α)m−1FI (x + �T ). (4.8)

So, by (4.7), (4.8), and ϕ ∈ Ld , we know that (4.1) holds.

(ii) It follows from Lemma 3.1 that (4.8) still holds for 0 < T1 < ∞. So, by Fubini’s theorem,
ϕ ∈ Ld, and (4.8), we have

E ϕ(Sτ+)1{Sτ+>x} =
∞∑
n=1

E ϕ(Sn)1{Sn>x, τ+=n}

=
∞∑
n=0

∫ 0

−∞

∫ ∞

x−y
ϕ(z+ y)F (dz)P(Sn ∈ dy,	n)

=
∞∑
n=0

∫ 0

−∞

∞∑
k=1

∫ x−y+kT1

x−y+(k−1)T1

ϕ(z+ y)F (dz)P(Sn ∈ dy,	n)

∼
∞∑
k=1

ϕ(x + kT1)

∞∑
n=0

∫ 0

−∞
F(x − y + (k − 1)T1 + �T1)P(Sn ∈ dy,	n)

∼ (1 − α)m−1
∞∑
k=1

ϕ(x + kT1)F
I (x + (k − 1)T1 + �T1)

∼ (1 − α)m−1
∞∑
k=1

∫ x+kT1

x+(k−1)T1

ϕ(y)F (y) dy

= (1 − α)m−1
∫ ∞

x

ϕ(y)F (y) dy,

that is, (4.2) holds.
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Proof of Theorem 4.2. (i) For any fixed positive integer N ,

E ϕ(Sτ+ − x)1{Sτ+>x}

=
∞∑
n=1

E ϕ(Sn − x)1{Sn>x, τ+=n}

=
∞∑
n=0

∫ 0

−∞

( N∑
k=1

+
∞∑

k=N+1

) ∫ x−y+kT

x−y+(k−1)T
ϕ(z+ y − x)F (dz)P(Sn ∈ dy,	n)

=: E1(x)+ E2(x).

We first deal with E1(x). Since FI ∈ L�T
and ϕ ∈ Ld, by the proof of Theorem 4.1(i) we

find that (4.8) still holds. So, by Fubini’s theorem, (2.2), (4.8), and FI ∈ L�T
, we obtain, for

sufficiently large x,

E1(x) ≤ ϕNT

N∑
k=1

∞∑
n=0

∫ 0

−∞
F(x − y + (k − 1)T + �T )P(Sn ∈ dy,	n)

∼ ϕNT (1 − α)m−1(F I (x)− FI (x +NT ))

= o(1)F I (x). (4.9)

Now consider E2(x). Again, by ϕ ∈ Ld , (4.8), and Fubini’s theorem, for any 0 < ε < 1,
first letting N be sufficiently large and then letting x be sufficiently large, we obtain

E2(x) ≤ (1 + ε)

∞∑
n=0

∫ 0

−∞

∞∑
k=N+1

ϕ(kT )F (x − y + (k − 1)T + �T )P(Sn ∈ dy,	n)

= (1 + ε)

∞∑
k=N+1

ϕ(kT )

∞∑
n=0

∫ 0

−∞
F(x − y + (k − 1)T + �T )P(Sn ∈ dy,	n)

≤ (1 + ε)2(1 − α)m−1
∞∑

k=N+1

ϕ(kT )F I (x + (k − 1)T + �T )

≤ (1 + ε)3(1 − α)m−1
∞∑

k=N+1

∫ x+kT

x+(k−1)T
ϕ(y − x)F (y) dy

= (1 + ε)3(1 − α)m−1
(∫ ∞

x

−
∫ x+NT

x

)
ϕ(y − x)F (y) dy

=: (1 + ε)3(1 − α)m−1(E21(x)− E22(x)). (4.10)

By (2.2) and FI ∈ L�T
,

E22(x) ≤ ϕNT (F
I (x)− FI (x +NT )) = o(1)F I (x). (4.11)

Since ϕ ∈ Ld , by (2.1), there exists a positive constant C1 = C1(N, T ) such that

E21(x) ≥ C1FI (x). (4.12)

https://doi.org/10.1239/aap/1246886620 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886620


The moments of the overshoot and undershoot of a random walk 481

Hence, by (4.10)–(4.12), we obtain

E2(x) � (1 − α)m−1
∫ ∞

x

ϕ(y − x)F (y) dy

= (1 − α)m−1
∫ ∞

0
ϕ(y)F (y + x) dy. (4.13)

Similarly, we can prove that

(1 − α)m−1
∫ ∞

0
ϕ(y)F (y + x) dy � E2(x). (4.14)

So, by (4.9), (4.13), and (4.14), we know that (4.3) holds.

(ii) For any positive integer l, let

ϕl,k = sup
y∈(l−1(k−1)T ,l−1kT ]

ϕ(y), k = 1, 2, . . . , l.

Since ϕ is Riemann–Stieltjes integrable, then, for any 0 < ε < 1, there exists a positive constant
l0 (independent of x) such that, when l ≥ l0,

l∑
k=1

ϕl,k(F
I (x + l−1(k − 1)T )− FI (x + l−1kT )) (4.15)

≤ (1 + ε)

l∑
k=1

∫ x+l−1kT

x+l−1(k−1)T
ϕ(y − x)F (y) dy

= (1 + ε)

∫ x+T

x

ϕ(y − x)F (y) dy. (4.16)

For the above given ε and l ≥ l0, since FI ∈ L�t for any t > 0, by (4.8) we know that there
exists an x0 > 0 such that, when x ≥ x0,

E ϕ(Sτ+ − x)1{Sτ+∈x+�T }

=
∞∑
n=1

E ϕ(Sn − x)1{Sτ+∈x+�T , τ+=n}

=
∞∑
n=0

∫ 0

−∞

l∑
k=1

∫ x−y+l−1kT

x−y+l−1(k−1)T
ϕ(z+ y − x)F (dz)P(Sn ∈ dy,	n)

≤
l∑

k=1

ϕl,k

∞∑
n=0

∫ 0

−∞
(F (x − y + l−1(k − 1)T )− F(x − y + l−1kT ))P(Sn ∈ dy,	n)

≤ (1 + ε)(1 − α)m−1
l∑

k=1

ϕl,k(F
I (x + l−1(k − 1)T )− FI (x + l−1kT )).

Combining the above with (4.16), we obtain

E ϕ(Sτ+ − x)1{Sτ+∈x+�T } � (1 − α)m−1
∫ T

0
ϕ(y)F (x + y) dy.
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Similarly, we can prove that

(1 − α)m−1
∫ T

0
ϕ(y)F (x + y) dy � E ϕ(Sτ+ − x)1{Sτ+∈x+�T }.

So (4.4) holds.

Proof of Theorem 4.3. (i) Taking T = ∞, u1 = ϕ, and u2 = F in Lemma 3.1, then
u1 ∈ Ld and u2 is nonincreasing. It follows from (2.1) that U(∞) = u(∞) = 0 and
U∞(x) = U(x) = ∫ ∞

x
ϕ(y)F (y) dy, x ∈ (−∞,∞). We will prove that U∞ ∈ Ld.

By (2.1) we know that there exists a positive constant C such that, for sufficiently large x,
infy≥x ϕ(y) ≥ Cϕ(x). Hence,

U∞(x) =
∫ ∞

x

ϕ(y)F (y) dy ≥ Cϕ(x)F I (x). (4.17)

The following fact is well known: FI ∈ L if and only if

F(x) = o(1)F I (x). (4.18)

Now, by ϕ ∈ Ld , (4.17), and (4.18),

0 ≤ U∞(x)− U∞(x + 1)

=
∫ x+1

x

ϕ(y)F (y) dy

∼ ϕ(x)

∫ x+1

x

F (y) dy

≤ ϕ(x)F (x)

= o(1)U∞(x),
that is, U∞ ∈ Ld . Therefore, by Lemma 3.1 and Fubini’s theorem, we obtain

E ϕ(x − Sτ+−1)1{Sτ+>x} =
∞∑
n=1

E ϕ(x − Sn−1)1{Sn>x, τ+=n}

=
∞∑
n=1

∫ 0

−∞
ϕ(x − y)F (x − y)P(Sn−1 ∈ dy,	n−1)

=
∞∑
n=0

E u∞(x − Sn)1	n

∼ (1 − α)m−1
∫ ∞

x

ϕ(y)F (y) dy.

(ii) Taking T = ∞, u1(x) = ϕ(x)F (x + �T1), and u2 ≡ 1 in Lemma 3.1, then u = u1 ∈ Ld.
Combining this with

∫ ∞
0 ϕ(y)F (dy) < ∞, we have u(∞) = 0, U∞(x) = U(x) =∫ ∞

x
ϕ(y)F (y + �T1) dy, x ∈ (−∞,∞), and U(∞) = 0. In fact, for sufficiently large x,

U(x) =
∫ ∞

x

u(y) dy

=
∞∑
k=0

∫ x+(k+1)T1

x+kT1

u(y) dy
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∼ T1

∞∑
k=0

ϕ(x + kT1)

∫ x+(k+1)T1

x+kT1

F(dy)

∼ T1

∞∑
k=0

∫ x+(k+1)T1

x+kT1

ϕ(y)F (dy)

= T1

∫ ∞

x

ϕ(y)F (dy)

< ∞.

By u ∈ Ld ,
∫ ∞

0 ϕ(y)F (dy) < ∞, and Karamata’s theorem, we obtain

U∞(x)− U∞(x + 1) =
∫ x+1

x

u(y) dy ∼ u(x) = o(1)U∞(x).

Thus, U∞ ∈ Ld . Again, using Lemma 3.1, we know that (4.6) holds.

4.2. Light-tailed case

Theorem 4.4. Assume that ϕ ∈ Ld and that
∫ ∞

0 ϕ(y)F (y) dy < ∞. For some γ > 0, let
F ∈ L(γ ) and gF (−γ ) < 1. Then

E ϕ(x − Sτ+−1)1{Sτ+>x} ∼ (1 − g−(−γ ))−1ϕ(x)F (x). (4.19)

Letting ϕ ≡ 1 in (4.19), we can obtain another result of Theorem 10 of Borovkov (1976,
Chapter 4), i.e.

P(Sτ+ > x) =
∞∑
n=0

∫ 0

−∞
F(x − y)P(Sn ∈ dy,	n)

∼ (1 − g−(−γ ))−1F(x). (4.20)

By (4.20) and F ∈ L(γ ), γ > 0, we can obtain, for any 0 < T < ∞,

P(Sτ+ ∈ x + �T ) =
∞∑
n=0

∫ 0

−∞
F(x − y + �T )P(Sn ∈ dy,	n)

∼ (1 − g−(−γ ))−1(1 − e−γ T )F (x). (4.21)

Theorem 4.5. Assume that the conditions of Theorem 4.4 hold and that ϕ is Riemann-Stieltjes
integrable on every compact subset of [0,∞). Then

E ϕ(Sτ+ − x)1{Sτ+>x} ∼ (1 − g−(−γ ))−1
∫ ∞

x

ϕ(y − x)F (dy) (4.22)

and, for any 0 < T < ∞,

E ϕ(Sτ+ − x)1{Sτ+∈x+�T } ∼ (1 − g−(−γ ))−1
∫ x+T

x

ϕ(y − x)F (dy). (4.23)

Theorem 4.6. Under the conditions of Theorem 4.4, we have, for any 0 < T ≤ ∞,

E ϕ(Sτ+)1{Sτ+∈x+�T } ∼ (1 − g−(−γ ))−1
∫ x+T

x

ϕ(y)F (dy) (4.24)

and
∫ ∞

0 ϕ(y)F (dy) < ∞.
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Proof of Theorem 4.4.. Equation (4.19) can be obtained by taking l(x) = ϕ(x)F (x) in
Lemma 3.2.

Proof of Theorem 4.5.. For any ε > 0 and a fixed positive integer N , we obtain

E ϕ(Sτ+ − x)1{Sτ+>x}

=
∞∑
n=0

∫ 0

−∞

( N∑
k=1

+
∞∑

k=N+1

) ∫ x−y+kε

x−y+(k−1)ε
ϕ(z+ y − x)F (dz)P(Sn ∈ dy,	n)

=: E1(x)+ E2(x). (4.25)

We first deal with E2(x). By ϕ ∈ Ld , for any 0 < δ < 1 and sufficiently large N ,

E2(x) ≤
∞∑

k=N+1

ϕ((k − 1)ε)
∞∑
n=0

∫ 0

−∞
F(x − y + (k − 1)ε + �ε)P(Sn ∈ dy,	n)

≤ (1 + δ)(1 − g−(−γ ))−1
∞∑

k=N+1

ϕ((k − 1)ε)(F (x + (k − 1)ε)− F(x + kε))

≤ (1 + δ)2(1 − g−(−γ ))−1
∫ ∞

x+Nε
ϕ(y − x)F (dy). (4.26)

Now consider E1(x). Let ϕl,k = supy∈(l−1(k−1)Nε,l−1kNε] ϕ(y), where l is a positive integer
and k = 1, 2, . . . , l. For the above fixed ε andN , by Fubini’s theorem, (4.20), and the fact that
ϕ is Riemann–Stieltjes integrable, we know that, when x and l are sufficiently large,

E1(x) =
∞∑
n=0

∫ 0

−∞

∫ x−y+Nε

x−y
ϕ(z+ y − x)F (dz)P(Sn ∈ dy,	n)

=
∞∑
n=0

∫ 0

−∞

l∑
k=1

∫ x−y+l−1kNε

x−y+l−1(k−1)Nε
ϕ(z+ y − x)F (dz)P(Sn ∈ dy,	n)

≤
l∑

k=1

ϕl,k

∞∑
n=0

∫ 0

−∞
F(x − y + l−1(k − 1)Nε + �l−1Nε)P(Sn ∈ dy,	n)

≤ (1 + δ)(1 − g−(−γ ))−1
l∑

k=1

ϕl,k(F (x + l−1(k − 1)Nε)− F(x + l−1kNε))

≤ (1 + δ)2(1 − g−(−γ ))−1
l∑

k=1

∫ x+l−1kNε

x+l−1(k−1)Nε
ϕ(y − x)F (dy)

= (1 + δ)2(1 − g−(−γ ))−1
∫ x+Nε

x

ϕ(y − x)F (dy).

Hence, for sufficiently large x,

E ϕ(Sτ+ − x)1{Sτ+>x} ≤ (1 + δ)2(1 − g−(−γ ))−1
∫ ∞

x

ϕ(y − x)F (dy). (4.27)
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Similarly, we can obtain

E ϕ(Sτ+ − x)1{Sτ+>x} ≥ (1 − δ)2(1 − g−(−γ ))−1
∫ ∞

x

ϕ(y − x)F (dy). (4.28)

It follows from (4.27) and (4.28) that (4.22) holds.
The proof of (4.23) is similar to that of (4.22) and, thus, we omit the details.

Proof of Theorem 4.6. We first give a proof for the case 0 < T < ∞. By ϕ ∈ Ld,
F ∈ L(γ ), and (4.21),

E ϕ(Sτ+)1{Sτ+∈x+�T } =
∞∑
n=1

E ϕ(Sn)1{Sτ+∈x+�T , τ+=n}

=
∞∑
n=1

E ϕ(Xn + Sn−1)1{x−Sn−1<Xn≤x+T−Sn−1, τ+=n}

=
∞∑
n=0

∫ 0

−∞

∫ x−y+T

x−y
ϕ(y + z)F (dz)P(Sn ∈ dy,	n)

∼ ϕ(x)

∞∑
n=0

∫ 0

−∞
F(x − y + �T )P(Sn ∈ dy,	n)

∼ (1 − g−(−γ ))−1(1 − e−γ T )ϕ(x)F (x)

∼ (1 − g−(−γ ))−1
∫ x+T

x

ϕ(y)F (dy),

i.e. (4.24) holds for 0 < T < ∞.
Before giving a proof for the case T = ∞, we need to prove that

∫ ∞
0 ϕ(y)F (dy) < ∞. By

F ∈ L(γ ), it is easy to show that, for any positive constant C,∫ x+C

x

ϕ(y)F (dy) ∼ (1 − e−γC)
(∫ C

0
e−γy dy

)−1 ∫ x+C

x

ϕ(y)F (y) dy.

Hence, ∫ ∞

0
ϕ(y)F (y) dy < ∞ ⇐⇒

∫ ∞

0
ϕ(y)F (dy) < ∞.

For the case T = ∞, by Fubini’s theorem, ϕ ∈ Ld, and the above proof for the case
0 < T < ∞, we have, for any 0 < T1 < ∞,

E ϕ(Sτ+)1{Sτ+>x} =
∞∑
n=1

E ϕ(Sn)1{Sn>x, τ+=n}

=
∞∑
k=1

∞∑
n=0

∫ 0

−∞

∫ x−y+kT1

x−y+(k−1)T1

ϕ(z+ y)F (dz)P(Sn ∈ dy,	n)

∼ (1 − g−(−γ ))−1
∞∑
k=1

∫ x+kT1

x+(k−1)T1

ϕ(y)F (dy)

= (1 − g−(−γ ))−1
∫ ∞

x

ϕ(y)F (dy),

i.e. (4.24) holds for T = ∞.
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Remark 4.1. If ϕ is nondecreasing, using integration by parts, all the above results can also be
verified. Combining this with Theorems 5.1 and 5.2, below, different proofs can be given for
Theorems 3.2 and 3.4 of Cheng et al. (2002).

5. On the solutions of renewal equations

In this section we will give some equivalent conditions and sufficient conditions for the
asymptotics of the solutions to some renewal equations. For this, we will introduce some
notions and notation.

We consider the renewal equation Z = z+ qW ∗ Z, i.e.

Z(x) = z(x)+ q

∫ x

0
Z(x − y)W(dy), x ≥ 0, (5.1)

whereW is a proper distribution on [0,∞), z(x) ≥ 0 is a known and locally bounded function
on [0,∞), and q > 0 is a known constant. Throughout this section, we suppose that 0 < q < 1.
In this case, Z = (1 − q)−1U0 ∗ z, i.e.

Z(x) = (1 − q)−1
∫ x

0
z(x − y)U0(dy), (5.2)

where

U0(x) = (1 − q)

∞∑
n=0

qnW ∗n(x), x ≥ 0. (5.3)

Since in most cases it is not easy to calculate (5.2), attention is paid to asymptotics of the
solutionZ(x). Asymptotics ofZ(x) have a close relation with the properties of z(x). There are
some existing results. For z = W , see Embrechts et al. (1979), Embrechts and Goldie (1982),
Cline (1987), among others. For the case in which z is a proper distribution, see Cai and
Garrido (2002) and Cai and Tang (2004). For the case in which z is a subexponential density,
see Asmussen (1998) and Asmussen et al. (2003). Recently, Yin and Zhao (2006) investigated
the case in which (z(0))−1z(x) is a tail distribution and obtained some new results. For the
purpose of this paper, we will discuss asymptotics of Z(x) for the new case

z(x) ∼ cL(x), (5.4)

where c is a positive constant andL is a proper distribution on [0,∞). The results will be given
for the cases in which W is heavy tailed and light tailed.

5.1. Heavy-tailed case

Theorem 5.1. For the renewal equation (5.1), assume that (5.4) is satisfied.
Case 1. Assume that U0(x) ≈ L(x), L ∈ L, and U0 ∈ L. Then the following assertions

are equivalent:

(i) L ∈ S; (ii) W ∈ S; (iii) Z(x) ∼ c(1 − q)−1L(x).

Case 2. Assume that U0(x) = o(1)L(x) and L ∈ S. Then (iii) still holds.

Proof. Case 1. We first show that (i) implies (ii) and (iii). By L ∈ S, U0(x) ≈ L(x), and
U0 ∈ L, we know that U0 ∈ S. Hence, W ∈ S by (5.3) and Corollary 3 of Embrechts et
al. (1979). Now we prove that (iii) holds. For any fixed positive constant N and any x ≥ 2N ,
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by (5.2),

Z(x) = (1 − q)−1
(∫ N

0
+

∫ x−N

N

+
∫ x

x−N

)
z(x − y)U0(dy)

=: Z1(x)+ Z2(x)+ Z3(x). (5.5)

By (5.4), L ∈ L, and the dominated convergence theorem,

Z1(x) ∼ c(1 − q)−1L(x)U0(N). (5.6)

Again, by (5.4), since U0 ∈ S and U0(x) ≈ L(x), it is easy to show that

lim sup
N→∞

lim sup
Z2(x)

L(x)
= lim sup

N→∞
lim sup

∫ x−N

N

U0(x − y)

U0(x)
U0(dy) = 0. (5.7)

For the above given N , since zN ≡ supy∈[0,N ] z(y) < ∞, by U0 ∈ L and U0(x) ≈ L(x), we
obtain

Z3(x) ≤ (1 − q)−1z
N
(U0(x −N)− U0(x)) = o(1)L(x). (5.8)

Hence, (iii) holds by (5.5)–(5.8).
We will prove that (iii) implies (i). It follows from L ∈ L, U0 ∈ L, and U0(x) ≈ L(x)

that (5.6) and (5.8) still hold. Hence, (iii) tells us that the second limitation of (5.7) holds.
Combining this with U0 ∈ L, we know that U0 ∈ S. So, L ∈ S follows from L ∈ L,
U0(x) ≈ L(x), and U0 ∈ S.

Finally, we prove that (ii) implies (iii). By W ∈ S and Theorem 1 of Veraverbeke (1977),
we know that U0 ∈ S. Hence, L ∈ S, i.e. (i) holds. By the above implication of (iii) by (i),
(iii) holds.

Case 2. It is obvious that (5.6) and (5.8) still hold. Using integration by parts,∫ x−N

N

L(x − y)U0(dy) = L(x −N)U0(N)− L(N)U0(x −N)+
∫ x−N

N

U0(x − y)L(dy);

combining this with U0(x) = o(1)L(x) and L ∈ S, we know that the first limitation of (5.7)
holds. Hence, (iii) holds.

If L = W then we can cancel some conditions of Theorem 5.1 and obtain the following
result.

Corollary 5.1. For the renewal equation (5.1), assume that (5.4) is satisfied for L = W . Then
the following assertions are equivalent:

(i) W ∈ S; (ii) W ∈ L and Z(x) ∼ c(1 − q)−1W(x). (5.9)

Proof. We only need to prove that (ii) implies (i). Since W ∈ L, then (5.6) still holds for
L = W . Combining this with (5.9), we obtain

lim sup
N→∞

lim sup
∫ x−N

N

W(x − y)

W(x)
U0(dy) = 0.

Since U0(dy) = (1 − q)
∑∞
n=1 q

nW ∗n(dy), it is obvious to show that
∫ x−N

N

W(x − y)W(dy) = O(1)
∫ x−N

N

W(x − y)U0(dy).

Combining this with W ∈ L, we know that W ∈ S.
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5.2. Light-tailed case

We primarily discuss the case in which L = W in this subsection.

Theorem 5.2. For the renewal equation (5.1), assume that (5.4) is satisfied.
Case 1. Assume that L = W ∈ L(γ ) for some γ > 0 and that gW (−γ ) < 1. Also,

suppose that z is continuous almost everywhere with respect to the Lebesgue measure. Then
the following assertions are equivalent:

(i) W ∈ S(γ );
(ii) Z(x) ∼ (c(1 − qgW (−γ ))−1 + Iq(1 − qgW (−γ ))−2)W(x),

(5.10)

where I = γ
∫ ∞

0 z(y)eγy dy.
Case 2. Assume that U0(x) = o(1)L(x) and that L ∈ S(γ ). Then

Z(x) ∼ c(1 − qgW (−γ ))−1L(x). (5.11)

Proof. Case 1. We first prove that (i) implies (ii). It follows from (5.3), W ∈ S(γ ), and
Theorem 1 of Veraverbeke (1977) that U0 ∈ S(γ ) and

U0(x) ∼ q(1 − q)(1 − qgW (−γ ))−2W(x). (5.12)

Since U0 ∈ S(γ ) ⊂ L(γ ), then there exists a nonnegative function h(x) on [0,∞) such that

h(x) ↑ ∞,
h(x)

x
→ 0, and U0(x − t) ∼ eγ tU0(x)

uniformly for |t | ≤ h(x),

U0 ∈ S(γ ) ⇐⇒ U0 ∈ L(γ ), gU0(−γ ) < ∞,

and
∫ x−h(x)

h(x)

U0(x − y)U0(dy) = o(1)U0(x).

Now we deal with Z(x) using h:

Z(x) = (1 − q)−1
(∫ h(x)

0
+

∫ x−h(x)

h(x)

+
∫ x

x−h(x)

)
z(x − y)U0(dy)

=: Z1(x)+ Z2(x)+ Z3(x). (5.13)

By W ∈ S(γ ) ⊂ L(γ ), (5.4), and the dominated convergence theorem,

Z1(x) ∼ c(1 − q)−1gU0(−γ )W(x) = c(1 − qgW (−γ ))−1W(x). (5.14)

It follows from U0 ∈ S(γ ), (5.4), and (5.12) that
∫ x−h(x)

h(x)

z(x − y)U0(dy) ∼ c

∫ x−h(x)

h(x)

W(x − y)U0(dy)

∼ cq−1(1 − q)−1(1 − qgW (−γ ))2
∫ x−h(x)

h(x)

U0(x − y)U0(dy)

= o(1)U0(x)

= o(1)W(x). (5.15)
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For Z3(x), we use a different approach to that given in Theorem 5.1. We first show that
eγ xz(x) is directly Riemann integrable on [0,∞). For this, we need to prove that eγ xW(x) is
directly Riemann integrable. Since gW (−γ ) < 1, eγ xW(x) is integrable on [0,∞). So, for
any δ > 0,

∞∑
n=0

eγ nδW((n− 1)δ) < ∞. (5.16)

Equation (5.16) and Proposition 4.1(ii) of Asmussen (2003, Chapter V) show that eγ xW(x) is
directly Riemann integrable. Using (5.4) and the result that, for two nonnegative functions f1
and f2 on [0,∞) such that f1(x) ∼ f2(x), f1 is directly Riemann integrable is equivalent to f2
being directly Riemann integrable, we can show that eγ xz(x) is directly Riemann integrable.

For any 0 < ε < 1, let

zε(x) = sup
y∈(x,x+ε]

z(y), x ≥ 0.

Hence, by W ∈ S(γ ), U0 ∈ S(γ ) ⊂ L(γ ), and (5.12),

Z3(x) ≤ (1 − q)−1
ε−1h(x)∑
k=0

zε(kε)U0(x − (k + 1)ε, x − kε]

∼ (1 − q)−1
ε−1h(x)∑
k=0

zε(kε)(e
γ (k+1)ε − eγ kε)U0(x)

∼ q(1 − qgW (−γ ))−2
ε−1h(x)∑
k=0

zε(kε)(e
γ (k+1)ε − eγ kε)W(x).

Hence,

lim
ε↓0

lim sup
Z3(x)

W(x)
≤ q(1 − qgW (−γ ))−2I. (5.17)

Similarly, writing z
ε
(x) = infy∈(x,x+ε] z(y), x ≥ 0, it can be proved that

lim
ε↓0

lim inf
Z3(x)

W(x)
≥ q(1 − qgW (−γ ))−2I. (5.18)

So (5.10) holds by (5.13)–(5.15), (5.17), and (5.18).
In the following we prove that (ii) implies (i). Since W ∈ L(γ ), by (5.4), (5.14) still holds.

It follows from (5.3), W ∈ L(γ ), and Fatou’s lemma that, for all k ≥ 1,

lim inf
(1 − q)−1U0(x − kε, x − (k − 1)ε]

qW(x)
≥

∞∑
i=1

lim inf
qiW ∗i (x − kε, x − (k − 1)ε]

qW(x)

≥ (1 − qgW (−γ ))−2(eγ kε − eγ (k−1)ε).

Hence, by the fact that eγ xz(x) is directly Riemann integrable and Fatou’s lemma, we have

qI (1 − qgW (−γ ))−2W(x) � Z3(x).
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Combining this with (5.10), (5.13), and (5.14), we obtain

Z2(x) = o(1)W(x). (5.19)

By U0(dy) = (1 − q)
∑∞
n=1 q

nW ∗n(dy) and (5.19), we obtain

∫ x−h(x)

h(x)

W(x − y)W(dy) = O(1)
∫ x−h(x)

h(x)

W(x − y)U0(dy) = o(1)W(x).

Hence, together with W ∈ L(γ ), this implies that W ∈ S(γ ) .
Case 2. Its proof is similar to the proof of case 2 of Theorem 5.1. We omit the details.

Remark 5.1. In case 2 of Theorem 5.2, ifW(x) = o(1)L(x) and L ∈ S(γ ), it is easy to show
that U0(x) = o(1)L(x). Hence, (5.11) still holds.

6. Proofs of the main results

In this section we will use the results of Sections 4 and 5 to prove the theorems of Section 2.
Using renewal equations and the strong Markov property, we first investigate the relationships
between the moments of the overshoot and undershoot and the moments of the first ascending
ladder height of a random walk.

Let T be any positive constant. If we write

Z(x) = E ϕ(Sτx − x)1{Sτx∈x+�T }, z(x) = E ϕ(Sτ+ − x)1{Sτ+∈x+�T }, and W = Fp+,

then, by the strong Markov property,

Z(x) = E ϕ(Sτx − x)1{(Sτx∈x+�T ), Sτ+>x} + E ϕ(Sτx − x)1{(Sτx∈x+�T ), Sτ+≤x}

= E ϕ(Sτ+ − x)1{Sτ+∈x+�T } +
∫ x

0
E ϕ(Sτx−y − (x − y))1{Sτx−y∈x−y+�T }F+(dy)

= z(x)+ α

∫ x

0
Z(x − y)W(dy). (6.1)

Similarly, if we write

Z(x) = E ϕ(x − Sτx−1)1{Sτx∈x+�T }, z(x) = E ϕ(x − Sτ+−1)1{Sτ+∈x+�T },
and W = Fp+;

Z(x) = E ϕ(Sτx − x)1{τx<∞}, z(x) = E ϕ(Sτ+ − x)1{Sτ+>x}, and W = Fp+;
and

Z(x) = E ϕ(x − Sτx−1)1{τx<∞}, z(x) = E ϕ(x − Sτ+−1)1{Sτ+>x}, and W = Fp+,

then we obtain three renewal equations similar to (6.1), denoting them by (6.2), (6.3), and (6.4),
respectively.

Proof of Theorem 2.1. We use the renewal equation (6.1). Since F ∈ L, then FI ∈ L�T

for all 0 < T ≤ ∞. Hence, by Theorem 4.2(ii), the dominated convergence theorem, and
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Lemma 3 of Asmussen et al. (2002), we have, for any 0 < T < ∞,

z(x) = E ϕ(Sτ+ − x)1{Sτ+∈x+�T }

∼ (1 − α)m−1
∫ T

0
ϕ(y)F (y + x) dy

∼ (1 − α)m−1
∫ T

0
ϕ(y) dyF(x)

∼ (1 − α)m−1
∫ T

0
ϕ(y) dyT −1FI (x + �T )

∼ T −1
∫ T

0
ϕ(y) dyF+(x + �T ).

Hence, by (6.1), Theorem 5(ii) of Asmussen et al. (2003), and Theorem 2.2 of Wang et al.
(2008), it follows that (ii) is equivalent to (iii). The assertion that (i) is equivalent to (ii) follows
from F ∈ L and Lemma 4.2 of Wang et al. (2007).

Proof of Theorem 2.2. We use the renewal equation (6.2). By Theorem 4.3(ii) we know that
(4.6) holds.

Case 1. By (4.6), 0 < a < ∞, FI ∈ S�T
for all 0 < T < ∞, and Lemma 3.3 of Asmussen

et al. (2002), we obtain

z(x) = E ϕ(x − Sτ+−1)1{Sτ+∈x+�T1 } ∼ (1 − α)m−1aF I (x + �T1)

∼ aF+(x + �T1).

Hence, by Theorem 5(ii) of Asmussen et al. (2003) and (5.4), (2.3) can be proved.
Case 2. It follows from (4.6) and ϕ(x) → ∞ that

FI (x + �T1) = o(1)z(x).

Hence, by Theorem 5(iii) of Asmussen et al. (2003),

Z(x) = E ϕ(x − Sτx−1)1{Sτx∈x+�T1 } ∼ (1 − α)−1z(x)

∼ m−1
∫ ∞

x

ϕ(y)F (y + �T1) dy,

i.e. (2.4) holds.

Proof of Theorem 2.3. We use the renewal equation (6.3).
Case 1. It can be immediately proved by Theorem 4.2(i), Corollary 5.1, and (6.3).
Case 2. For any N > 0, since a = ∞, there exists a b > 0 such that

G(x) ≥
∫ ∞

b

ϕ(y)F (x + y) dy ≥ NFI (x + b).

Since FI ∈ L, then we have FI (x) = o(1)G(x). Hence, U0(x) = o(1)G(x). So (2.7) can be
obtained from (6.3), Theorem 4.2(i), and case 2 of Theorem 5.1.
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Proof of Theorem 2.4. We use the renewal equation (6.4).
Case 1. By Theorem 4.3(i), (4.5) still holds. By (4.5) and ϕ(x) → a, 0 < a < ∞, we

obtain

z(x) = E ϕ(x − Sτ+−1)1{Sτ+>x} ∼ (1 − α)m−1aF I (x)

∼ aαFp+(x)
= αaW(x).

Hence, it follows from Corollary 5.1 and (6.4) that (i) is equivalent to (ii).
Case 2. By Theorem 4.3(i) and FI ∈ L, (4.5) still holds.

It follows from a = ∞ that FI (x) = o(1)G(x). Since G ∈ S, by Theorem 2(i) of
Asmussen et al. (2003), U0(x) = o(1)G(x). Hence, (2.9) can be shown similarly to case 2 of
Theorem 2.3 using (6.4).

Proof of Theorem 2.5. We use the renewal equation (6.3). Since ϕ ∈ Ld, then it is easy to
show that

∫ ∞
0 ϕ(y)e−γy dy < ∞. It follows from F(x)eγ x↓ that, for x > 0,

∫ ∞

0
ϕ(y)F (x + y) dy ≤ C

∫ ∞

0
ϕ(y)e−γy dyF(x).

Hence, by Theorem 4.5, f ∈ Ld(γ ), and the dominated convergence theorem,

z(x) = E ϕ(Sτ+ − x)1{Sτ+>x}

∼ (1 − g−(−γ ))−1
∫ ∞

x

ϕ(y − x)f (y) dy

∼ γ (1 − g−(−γ ))−1
∫ ∞

0
ϕ(y)F (x + y) dy

∼ γ

∫ ∞

0
ϕ(y)e−γy dyF+(x).

Hence, the result can be proved using case 1 of Theorem 5.2.

Proof of Theorem 2.6. We use the renewal equation (6.4).
Case 1. By Theorem 4.4,

z(x) = E ϕ(x − Sτ+−1)1{Sτ+>x} ∼ (1 − g−(−γ ))−1aF(x)

∼ αaFp+(x).

Hence, by case 1 of Theorem 5.2, the result can be obtained.
Case 2. It follows from a = ∞ that Fp+ = o(1)G(x). Also, by G ∈ S(γ ), U0(x) =

o(1)G(x). Hence, (2.10) can be shown using case 2 of Theorem 5.2.
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