VOLUME 35 / NUMBER 1 / 1993

Radiocarbon

An International Journal of Cosmogenic Isotope Research

Editor AUSTIN LONG

Managing Editor RENEE S. KRA

Assistant Editor JAMES M. DEVINE

Guest Editor MINZE STUIVER

Calibration 1993

Department of Geosciences The University of Arizona 4717 East Ft. Lowell Road Tucson, Arizona 85712 USA

ISSN: 0033-8222

ASSOCIATE EDITORS

For Accelerator Physics

DAVID ELMORE ROBERT E. M. HEDGES D. ERLE NELSON

For Archaeology

ANDREW M. T. MOORE MICHAEL B. SCHIFFER

For Atmospheric Sciences

GEORGE A. DAWSON

KUNIHIKO KIGOSHI DAVID C. LOWE

For Geochemistry

PAVEL POVINEC MINZE STUIVER

For Geophysics

G. E. KOCHAROV WILLEM G. MOOK

For Hydrology

JEAN-CHARLES FONTES

For Ice Studies

HAROLD W. BORNS, JR. ULRICH SIEGENTHALER

For Oceanography

EDOUARD BARD

ELLEN R. M. DRUFFEL

For Paleobotany

CALVIN J. HEUSSER

West Lafayette, Indiana, USA Oxford, England Burnaby, British Columbia, Canada

New Haven, Connecticut, USA Tucson, Arizona, USA

Auckland, New Zealand Tucson, Arizona, USA Tokyo, Japan Lower Hutt, New Zealand

Bratislava, Slovakia Seattle, Washington, USA

St. Petersburg, Russia Groningen, The Netherlands

Orsay, France

Orono, Maine, USA Berne, Switzerland

Gif-sur-Yvette, France Palisades, New York, USA Marseille, France Woods Hole, Massachusetts, USA

Tuxedo, New York, USA

[RADIOCARBON, VOL. 35, NO. 1, 1993, P. iv]

FURTHER EDITORIAL COMMENT

From the vantage point of the *RADIOCARBON* editorial offices, we are well aware of the popularity, and presumed usefulness of the first Radiocarbon Calibration Issue published seven years ago. We continue to receive more requests for this single issue than all other back issues.

Despite the added uncertainty, and often enigmatic calibrated ranges and probability curves, most consumers of ¹⁴C data are interested less in "radiocarbon years" than in calendrical years. Radiocarbon calibration schemes were available before the 1986 CALIBRATION ISSUE, which summarized the most recent and best calibration data available at the time. However, like any other technical measurement at the leading edge of possible precision, ¹⁴C measurements have their intrinsic uncertainties. CALIBRATION 1993 represents the current state-of-the-art calibration, with improvements, adjustments and extensions. In only a few cases will the user notice minor differences in calibrated results from these new calibrations compared to the 1986 calibrations. The major differences are in the extended calibrated time range and the computer programs for calibration.

Calibration work continues, and this 1993 version is unlikely to be the last one. Anticipated major refinements in the next calibration issue are extensions using datable material other than tree rings, and possibly the confirmation of small regional variations of the ¹⁴C calibration.

Austin Long

The Quaternary Isotope Laboratory (QIL) and *RADIOCARBON* hereby disclaim all warranties, whether expressed or implied, relating to CALIB 3.0 software. QIL and *RADIOCARBON* will not be liable for any damages resulting from use or misuse of this software. QIL is in no way committed to maintaining the present version of this program or to distributing future versions.

COVER

The Sun's "rays" were constructed from an 11,000 cal yr residual Δ^{14} C record (Fig. 11, p. 148). Time (past to present) proceeds clockwise. Approximate cal yr ages of some prominent perturbations (6-3) are, respectively, 8500 BP, 7200 BP, 4800 BP and 2700 BP. The 16th and 18th century Spörer (2) and Maunder (1) Δ^{14} C maxima complete the recent part of the record.

Design by Minze Stuiver, T. F. Braziunas and Floyd Bardsley.

CONTENTS

EDITORIAL COMMENTS	
Minze Stuiver and Austin Long	iii
ARTICLES	
High-Precision Bidecadal Calibration of the Radiocarbon Time Scale, AD 1950-500 BC and 2500-6000 BC Minze Stuiver and Gordon W Pearson	1
High-Precision Bidecadal Calibration of the Radiocarbon Time Scale, 500–2500 BC Gordon W. Pearson and Minze Stuiver	25
High-Precision Decadal Calibration of the Radiocarbon Time Scale, AD 1950–6000 BC Minze Stuiver and Bernd Becker	35
A Note on Single-Year Calibration of the Radiocarbon Time Scale, AD 1510–1954 Minze Stuiver	67
Pretoria Calibration Curve for Short-Lived Samples, 1930–3350 BC J. C. Vogel, AnneMarie Fuls, Ebbie Visser and Bernd Becker	73
Calibration Curve for Short-Lived Samples, 1900–3900 BC J. C. Vogel and Johannes van der Plicht	87
High-Precision ¹⁴ C Measurement of German and Irish Oaks to Show the Natural ¹⁴ C Variations from 7890 to 5000 BC Gordon W. Pearson, Bernd Becker and Florence Qua	93
High-Precision ¹⁴ C Measurement of Irish Oaks to Show the Natural ¹⁴ C Variations from AD 1840-5000 BC: A Correction Gordon W. Pearson and Florence Qua	105
German Oak and Pine ¹⁴ C Calibration, 7200–9400 BC Bernd Kromer and Bernd Becker	125
Modeling Atmospheric ¹⁴ C Influences and ¹⁴ C Ages of Marine Samples to 10,000 BC Minze Stuiver and Thomas F. Braziunas	137
²³⁰ Th- ²³⁴ U and ¹⁴ C Ages Obtained by Mass Spectrometry on Corals Edouard Bard, Maurice Arnold, Richard G. Fairbanks and Bruno Hamelin	191
An 11,000-Year German Oak and Pine Dendrochronology for Radiocarbon Calibration Bernd Becker	201
Extended ¹⁴ C Data Base and Revised CALIB 3.0 ¹⁴ C Age Calibration Program Minze Stuiver and Paula J. Reimer	215
The Groningen Radiocarbon Calibration Program Johannes van der Plicht	231
Statistical Problems in Calibrating Radiocarbon Dates Herold Dehling and Johannes van der Plicht	239