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Abstract

We consider dynamic versions of the mutual information of lifetime distributions, with
a focus on past lifetimes, residual lifetimes, and mixed lifetimes evaluated at different
instants. This allows us to study multicomponent systems, by measuring the dependence
in conditional lifetimes of two components having possibly different ages. We provide
some bounds, and investigate the mutual information of residual lifetimes within the time-
transformed exponential model (under both the assumptions of unbounded and truncated
lifetimes). Moreover, with reference to the order statistics of a random sample, we
evaluate explicitly the mutual information between the minimum and the maximum,
conditional on inspection at different times, and show that it is distribution-free in a
special case. Finally, we develop a copula-based approach aiming to express the dynamic
mutual information for past and residual bivariate lifetimes in an alternative way.

Keywords: Entropy; mutual information; time-transformed exponential model; bivariate
lifetimes; order statistics; copula

2010 Mathematics Subject Classification: Primary 94A17
Secondary 62N05; 60E99

1. Introduction and background

Information measures are largely used in applied contexts in order to describe useful notions
related to stochastic models. The problem of measuring the information content in a dynamic
setting arises in various fields, such as survival analysis, reliability, and mathematical finance,
for example. Significant results in this area have been provided in Ebrahimi et al. [14], where the
focus was directed on the joint, marginal, and conditional entropies, and the mutual information
for residual life distributions in multivariate settings. In this paper we provide some further
insight on the dynamic mutual information, with reference to past lifetimes, residual lifetimes,
and mixed lifetimes evaluated at different ages.

In probability theory the mutual information of two random variables is a measure of their
mutual dependence, and can be evaluated by means of the joint and marginal distributions.
See Ebrahimi et al. [18] for a contribution dealing with the mutual information of certain
classes of bivariate distributions, and Arellano-Valle et al. [2] for a recent investigation on the
mutual information of multivariate skew-elliptical distributions. Other kinds of multivariate
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1158 J. AHMADI ET AL.

information measures have been investigated by Ebrahimi et al. [15]. We also mention that
a nonparametric and binless estimator for the mutual information of a d-dimensional random
vector has been proposed recently by Giraudo et al. [19].

In view of suitable applications in the context of reliability theory, in this paper we consider
both the dynamic extensions of the mutual information and the related entropies. Specifically,
we aim to study the applications of mutual information to the cases of past, residual, and
mixed distributions. In Section 2 we briefly recall the relevant mathematical concepts related
to mutual information and entropy, and then introduce the bivariate distributions describing
two lifetimes conditional on possibly different inspection times. In Section 3 we introduce the
dynamic mutual information of past lifetimes. We obtain a bound for such a measure, which
is suitable to describe stochastic models whose uncertainty is related to the past. Section 4 is
concerning the mutual information of residual lifetimes. We provide a bound and a connection
between past and residual mutual information. We also investigate such a measure within the
time-transformed exponential model (both in the classical case of unbounded lifetimes and
in the new setting involving truncated lifetimes). In Section 5 we study the dynamic mutual
information for mixed lifetimes and apply it to ordered data. With reference to the order statistics
Xi : n, i = 1, 2, . . . , n, we evaluate explicitly the mutual information between the minimum
and the maximum (X1 : n, Xn : n) conditional on (X1 : n ≤ s, Xn : n > t) for s < t and show that
it is distribution-free in a special case. This also allows us to describe the information content
in n-component systems inspected at two different times. Finally, in Section 6 we discuss a
copula-based approach, which allows us to express the dynamic mutual information for past
and residual bivariate lifetimes in terms of copula and survival copula, respectively.

Throughout the paper we denote by [Z | B] a random variable or a random vector whose
distribution is identical to the conditional distribution of Z given B. Moreover, primes denote
derivatives.

2. Preliminaries

Let (X, Y ) be a random vector, where X and Y are nonnegative absolutely continuous random
variables. We denote by f (x, y) the joint probability density function (PDF) of (X, Y ), and
by fX(x) and fY (y) the marginal densities of X and Y , respectively. It is well known that the
mutual information of X and Y is defined as

MX,Y =
∫ +∞

0
dx

∫ +∞

0
f (x, y) log

f (x, y)

fX(x)fY (y)
dy, (1)

where ‘log’ means natural logarithm. The term MX,Y is a measure of dependence between X

and Y . Indeed, (1) defines a premetric, since MX,Y ≥ 0, with MX,Y = 0 if and only if X and Y

are independent. Roughly speaking, it measures how far X and Y are from being independent,
in the sense that high values of MX,Y correspond to a strong dependence between X and Y .
Moreover, MX,Y is in general finite and is invariant under linear transformations. We recall
that the mutual information can be expressed in terms of entropies as follows (see, for example,
Ebrahimi et al. [16]):

MX,Y = HX + HY − HX,Y , (2)

where HX is the differential entropy of X, defined by HX = − ∫ +∞
0 fX(x) log fX(x) dx, HY

is similarly defined, and

HX,Y = −
∫ +∞

0
dx

∫ +∞

0
f (x, y) log f (x, y) dy (3)
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On dynamic mutual information for bivariate lifetimes 1159

is the differential entropy of (X, Y ). We recall that HX measures the ‘uniformity’ of the
distribution of X, i.e. how the distribution spreads over its domain, and is irrespective of
the locations of concentration. High values of HX correspond to a low concentration of the
probability mass of X.

The reliability analysis of a system composed of two items involves the general setting
by which they are inspected at possibly different times s and t . Assuming that the random
variables X and Y describe the failure times of the two items, the following conditional random
vectors thus deserve interest, for s, t ≥ 0,

[(X, Y ) | X ≤ s, Y ≤ t] if both items failed before inspection, (4)

[(X, Y ) | X > s, Y > t] if no item failed before inspection, (5)

[(X, Y ) | X ≤ s, Y > t] if only the first item failed before inspection, (6)

[(X, Y ) | X > s, Y ≤ t] if only the second item failed before inspection. (7)

The probability of the conditional events considered above will be denoted as

F(s, t) = P(X ≤ s, Y ≤ t), F (s, t) = P(X > s, Y > t),

F−,+(s, t) = P(X ≤ s, Y > t), F+,−(s, t) = P(X > s, Y ≤ t),

so that F(s, t)+F(s, t)+F−,+(s, t)+F+,−(s, t) = 1. In order to introduce certain dynamic
entropies, we now consider the following functions.

(i) The density of [(X, Y ) | X ≤ s, Y ≤ t] for all s, t ≥ 0 such that F(s, t) > 0,

f̃X,Y (x, y; s, t) = f (x, y)

F (s, t)
, 0 ≤ x ≤ s, 0 ≤ y ≤ t. (8)

(ii) The density of [(X − s, Y − t) | X > s, Y > t] for all s, t ≥ 0 such that F(s, t) > 0,

fX,Y (x, y; s, t) = f (x + s, y + t)

F (s, t)
, x ≥ 0, y ≥ 0. (9)

(iii) The density of [(X, Y − t) | X ≤ s, Y > t] for all s, t ≥ 0 such that F−,+(s, t) > 0,

f
−,+
X,Y (x, y; s, t) = f (x, y + t)

F−,+(s, t)
, 0 ≤ x ≤ s, y ≥ 0.

(iv) The density of [(X − s, Y ) | X > s, Y ≤ t] for all s, t ≥ 0 such that F+,−(s, t) > 0,

f
+,−
X,Y (x, y; s, t) = f (x + s, y)

F+,−(s, t)
, x ≥ 0, 0 ≤ y ≤ t.

Hence, in analogy with (3) we can now introduce the following entropies, for s, t ≥ 0:

H̃X,Y (s, t) = −
∫ s

0
dx

∫ t

0
f̃X,Y (x, y; s, t) log f̃X,Y (x, y; s, t) dy, (10)

HX,Y (s, t) = −
∫ +∞

0
dx

∫ +∞

0
fX,Y (x, y; s, t) log fX,Y (x, y; s, t) dy, (11)

H
−,+
X,Y (s, t) = −

∫ s

0
dx

∫ +∞

0
f

−,+
X,Y (x, y; s, t) log f

−,+
X,Y (x, y; s, t) dy,

H
+,−
X,Y (s, t) = −

∫ +∞

0
dx

∫ t

0
f

+,−
X,Y (x, y; s, t) log f

+,−
X,Y (x, y; s, t) dy.
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Remark 1. The entropy (3) can be expressed in terms of the entropies given above; indeed,
for all s, t ≥ 0,

HX,Y = H [F(s, t), F (s, t), F−,+(s, t), F+,−(s, t)] + F(s, t)H̃X,Y (s, t)

+ F(s, t)HX,Y (s, t) + F−,+(s, t)H
−,+
X,Y (s, t) + F+,−(s, t)H

+,−
X,Y (s, t), (12)

where H [p1, . . . , pn] := −∑n
i=1 pi log pi denotes the entropy of a discrete probability

distribution.

We recall that (12) is the two-dimensional analogue of [8, Proposition 2.1]. It holds due to the
partitioning property of the Shannon entropy (see, for example, [14, Equation (24)] for another
application of such a property). It expresses that the uncertainty about the failure times of two
items can be decomposed in five terms. The first term conveys the uncertainty of whether the
items failed before or after their inspection times, the other terms give the uncertainties about the
failure times in the domains specified in (4)–(7), given that the items failed in the corresponding
regions. Note that (12) is in agreement with some remarks provided in [14, Section 4.4].

We are now able to study the dynamic mutual information for the cases introduced in this
section.

3. Mutual information for past lifetimes

In various contexts the uncertainty is not necessarily related to the future but may refer to the
past. For instance, if a system is observed at an inspection time t and is found failed, then the
uncertainty relies on the past, i.e. on which instant in (0, t) it failed. Several papers have been
devoted to the investigation of information measures concerning past lifetimes. We recall, for
instance, the univariate past entropy defined in [8]. Some properties and generalizations have
also been investigated in [21], [23], [25], and [26].

In this section we introduce the mutual information for the bivariate past lifetimes defined
in (4). To this aim we consider the marginal past lifetimes

[X | X ≤ s, Y ≤ t], [Y | X ≤ s, Y ≤ t], s, t ≥ 0, (13)

having PDFs

f̃X(x; s, t) := 1

F(s, t)

∂

∂x
F (x, t) = 1

F(s, t)

∫ t

0
f (x, y) dy, 0 ≤ x ≤ s, (14)

f̃Y (y; s, t) := 1

F(s, t)

∂

∂y
F (s, y) = 1

F(s, t)

∫ s

0
f (x, y) dx, 0 ≤ y ≤ t, (15)

for s, t ≥ 0 such that F(s, t) > 0. In analogy with (1), we are now able to define the following
new information measure, named bivariate dynamic past mutual information:

M̃X,Y (s, t) :=
∫ s

0
dx

∫ t

0
f̃X,Y (x, y; s, t) log

f̃X,Y (x, y; s, t)

f̃X(x; s, t)f̃Y (y; s, t)
dy (16)

for s, t ≥ 0 such that F(s, t) > 0, where the involved densities are given in (8), (14), and (15).
This is a nonnegative function which measures the dependence between the past lifetimes of X

and Y conditional on {X ≤ s, Y ≤ t}.
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Remark 2. Similarly to (2), for s, t ≥ 0 the following identity holds:

M̃X,Y (s, t) = H̃X(s, t) + H̃Y (s, t) − H̃X,Y (s, t),

where

H̃X(s, t) = −
∫ s

0
f̃X(x; s, t) log f̃X(x; s, t) dx

and

H̃Y (s, t) = −
∫ t

0
f̃Y (y; s, t) log f̃Y (y; s, t) dy

are the entropies of the marginal past lifetimes introduced in (13), and where H̃X,Y (s, t) is
defined in (10).

Let us now obtain some bounds.

Proposition 1. For s, t ≥ 0 such that F(s, t) > 0, let

ã(x, y; s, t) := f (x, y)∫ t

0 f (x, y) dy
∫ s

0 f (x, y) dx
, 0 ≤ x ≤ s, 0 ≤ y ≤ t. (17)

If
ã(x, y; s, t) ≤ (≥) ã(s, t; s, t) for all 0 ≤ x ≤ s and 0 ≤ y ≤ t,

then the following upper [lower] bound holds:

M̃X,Y (s, t) ≤ (≥) log ã(s, t; s, t) + log F(s, t). (18)

Proof. From (16), making use of (8), (14), and (15), we have

M̃X,Y (s, t) = 1

F(s, t)

∫ s

0
dx

∫ t

0
f (x, y) log ã(x, y; s, t) dy + log F(s, t). (19)

Hence, from (17) we immediately obtain (18).

Example 1. Let (X, Y ) be a random vector with joint PDF and distribution function

f (x, y) = x + y, F (x, y) = xy(x + y)

2
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Since, for 0 < s < 1 and 0 < t < 1,

ã(x, y; s, t) = 4(x + y)

st (t + 2x)(s + 2y)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

from (19) we have

M̃X,Y (s, t) = log
st (s + t)

2

+ 1

st (s + t)

{
st (s + t) log

4

st

+ 1

6
[−2s3 log s − 2t3 log t + 2(s + t)3 log(s + t) − 5st (s + t)]

+ t

4
[2s(s + t) + t2 log t − (t + 2s)2 log(t + 2s)]

+ s

4
[2t (s + t) + s2 log s − (s + 2t)2 log(s + 2t)]

}
. (20)
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Figure 1: Plot of the past mutual information given in (20).

For any fixed t ∈ (0, 1), it follows that M̃X,Y (s, t) is increasing for s ∈ (0, t] and, thus, attains
the maximum for s = t , with

M̃X,Y (t, t) = 2 + 40 log 2 − 27 log 3

12
= 0.0053, t ∈ (0, 1).

The plot of M̃X,Y (s, t) is given in Figure 1. See [14, Example 1] for other results on the
information content of the bivariate distribution considered in this example.

Let us now recall that the reversed hazard rate of a random lifetime X is given by τX(x) =
−(d/dx) log FX(x) = fX(x)/FX(x) for all x such that 0 < FX(x) < 1, where FX(x) =
P(X ≤ x).

Remark 3. The argument of the logarithm in (16) can be viewed as a local dynamic measure
of dependence between X and Y . Indeed, due to (8), (14), and (15), we have

f̃X,Y (x, y; s, t)

f̃X(x; s, t)f̃Y (y; s, t)
= τ

X̃s
(x | Y = y)

τ
X̃s

(x | Y ≤ t)
,

where τ
X̃s

(x | B) is the conditional reversed hazard rate of X̃s := [X | X ≤ s] given B.

4. Mutual information for residual lifetimes

The uncertainty about the remaining lifetime in reliability systems is often measured by
means of the differential entropy of residual lifetimes; see [5], [12], and [13]. Recent contribu-
tions on the entropy of residual lifetimes are given in [1]. Other dynamic information measures
involving conditional lifetimes have been proposed and studied in [3], [9], and [27]. For a
random vector (X, Y ) with nonnegative absolutely continuous components, Di Crescenzo et al.
[10] studied the mutual information of the residual lifetimes [X−t | X > t] and [Y −t | Y > t]
at the same age.

In this section, with reference to (5), we investigate the mutual information of the residual
lifetimes at different ages, i.e.

[X − s | X > s, Y > t], [Y − t | X > s, Y > t], s, t ≥ 0. (21)
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For all s, t ≥ 0 such that F(s, t) > 0, the random variables (21) possess densities

fX(x; s, t) = 1

F(s, t)

[
− ∂

∂u
F(u, t)

]
u=x+s

= 1

F(s, t)

∫ +∞

t

f (x+s, y) dy, x ≥ 0 (22)

and

fY (y; s, t) = 1

F(s, t)

[
− ∂

∂v
F (s, v)

]
v=y+t

= 1

F(s, t)

∫ +∞

s

f (x, y + t) dx, y ≥ 0.

(23)
According to (1) we thus introduce the bivariate dynamic residual mutual information, for
s, t ≥ 0 such that F(s, t) > 0,

MX,Y (s, t) :=
∫ +∞

0
dx

∫ +∞

0
fX,Y (x, y; s, t) log

fX,Y (x, y; s, t)

fX(x; s, t)fY (y; s, t)
dy, (24)

the involved densities being defined in (9), (22), and (23). Since X and Y describe the
random lifetimes of two systems, MX,Y (s, t) measures the dependence between their remaining
lifetimes at different ages s and t . See the analogy between (24) and the mutual information of
[(X, Y ) | X > s, Y > t] given in [14, Equation (1)]. We remark that other types of dynamic
information measures for bivariate distributions have been studied by Sunoj and Linu [30].

Moreover, in agreement with (2), the mutual information MX,Y (s, t) satisfies the following
identity (see [14, Equation (13)]):

MX,Y (s, t) = HX(s, t) + HY (s, t) − HX,Y (s, t), s, t ≥ 0, (25)

where HX,Y (s, t) is defined in (11) and

HX(s, t) = −
∫ +∞

0
fX(x; s, t) log fX(x; s, t) dx,

HY (s, t) = −
∫ +∞

0
fY (y; s, t) log fY (y; s, t) dy

(26)

denote the entropies of the residual lifetimes (21) for s, t ≥ 0. Various other results have
been pinpointed in [14], such as the following property: if X and Y are exchangeable then
MX,Y (s, t) = MX,Y (t, s) for all s, t ≥ 0.

We recall that the hazard rate of a random lifetime X is given by hX(x) = −(d/dx) log[1 −
FX(x)] = fX(x)/[1 − FX(x)] for all x such that 0 < FX(x) < 1.

Remark 4. Similarly as in Remark 3, the argument of the logarithm in (24) can be viewed as
a local dynamic measure of dependence between X and Y . Indeed, from (9), (22), and (23),
we have

fX,Y (x, y; s, t)

fX(x; s, t)fY (y; s, t)
= hXs (x | Y = y + t)

hXs (x | Y > t)
, (27)

where hXs (x | B) is the conditional hazard rate of Xs := [X − s | X > s] given B. Moreover,
the right-hand side of (27) is a suitable extension of association measures that are often employed
in reliability theory (see, for example [20] and the references therein).
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The following result is analogous to Proposition 1.

Proposition 2. For s, t ≥ 0 such that F(s, t) > 0, let

a(x, y; s, t) := f (x, y)∫ +∞
t

f (x, v) dv
∫ +∞
s

f (u, y) du
, x ≥ s, y ≥ t. (28)

If
a(x, y; s, t) ≤ (≥) a(s, t; s, t) for all x ≥ s, y ≥ t, (29)

then the following upper [lower] bound holds:

MX,Y (s, t) ≤ (≥) log a(s, t; s, t) + log F(s, t). (30)

Proof. Due to (9), (22), and (23), from (24) we obtain the following alternative expression
for MX,Y (s, t), s, t ≥ 0:

MX,Y (s, t) = 1

F(s, t)

∫ +∞

s

dx

∫ +∞

t

f (x, y) log a(x, y; s, t) dy + log F(s, t). (31)

The proof then immediately follows by use of (29) in the right-hand side of (31).

Example 2. Let (X, Y ) be a random vector with joint PDF

f (x, y) = θ

�(0, 1/θ)
exp

{
−1

θ
(1 + θx)(1 + θy)

}
, x, y ≥ 0,

with θ > 0, and where �(a, z) = ∫ +∞
z

ta−1e−t dt is the incomplete gamma function. Since

F(x, y) = �(0, (1/θ)(1 + θx)(1 + θy))

�(0, 1/θ)
, x, y ≥ 0,

from (9), we have, for s, t ≥ 0,

fX,Y (x, y; s, t) = θ exp{−(1/θ)[1 + θ(x + s)][1 + θ(y + t)]}
�(0, (1/θ)(1 + θs)(1 + θt))

, x, y ≥ 0.

Hence, recalling (28), after some calculations we obtain, for x, y ≥ 0,

a(x, y; s, t) = 1

θ
�

(
0,

1

θ

)
(1 + θx)(1 + θy) exp

{
1

θ
[1 + θ(s + t) + θ2(tx + sy − xy)]

}
.

This expression allows us to evaluate MX,Y (s, t) numerically, by use of (31). Other properties
of dynamic measures concerning this case are given in [14, Section 4.4].

In the following proposition we show a relation between the bivariate dynamic residual and
past mutual information of symmetric random vectors.

Proposition 3. If the random vector (U, V ) has bivariate density fU,V (x, y) such that, for a
fixed (x0, y0) ∈ R

2+,

fU,V (x, y) = f (2x0 − x, 2y0 − y) for all (x, y) ∈ R
2+, (32)

then M̃U,V (s, t) = MX,Y (2x0 − s, 2y0 − t) for all s, t ≥ 0.
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Proof. The proof follows from the definitions of M̃U,V and MX,Y , since the distribution
function of (U, V ) satisfies FU,V (x, y) = F(2x0 − x, 2y0 − y) for all (x, y) ∈ R

2+.

Example 3. Let (X, Y ) be a random vector uniformly distributed over the domain D :=
{(x, y) : x ≥ 0, y ≥ 0, αx + βy ≤ 1} with α, β > 0. Hence, the joint PDF and the joint
survival function are given by

f (x, y) = 2αβ, F (x, y) = (1 − αx − βy)2, (x, y) ∈ D,

so that, from (22), we have the density

fX(x; s, t) = 2α[1 − α(s + x) − βt]
(1 − αs − βt)2 , 0 ≤ x ≤ 1

α
− β

α
t − s, (s, t) ∈ D .

Due to (26), for (s, t) ∈ D the entropies of the residual lifetimes are

HX(s, t) = 1

2
+ log

1 − αs − βt

2α
, HY (s, t) = 1

2
+ log

1 − αs − βt

2β
. (33)

From (9), we obtain, for (s, t) ∈ D ,

fX,Y (x, y; s, t) = 2αβ

(1 − αs − βt)2 , (x + s, y + t) ∈ D .

Hence, making use of (11) we obtain the entropy of [(X − s, Y − t) | X > s, Y > t]:
HX,Y (s, t) = 2 log(1 − αs − βt) − log(2αβ), (s, t) ∈ D . (34)

In conclusion, recalling (25), (33), and (34) we establish that the dynamic residual mutual
information of (X, Y ) is constant:

MX,Y (s, t) = 1 − log 2 = 0.3069, (s, t) ∈ D . (35)

Note that in this case for (s, t) ∈ D , we have

a(x, y; s, t) = 1

2(1 − αx − βt)(1 − αs − βy)
≥ a(s, t; s, t) = 1

2(1 − αs − βt)2 ;
however, now the bound given in (30) is not useful since the right-hand side of (30) is negative.
Let (U, V ) have density

fU,V (x, y) = 2αβ for (x, y) ∈ D̃ :=
{
x ≤ 1

α
, y ≤ 1

β
, αx + βy ≥ 1

}
,

and distribution function FU,V (x, y) = (αx + βy − 1)2 for (x, y) ∈ D̃. Then, (U, V ) is
symmetric to (X, Y ), in the sense that (32) holds for (x0, y0) = (1/2α, 1/2β). Hence, making
use of Proposition 3 and recalling (35), we have M̃U,V (s, t) = 1−log 2 = 0.3069 for (s, t) ∈ D̃.

It is worthwhile to remark that the residual mutual information is constant also in other
cases. See [14, Section 3.1] for various comments on the memoryless property and related
information notions. We recall that if the survival function of a nonnegative continuous vector
variable (X, Y ) satisfies F(x + t, y + t) = F(x, y)F (t, t) for all x, y, t ≥ 0, then (X, Y ) is said
to possess the bivariate lack of memory (BLM) property; see, for example, [29]. It thus follows
that if (X, Y ) has the BLM property, then MX,Y (t, t) does not depend on t . For instance, the
bivariate Block–Basu density and the bivariate Freund density have the BLM property. See
also [28] for the weak multivariate lack of memory property within a stochastic model that will
be discussed hereafter.
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4.1. Dynamic mutual information for the time-transformed exponential model

We recall that a pair of random lifetimes (X, Y ) is said to follow the time-transformed
exponential (TTE) model if its joint survival function may be expressed in the following way:

F(s, t) = W [R1(s) + R2(t)] for all s, t ≥ 0, (36)

where W : [0, +∞) → [0, 1] is a continuous, convex, and strictly decreasing survival function,
such that W(0) = 1 and limr→+∞ W(r) = 0, and where Ri : [0, +∞) → [0, +∞) is a
continuous and strictly increasing function, such that Ri(0) = 0 and limt→+∞ Ri(t) = +∞
for i = 1, 2. Clearly, functions W and Ri , i = 1, 2, provide the time transform and the
accumulated hazards, respectively. Note that the marginal survival functions are given by
FX(s) = W [R1(s)], s ≥ 0, and FY (t) = W [R2(t)], t ≥ 0. Moreover, if R1 and R2 are
identical functions, then X and Y are exchangeable. The TTE model allows us to study the
essential ageing properties of lifetimes (X, Y ) by separating ageing property and dependence
and, thus, it deserves wide interest in reliability theory and survival analysis. Various properties
and applications of such a semiparametric model have been investigated recently in, for example,
[4], [22], [24], [28], and [31].

Hereafter, we investigate the bivariate dynamic residual mutual information within the TTE
model.

Proposition 4. If the survival function of (X, Y ) satisfies the TTE model as specified in (36),
then, for all s, t ≥ 0,

MX,Y (s, t) = 1

W [R1(s) + R2(t)]
×

∫ +∞

R1(s)

du

∫ +∞

R2(t)

W
′′[u + v] log

W
′′[u + v]W [R1(s) + R2(t)]

W
′[u + R2(t)]W ′[R1(s) + v] dv. (37)

Proof. Let s, t ≥ 0. From (36), it follows that

f (s, t) = W
′′[R1(s) + R2(t)]R′

1(s)R
′
2(t).

Hence, from (9), (22), and (23), we have

fX(x; s, t) = −W
′[R1(x + s) + R2(t)]R′

1(x + s)

W [R1(s) + R2(t)]
, x ≥ 0, (38)

fY (y; s, t) = −W
′[R1(s) + R2(y + t)]R′

2(y + t)

W [R1(s) + R2(t)]
, y ≥ 0, (39)

and

fX,Y (x, y; s, t) = W
′′[R1(x + s) + R2(y + t)]R′

1(x + s)R′
2(y + t)

W [R1(s) + R2(t)]
, x, y ≥ 0. (40)

Finally, (37) follows by substituting the above densities in the right-hand side of (24), and by
setting u = R1(x + s) and v = R2(y + t).
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The following result can be obtained by means of straightforward calculations.

Corollary 1. Let (X, Y ) satisfy the assumptions of Proposition 4. If

W(x) = (1 + x)−r , x ≥ 0, R1(s) = αs, s ≥ 0, R2(t) = βt, t ≥ 0,

with r, α, β > 0, then

MX,Y (s, t) = − 1

r + 1
+ log

r + 1

r
, s, t ≥ 0.

From Corollary 1 we show that if (X, Y ) has bivariate Lomax (Pareto type II) joint survival
function then MX,Y (s, t) is constant (see also [14, Section 5.2]). Note that in this case
a(x, y; s, t) is not monotone; so that the bound (29) is not useful.

4.2. Dynamic mutual information for the truncated TTE model

We now consider a TTE model for truncated random lifetimes (X, Y ). Specifically, we
assume such that the nonnegative random variables X and Y are upper bounded through a
suitable function. Unlike the previous section, we now assume that W(r) is a continuous,
convex, and strictly decreasing one-dimensional survival function for all r ∈ [0, ω], where ω

is a fixed positive real number, such that W(0) = 1 and W(ω) = 0. Moreover, R1(·) and R2(·)
are continuous and strictly increasing functions such that R1(0) = R2(0) = 0, and the set

Dω := {(s, t) ∈ R
2 : s ≥ 0, t ≥ 0, R1(s) + R2(t) ≤ ω}

is not empty. Hence, there exists a continuous and strictly decreasing function t = 	ω(s),
defined for 0 ≤ s ≤ R−1

1 (ω), and such that R1(s) + R2(	ω(s)) = ω for all s ∈ [0, R−1
1 (ω)],

with 	ω(0) = R−1
2 (ω) and 	ω(R−1

1 (ω)) = 0. These assumptions thus lead to the following
truncated TTE model for the joint survival function of (X, Y ):

F(s, t) = W [R1(s) + R2(t)] for all (s, t) ∈ Dω. (41)

Similarly to Proposition 4, we thus have the following result for the dynamic residual mutual
information within the above model.

Proposition 5. If the joint survival function of (X, Y ) satisfies the TTE model as specified in
(41), with W

′
(ω) = 0, then, for all s, t ∈ Dω,

MX,Y (s, t) = 1

W [R1(s) + R2(t)]
×

∫ ω−R2(t)

R1(s)

du

∫ ω−u

R2(t)

W
′′[u + v] log

W
′′[u + v]W [R1(s) + R2(t)]

W
′[u + R2(t)]W ′[R1(s) + v] dv.

Proof. Under the given assumptions the densities in (9), (22), and (23) can still be expressed
respectively as in (38) for 0 ≤ x ≤ R−1

1 (ω − R2(t)) − s, as in (39) for 0 ≤ y ≤ R−1
2 (ω −

R1(s)) − t , and as in (40) for all nonnegative x, y such that R1(x + s) + R2(y + t) ≤ ω. Note
that the assumption W

′
(ω) = 0 is essential to ascertain that the integral of fX,Y (x, y; s, t) is

unity. The proof thus proceeds similarly as that of Proposition 4.
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The following result can be obtained via direct calculations.

Corollary 2. Let (X, Y ) satisfy the assumptions of Proposition 5. If

W(x) =
(

x

ω
− 1

)2

, 0 ≤ x ≤ ω,

then MX,Y (s, t) = 1 − log 2 = 0.3069, (s, t) ∈ Dω.

5. Dynamic mutual information for ordered data

The approach developed in the previous sections can also be adopted to study the mutual
information in the presence of conditioning expressed as in (6) and (7). Here we restrict
ourselves to consider models based on ordered data, with an application to order statistics. For
n ≥ 2, consider a system with n components, having independent and identically distributed
random lifetimes. Assume that the failures of the components are observed upon a test. Suppose
that the ith failure occurs before time s and n − j + 1 (j > i) components are still alive at
time t , with 0 < s < t . For 1 ≤ i < j ≤ n, we can define the following random variables:

Ti,j : n(s, t) = [(Xi : n, Xj : n) | Xi : n ≤ s, Xj : n > t], 0 < s < t, (42)

where Xr : n denotes the rth order statistic. We recall that Ebrahimi et al. [17] defined and
studied mutual information between consecutive ordinary order statistics.

Let us now define dynamic mutual information measures for order statistics. As a case study,
we consider (42) for i = 1 and j = n, i.e. we assume that the first failure occurs before time s,
and the last failure occurs after time t . Then the joint PDF of T1,n : n(s, t) and the marginal PDFs
of [X1 : n | X1 : n ≤ s, Xn : n > t] and [Xn : n | X1 : n ≤ s, Xn : n > t] are needed. Let f (x) and
F(x) denote respectively the common PDF and the distribution function of the components’
lifetimes. Since (see, for example, [6])

f1,n : n(x, y) = n(n − 1)[F(y) − F(x)]n−2f (x)f (y), 0 < x < y < +∞,

for 0 < s < t , we have

P(X1 : n ≤ s, Xn : n > t) =
∫ s

0
dx

∫ +∞

t

f1,n : n(x, y) dy

=
∫ s

0
nf (x){[1 − F(x)]n−1 − [F(t) − F(x)]n−1} dx

= 1 − [F(t)]n + [F(t) − F(s)]n − [1 − F(s)]n. (43)

Let

f ∗
1 : n(x; s, t) = (∂/∂x)P(X1 : n ≤ x < t < Xn : n)

P(X1 : n ≤ s, Xn : n > t)

denote the PDF of [X1 : n | X1 : n ≤ s, Xn : n > t]. Hence, using (43), we obtain

f ∗
1 : n(x; s, t) = n{[1 − F(x)]n−1 − [F(t) − F(x)]n−1}f (x)

1 − [F(t)]n + [F(t) − F(s)]n − [1 − F(s)]n , 0 < x < s < t. (44)

Similarly, denoting the PDF of [Xn : n | X1 : n ≤ s, Xn : n > t] by f ∗
n : n(y; s, t), we have

f ∗
n : n(y; s, t) = n{[F(y)]n−1 − [F(y) − F(s)]n−1}f (y)

1 − [F(t)]n + [F(t) − F(s)]n − [1 − F(s)]n , 0 < s < t < y. (45)
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Also, let f ∗
1,n : n(x, y; s, t) be the PDF of T1,n : n(s, t). Then, it is given by

f ∗
1,n : n(x, y; s, t) = n(n − 1)[F(y) − F(x)]n−2f (x)f (y)

1 − [F(t)]n + [F(t) − F(s)]n − [1 − F(s)]n , 0 < x < s < t < y.

(46)
By virtue of (44), (45), and (46), the dynamic mutual information of T1,n : n(s, t) can thus be
defined as

M∗
1,n : n(s, t)

=
∫ s

0
dx

∫ +∞

t

f ∗
1,n : n(x, y; s, t) log

f ∗
1,n : n(x, y; s, t)

f ∗
1 : n(x; s, t)f ∗

n : n(y; s, t)
dy, 0 < s < t.

(47)

Obviously, (47) depends on s, t , n, F(s), and F(t). Also, M∗
1,2 : 2(s, t) = 0 for all 0 < s < t .

However, in agreement with [17, Theorem 3.3(a)], in the following we show that M∗
1,n : n(s, t)

is distribution-free under suitable assumptions.
According to the previous comments, s and t can be seen as inspection times for the

n-component system. The knowledge of [X1 : n ≤ s, Xn : n > t] thus means that, upon
inspection, at least one failed component has been detected at time s, and at least one component
is functioning at time t . We can fix s and t as quantiles of F , say as the pth and qth quantiles,
respectively, i.e.

s = ξp = F−1(p), t = ξq = F−1(q), 0 < p < q < 1, (48)

where F−1 is the generalized inverse of F . Denote by Hn(p, q) the joint probability (43)
when s and t are chosen as in (48), i.e.

Hn(p, q) = 1 − qn + (q − p)n − (1 − p)n, 0 < p < q < 1. (49)

Moreover, in order to show that M∗
1,n : n(s, t) is distribution-free, for p, q ∈ (0, 1), we set

Kn(p, q) :=
∫ p

0
[(1 − u)n−1 − (q − u)n−1] log((1 − u)n−1 − (q − u)n−1) du. (50)

Proposition 6. Let n ≥ 2. If s and t are chosen as in (48), with 0 < p < q < 1, then the
dynamic mutual information of T1,n : n(s, t) is given by

M∗
1,n : n(ξp, ξq)

= log

[
n − 1

n
Hn(p, q)

]
− (n − 2)(2n − 1)

n(n − 1)

− n

Hn(p, q)

{
Kn(p, q) + Kn(1 − q, 1 − p) + n − 2

n

× [(1 − p)n log(1 − p) + qn log(q) − (q − p)n log(q − p)]
}
, (51)

where Hn and Kn are given in (49) and (50), respectively.

Proof. Equation (51) follows from (47), and by using densities (44), (45), and (46).
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Figure 2: Plot of the mutual information given in (51) for n = 3.

Figure 3: Plot of the mutual information given in (51) for n = 3, 5, 10, 15, and q = 1 − p.

If n = 2 the analysis of T1,2 : 2(s, t) is trivial. Indeed, from Proposition 6 it is not hard
to see that M∗

1,2 : 2(ξp, ξq) = 0 for all 0 < p < q < 1. Also, a closed-form expression
for M∗

1,n : n(ξp, ξq) can be obtained from (51) when n = 3; however, we omit it for being
lengthy and tedious. We limit ourselves to show in Figure 2 the plot of M∗

1,3 : 3(ξp, ξq) for
0 < p < q < 1. Furthermore, in Figure 3 we show the plot of M∗

1,n : n(ξp, ξ1−p) for some
selected values of n and 0 < p < 1

2 , in the special case q = 1 − p. From Figure 3, we confirm
that the mutual information M∗

1,n : n(ξp, ξ1−p) is increasing in p, as expected.
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6. A copula-based approach

The copula function is an useful tool in studying the dependency in multivariate distributions;
see, for example, [11]. Sklar’s theorem asserts that, given a copula C : [0, 1]2 → [0, 1], the
joint cumulative distribution function of (X, Y ) can be written in terms of the marginals as

F(x, y) = C(FX(x), FY (y)), x, y ∈ R, (52)

the copula being unique if the marginals are continuous. The corresponding copula density is
given by

c(u, v) = ∂2

∂u∂v
C(u, v) = ∂2

∂u∂v
F (F−1

X (u), F−1
Y (v)), u, v ∈ (0, 1),

where F−1
X and F−1

Y denote the generalized inverse of the marginals. Thus, the joint PDF of
(X, Y ) can be expressed as

f (x, y) = fX(x)fY (y)c(FX(x), FY (y)), x, y ∈ R, (53)

so that the mutual information can be written in terms of the copula density as (see, for
example, [7])

MX,Y =
∫ 1

0
du

∫ 1

0
c(u, v) log c(u, v) dv.

This confirms that the mutual information does not depend on the marginal distributions, and
also that the copula entails all essential information on the dependence between X and Y .

Let us now represent the dynamic past mutual information in terms of the copula function.
We first make use of (53) in (14) and perform the substitution v = FY (y) in the integral.
Moreover, similarly to (48), we set

s = ξp = F−1
X (p), t = ξq = F−1

Y (q), p, q ∈ (0, 1), (54)

so that the density of the marginal past lifetime [X | X ≤ F−1
X (p), Y ≤ F−1

Y (q)] can be
expressed as

f̃X(x; ξp, ξq) = fX(x)

C(p, q)

∫ q

0
c(FX(x), v) dv, 0 ≤ x ≤ F−1

X (p), (55)

the right-hand side of (55) being a weighted density of X. Similarly, from (15), it follows that
the density of [Y | X ≤ F−1

X (p), Y ≤ F−1
Y (q)] is given by

f̃Y (y; ξp, ξq) = fY (y)

C(p, q)

∫ p

0
c(u, FY (y)) du, 0 ≤ y ≤ F−1

Y (q). (56)

Finally, for the bivariate past lifetimes

[(X, Y ) | X ≤ F−1
X (p), Y ≤ F−1

Y (q)], p, q ∈ (0, 1), (57)

the joint PDF (8) becomes

f̃X,Y (x, y; ξp, ξq) = fX(x)fY (y)
c(FX(x), FY (y))

C(p, q)
(58)

for 0 ≤ x ≤ F−1
X (p) and 0 ≤ y ≤ F−1

Y (q).
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Proposition 7. For all p, q ∈ (0, 1), the mutual information of the bivariate past lifetimes (57)
is given by

M̃X,Y (ξp, ξq) = log[C(p, q)]
+ 1

C(p, q)

∫ p

0
du

∫ q

0
c(u, v) log

c(u, v)∫ q

0 c(u, w) dw
∫ p

0 c(z, v) dz
dv. (59)

Proof. Due to (55), (56), and (58), it follows that the mutual information of (57) is

M̃X,Y (ξp, ξq)

=
∫ F−1

X (p)

0

× dx

∫ F−1
Y (q)

0

c(FX(x), FY (y))fX(x)fY (y)

C(p, q)

× log
c(FX(x), FY (y))C(p, q)∫ q

0 c(FX(x), v) dv
∫ p

0 c(u, FY (y)) du
dy, p, q ∈ (0, 1).

Finally, setting u = FX(x) and v = FY (y), we obtain (59).

Example 4. Let (X, Y ) have copula

C(u, v) = u v

u + v − uv
, u, v ∈ (0, 1),

i.e. a special case of a Clayton copula. From Proposition 7, it follows that the mutual information
of (57) is

M̃X,Y (ξp, ξq) = − 1
2 + log 2 = 0.1931, p, q ∈ (0, 1).

Let us now consider the joint survival function F(x, y) and the corresponding marginal
survival functions FX(x) = P(X > x) and FY (y) = P(Y > y). Similarly as in (52), these
functions are related by

F(x, y) = C̃(FX(x), F Y (y)), x, y ∈ R, (60)

where C̃(u, v) = 1 − u − v − C(u, v), u, v ∈ (0, 1), is the survival copula function. The
survival copula density, given by

c̃(u, v) = ∂2

∂u∂v
C̃(u, v) = ∂2

∂u∂v
F (F

−1
X (u), F

−1
Y (v)), u, v ∈ (0, 1),

allows us to express the joint density of (X, Y ) as

f (x, y) = fX(x)fY (y)c̃(FX(x), F Y (y)), x, y ∈ R. (61)

We recall that the copula density and the survival copula density are related by the following
identity: c(u, v) = c̃(1 − u, 1 − v), u, v ∈ (0, 1).

In order to consider the residual mutual information we make use of (60) and (61) in (22),
and perform the substitution v = FY (y) in the integral. Moreover, by setting s and t as in (54),
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the density of the marginal residual lifetime [X − F−1
X (p) | X > F−1

X (p), Y > F−1
Y (q)] can

be expressed as

fX(x; ξp, ξq) = fX(x + F−1
X (p))

C̃(1 − p, 1 − q)

∫ 1

q

c̃(FX(x + F−1
X (p)), 1 − v)dv for x ≥ 0. (62)

Similarly, from (23), it follows that the density of [Y − F−1
Y (q) | X > F−1

X (p), Y > F−1
Y (q)]

is given by

fY (y; ξp, ξq) = fY (y + F−1
Y (q))

C̃(1 − p, 1 − q)

∫ 1

p

c̃(1 − u, FY (y + F−1
Y (q)))du for y ≥ 0. (63)

Furthermore, the density of the joint residual lifetimes

[(X − F−1
X (p), Y − F−1

Y (q)) | X > F−1
X (p), Y > F−1

Y (q)], p, q ∈ (0, 1), (64)

is

fX,Y (x, y; ξp, ξq) = fX(x + F−1
X (p))fY (y + F−1

Y (q))

× c̃(FX(x + F−1
X (p)), F Y (y + F−1

Y (q)))

C̃(1 − p, 1 − q)
for x ≥ 0, y ≥ 0. (65)

In conclusion, we obtain the dynamic mutual information for residual lifetimes in terms of the
survival copula.

Proposition 8. The mutual information of the bivariate residual lifetimes (64) for all p, q ∈
(0, 1) is given by

MX,Y (ξp, ξq) = log[C̃(1 − p, 1 − q)] (66)

+ 1

C̃(1 − p, 1 − q)

×
∫ 1−p

0
dz

∫ 1−q

0
c̃(z, w) log

c̃(z, w)∫ 1−q

0 c̃(z, v)dv
∫ 1−p

0 c̃(u, w)du
dw. (67)

Proof. Making use of (62), (63), and (65), for p, q ∈ (0, 1), we can write

MX,Y (ξp, ξq ) =
∫ +∞

0
dx

×
∫ +∞

0

c̃(FX(x + F−1
X

(p)), FY (y + F−1
Y

(q)))

C̃(1 − p, 1 − q)

× fX(x + F−1
X

(p))fY (y + F−1
Y

(q))

× log
C̃(1 − p, 1 − q)c̃(FX(x + F−1

X
(p)), FY (y + F−1

Y
(q)))∫ 1

q c̃(FX(x + F−1
X

(p)), 1 − v)dv
∫ 1
p c̃(1 − u, FY (y + F−1

Y
(q)))du

dy.

Hence, setting z = FX(x + F−1
X (p)) and w = FY (y + F−1

Y (q)) we obtain (67).
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