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1. Introduction
In 1964 Green and Rivlin (1) introduced a theory of simple force and stress

multipoles founded on conventional kinematics. Using a work formula, the
force and stress multipoles were defined with the help of the velocity field and
its spatial derivatives. More recently, within the framework of this general
study, Bleustein and Green (2) examined the theory of the simplest multipolar
fluid, the dipolar fluid, and formulated constitutive equations for a homo-
geneous incompressible linear dipolar fluid.

In this paper, after giving a resume of the basic field equations governing
the dipolar fluid, we consider for the constitutive model proposed by Bleustein
and Green, the uniqueness of flows in a bounded region. We establish that,
provided the second velocity gradients remain bounded, then the solutions of
the initial value problem in which the velocity and velocity gradient are pre-
scribed on the boundary are unique. Moreover, the same can also be said for a
sub-class of dipolar fluids when the velocity and dipolar tractions are prescribed
on the boundary. These conclusions are based on energy considerations which
are reminiscent of the familiar technique of establishing uniqueness in bounded
regions for the classical Navier-Stokes theory (see Serrin (3), p. 251).

In addition to the generalization of the concepts of body and surface forces,
the theory of simple dipolar continuum mechanics also generalizes the concepts
of kinetic energy and inertia. In a forthcoming paper Green and Naghdi (4)
discuss generally the dipolar inertia and, for the case in which the form of the
kinetic energy is the same as that postulated in (2), these authors argue in favour
of adopting a different form for the fluid inertia from that assumed in (2). The
final section of this present paper shows that when the fluid inertia takes this
new form the parallel uniqueness theorems can be established when the first
and second velocity gradients remain bounded.

2. Basic equations for a dipolar fluid
We refer the motion of the continuum to a fixed system of rectangular

Cartesian axes. Throughout the paper repeated subscripts denote summation
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over the range 1, 2, 3. For an incompressible dipolar fluid the relevant field
equations are (see (2))

Bji,,) = p(6, - TJlt ,) , (2.1)

»*.* = O (2.2)
where p is the mass density, vt the velocity vector and E(jy), are the components
of the dipolar stress I.kji which are symmetric in the first two indices. The
symmetric tensor r y is related to the non-symmetric monopolar stress <xy by

TtJ = (T,y+Zw, k+piFu-TtJ), (2.3)
and the dipolar inertia F y adopted by Bleustein and Green (2) is

r « = d2(»y. i - vh kvk>,), (2.4a)
while that proposed by Green and Naghdi (4) is

r y = d\x>}< i - vu kvki i - vh kvu k + vk_ tvkt J), (2.4b)

where in both cases d is a constant. We shall assume that the monopolar and
dipolar body forces per unit mass, bt and BtJ respectively, are zero. However,
the present paper is easily modified to cover the situation when these forces are
derivable from potentials, that is

b, = Qtt, BtJ = VmU.

In the equations (2.1)-(2.4) a superposed dot denotes the material time derivative
and a subscript k following a comma indicates partial differentiation with respect
to the space variable xk. If the dipolar tractions associated with the surface
whose unit normal is nk are TtJ and if, in addition, Tti is a linear function of nk

then
Tij = rik1,kij.

For a homogeneous isotropic incompressible linear dipolar fluid which is
undergoing homothermal motions the constitutive equations for Ty and £(,,)*
are (2),

*y + 05tf = 2/«(i>y), (2.5)

^am + ̂ jk+^jSik = hiStJvkm n+2h2v(UJ)tk+h3vki u (2.6)
where 5 y is the Kronecker delta, <f> and ip{ are arbitrary functions that arise
from the incompressibility of the fluid, //, hlt h2, h3 are constants and

»(»,7) = i(vi,J-+vJtt). (2.7)
The thermodynamical restrictions imposed by the Clausius-Duhem inequality

upon the coefficients appearing in the equations (2.6) and (2.7) are reported in
(2) to be

>0. (2.8)
We note for future reference that these inequalities imply h3 ^ 0 and h1+h3 ^ 0.
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Irrespective of the form of the dipolar inertia, there is inherent in the theory
a certain degree of non-uniqueness for, as pointed out by Green and Rivlin (1),
the skew-symmetric part 2[yjt of T,ljk makes no contribution to the governing
equations and it is therefore arbitrary in the interior of the fluid. Furthermore,
there is a non-uniqueness associated with the constraint of incompressibility
for when the equations (2.5) and (2.6) are substituted in (2.1) and (2.3) a vector
partial differential equation is obtained involving the velocity field and the
quantity p = <}>—2ipitl (see (2), equation 5.18). These three equations together
with the equation (2.2) yield four equations for determining vf and p. However,
a knowledge of the function p at an interior point of the fluid is not sufficient to
determine the functions <j> and ij/t at that point. As pointed out by Hills (5)
the implication of this observation is that it is not possible to state explicitly
the values taken by the stresses at any interior point of the fluid.

We denote the interior of the three dimensional bounded flow domain Q
with surface 8O by O°. Thus, we assume that equations (2.3)-(2.7) are valid
on the product set fix[0, T) where T is a finite instant of time, while the
equations (2.1), (2.2) and (2.8) are valid on O° x (0, T]. We shall restrict our
attention to classical solutions which are assumed to exist subject to the
prescribed initial conditions

vi(x,0) = fi(x)inOx0 (3.1)

and prescribed boundary data of the type

(i) v-ix, t) = gt(x, t) on 8O x [0, T]

(ii) nkl.kij = Nij(x, t) on 8O x [0, T]

(iii) / ; = g, on 8O x 0,
or of the type

(i) »,(x, 0 = 0,(x, 0 on 8O x [0, T]

II • (ii) Dvfa, 0 = hfa, t) on 8O x [0, T]

(iii) fi = ff; on fflxO
where nk are the Cartesian components of the unit normal to 80 and D is the
normal gradient operator.

3. Uniqueness: Case 1

In this section we shall adopt (2.4a) as the form for the dipolar inertia and
say that vt is a solution if it satisfies (2.2), the vector partial differential equation
that results from (2.1) on using (2.4a), (2.5)-(2.7), together with the designated
initial condition (3.1) and either boundary data of type I or II. Moreover,
the velocity is said to be of class si if

sup vitJkvUk^N2

n°x(o, r>
for some prescribed constant N. We now prove the following theorem:—
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If initial data (3.1) and boundary data of type I are prescribed then, for the
sub-class of fluids for which ht ^ 0, h2 = 0, the governing equations have at
most one solution in the class $4.

We shall assume that there are two solutions vt and v* and on setting
Wj = v,—v* and utilizing the linearity of the constitutive equations (2.5) and
(2.6), we obtain from (2.1) and (2.4a) by subtraction the equation

dtw, - d2dtwit jj + WjVlt j+t>*Wj, j - d2{wkvit kJ+1>? wit ftJ), s

= -(iji,j-l(kJ)l,kj) (3.2)

where d, denotes partial differentiation with respect to time holding the spatial
variable fixed and rjt and 2(iy) j denote the stress tensors appropriate to the
difference velocity wt. Then, by forming the scalar product of (3.2) with wt

using the incompressibility condition, it follows that

1 _ - J2 *

P ' Jl'J ' ikj)''kj ' ' l'J ''J k ''^

—$(wiw i v3 ) , > + ^ 2 [wi3,wJt j+Wi(wkvit kJ+vkwu kJ)—ivjWti kwif k ] t j . (3.3)

Next, we introduce the function R(t) defined by

K(0 = i (w, W;+d2 wlt j\vtt j)dV

where the symbol Q, indicates that the integral is to be taken over fi at time t.
Consequently, on using (3.3), the divergence theorem and the boundary con-
dition wt = 0 on 80, x [0, 7"] we deduce

— = \-
dt Jn, LP

^ j i , i ^ ( k j Y , , k j { i j \ j U J k l k j \ (3.4)

The identity

wfiwv, kj = (wiL^ k\ j - (wti jZkJi\ k+wit kj

allows us to rewrite (3.4) as

— = ~ \-(wt,j*jt+Wi,j£ikfld+(WiWjVi.j+d2Wi,jWkv*k
dt JQt lp

+ (winj
;iji+wiijnkT,kjl-wiT,kjXk)dA (3.5)

JBat

and by employing the boundary conditions I we see that the surface integral
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vanishes. If we now substitute for the stress tensors using the constitutive
equations (2.5) and (2.6), it follows by (2.2) that

— = - - Gw(l-, nw{ii j } + h{wu nWj, r r+h3wl t jkwit jk+2h2wiJkwki n

2 f . (3.6)

Then, for the materials in which ht ^ 0 and h2 = 0, since fi ^ 0 and h3 ^ 0
we can deduce from (3.6) that

^ g - f (wtWjvu+d2
WiijWkv*kj)dV. (3.7)

If — m is the lower bound for the characteristic roots of the tensor v((J) in
fi° x (0, T) then since vt>, = 0 it follows that m ^ 0 and we can use the familiar
argument employed in the classical Navier-Stokes theory to bound the first
term on the right-hand side of (3.7) (see Serrin (3) p. 252). Moreover we can
apply the arithmetic-geometric mean and Schwarz inequalities to the second
term on the right-hand side of (3.7) to deduce

— g k f wiWidV+ld2 I w, ,w, jdV
dt Jn, Jnt

where k = m+$d2N2. Consequently

— g(2k+l)R
dt

so that by integrating from t = 0 to t = T using the initial conditions we
conclude

Since T was an arbitrary instant, R(T) must be identically zero which in turn
implies wt is identically zero. Hence the two flows vt and v* are identical.

We remark that in the preceding proof the boundary condition I(ii) enables
us to show that the surface integral

f -wunktkJidA (3.8)

is zero. Now given any surface we can express the velocity gradient in terms
of the surface gradient operator Dj and the normal gradient operator D:

J (3.9)

where w, is the unit normal to the surface. In particular for the surface dQ,,
since the velocity is specified on this surface, the first term on the right-hand
side of (3.9) can be evaluated. Consequently, if we specify boundary data of
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type II, it is easily seen that w,- y = 0on3f ix [0, T~\ and therefore the integral
(3.8) will again vanish. Moreover, employing the identity

hiWu kkwu „ + h3wu Jkwlf Jk+2h2w-h JkwK n

= 0»i + h3)wu kkwit „+h3(wu kwit kJ - wu jwtt tt), j+2h2(wit ;wt> _,.,.), k
together with the divergence theorem and the inequality h1+h3 ^ 0, we see that
if boundary data of type II is specified then (3.7) can be deduced from (3.6)
independent of any restriction on hY, h2, h3 other than those implied by (2.8).
Hence we have established:—

If initial data (3.1) and boundary data of type II are prescribed then the
governing equations have at most one solution in the class si.

4. Uniqueness: Case 2
In this final section we adopt (2.4b) as the dipolar inertia so that henceforth

vt is a solution if it satisfies (2.2), the vector partial differential equation that
results from (2.1) on using (2.46)-(2.7) together with the initial condition (3.1)
and either boundary data of type I or II. Moreover, the velocity is said to
be of class 0D if

sup Vi,jVi,j^M2, sup viijkviijk^N2

n°x(0 , T) fi<>x(O, T)
for some prescribed constants M and N. Then, corresponding to the results
of the previous section, we now establish the following two theorems:—

If initial data (3.1) and boundary data of type I are prescribed then, for the
sub-class of fluids for which ht ^ 0, h2 = 0, the governing equations have at
most one solution in the class tffl.

If initial data (3.1) and boundary data of type II are prescribed then the
governing equations have at most one solution in the class &.

We need only concern ourselves with proving the first of these results since
the second will follow from the first by an argument similar to the one set out
in the previous section. We again assume that there are two solutions and find
that the equation satisfied by the difference solution wt is obtained by adding
the term

d2(Wi, kvJy k + »* kwj, k - wk, jvk_ i - v£ jWK;), j

to the right hand side of (3.2). Consequently, the equation corresponding in
this situation to (3.3) has the extra terms

d2w,-,jwiykv£k-d
2wu j\vktjv£t-d2[w^v^kVj>k+vftkwJtk-wfc>jVkt,-v£ -wk,,)],,•

included on the left hand side. Then, by following an analysis parallel to that
of Section 3 with these extra terms included, for materials in which hx ̂  0,
h2 = 0, we arrive at the inequality

— ^ - WiWjViyJdV + d2

dt Jnt Jn,
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Since the velocity is now of class 38 we can apply the arithmetic-geometric
mean and Schwarz inequality to obtain

I WiwJwti
Ja,

where kt = (m+$d2N2), k2 = i(3+2M2) and m has the same meaning as
in the previous section. Consequently,

at

and it follows directly that the difference velocity is identically zero. Therefore
the theorem is proved.
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