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A REVERSED HARDY INEQUALITY

P.F, RENAUD

We consider Hardy's classical inequality for Cesaro averages and

show that a reversed version exists if we restrict ourselves to

monotone sequences. Some consequences of this result as well as

an integral version are also obtained.

1. Introduction
CO

Let S be the Cesaro operator defined on sequences x = (x ) by

7 n

(Sx) = - 7 x7 n > 1 .
n nktl k

If p > 1 , a classical inequality due to Hardy (see for example [J]

p.239) shows that S is a bounded linear operator on SL with

V f~- f

Now the operator S is one-to-one but not onto and hence has no bounded

inverse. In other words no inequality of the form

I\Sx\I *K \\x\\ (K independent of x)• I p v "p v

can be universally true in i,

On the other hand we will show that such an inequality does hold if

Received 13 November 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86
$A2.00 + 0.00.

https://doi.org/10.1017/S0004972700010091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010091


226 P. F . Renaud

we res t r ic t ourselves to monotone sequences. Specifically we have the

following:

THEOREM 1 . If p > 1 and x = (x j°° e I with x > x > ...> 0,
r n 1 P 1 2

then (writing | | • | | for | | • | | )

(V \\Sx\\P > z(p)\\x\\P

where x, is the Riemann Zeta function.

The constant z(p) is best •possible.

This generalizes a recent result of Lyons [2] who proved the case p = 2.

I t could also be noted that the resulting inequality

is of course at its tightest when p is close to 1 .

2. Proof of the Inequality.

We begin with the following simple lenma.

LEMMA 1. For p > 1 and x > x > ... > x^ > 0,

(2) (x, +...+X )P - (a? +...+ aP) ̂  I (kp - (k - 1)P - l)x\ .
1 n 1 n k=2 K

Proof. Fix k and write u = x + . . . + x, , and x = x, so

that u > (k - l)x . Then

• (x + . . . + x,)P - (xl +.. . + ̂ j.2^P = (u + x)P - vP

where a = — 2 k - 1 .x

Now the function f(x) = (x + 1) - sr is increasing so that

f(u/x) > f(k - 1) . It follows that

> aPf (k - 1)

that is

/o\ (~* 4. -4- r )^ — tT 4- 4- V )^ > (Vc — (V —
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Summing this inequality from k = 2 to k = n yields

(x. +...+X )P - £ * I (kp - (k - 4
1 n l k=2 K

from which (2) follows immediately.

Now let x = (x ) e S. with x > x > . . . > 0 . Then

00 (x, +...+ x ) p

n=l np

- T 1 * * * n En
" nil rP

where E = 0 and, for n £ 2, e = (x. +...+ x )P - (x\ +...+ x? ) so
1 ' n l n l n

that by Lemma 1,

n

(4) E > I (kp - (k - l)p - 1)£ .
" k=2 K

E
H e n c e • • " - • • ' - » •- • ' • • " • ' "

(n + IF > n n=2

°° pe r n-1 j

n=2 \-rP >• fe=J fe^

But from (4) , \ — > f — I (kP - (k - 1)P - l)x\
n=2 rP n=2 np k=2

(6) = I (rP -(n -
n=2

n i 1
Now let 5 = T — and T = t.(p) - S = T —- , so that we may

n i. i iP n n , , - 7,pk-1 lP n n k-ri+1 kP

write (6) as

c° E

(7, I JL_1 (r? (n 1} 1)r J
n=2 rP n^2 n 1 n

From (5), Theorem 1 will follow once we show that

https://doi.org/10.1017/S0004972700010091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010091


228 P. F . Renaud

°° c e n-1 P

n=2 ̂ rP lij
and from (7) i t suffices to show:

LEMMA 2. For n > 2 ,

(8) (rP - (n - 1)P - n_2 ^

Before proceeding to the proof, it is interesting to note in passing

that the case n = 2 amounts to the usual comparison between I —
rf

with a geometric series.

We are required to show that

(2? - 2)(a(p) - 1) > 1 ,

1that is that t,(p) Z 1 +

But ,(p)=1+
1-+l-+

1-+...

- 2

= 1 + —

Proof of Lenma 2. Fix n 2 2 . We have

In the right hand side of (9), the terms in the first sum corresponding to

k = n2 - n , n2, n + n etcetera, cancel with the terms in the third sum

corresponding to k = n, n + 1, n + 2 etcetera, respectively. So we have

P f- (n-

0 0

I
6=0

n-1 r

k-1 k
(n- 1)

n
2 + jn + k-

P

kin
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n2-n-l t \p n2-n
(10)

0=0 k=l
( \ P ( 7 -»p ~]

n2 + on + k> U 2 +(g - l)n-j+k > J
But the term in the double sum is positive so that (10) becomes

Now remove the terms corresponding to k = 0 , n}2n ... (n - 2)n from

the first sum. The remaining (n - I)2 terms can be grouped with the

(n - I)2 terms of the second sum to obtain a square array so that (11)

becomes

~ j(n 1 ~1)\ k we obtain

(rP - (n- if ^ n_,

which proves Lemma 2 and hence Theorem 1. That I,(p) is the best possible

constant can be seen from considering the case when x = x = ... = 0 .

A large number of inequalities have been derived from Hardy's

inequality. It would seem that most of these have reversed versions.

One interesting aspect is the disparity in levels of difficulty one

encounters in the proofs. As an example, the reversed version of Hilbert's

inequality seems quite non-trivial and will be discussed elsewhere. On

the other hand, Carleman's reversed inequality is entirely trivial. Some-

where in between, usually based on Lemma 1, fall examples corresponding

to inequalities such as Hardy's dual inequality ([7] p. 246).

If p > 1 , then Z(x + x ,, + ...)P S rpZ(nx )? .
n n+i n

The reversed version is

THEOREM 2. If p > 1, x1 > x > ... > 0 then
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Proof.

so that

CO

n=l

L, n
n=l

From Lemma

(xi + ...

(xn + Xn+1 +

+ x -, + ..n+1

1 we have

n

+ Xn) * i l l

oo
T) r»

n=l

oo

n=l

. ) p > 1 (nx ) p

n=l n

Ckp (k l)P)x

oo

y (kP - (k -
k=l

(nx/ .

(13)

3. Reversed Inequalities for Integrals.

The corresponding Hardy inequality for integrals is given by

dx

u L X J ^ " ' J0

where p > 1, f(x) > 0 and F(x) = f(t)dt .

As may be expected, a reversed version of (13) exists. It should

be noted that the constants differ in the sum and integral case whereas

for the classical inequalities they are the same. Specifically we have

THEOREM 3. Let f e LJ-0,<°), f + 0, p > 1 and put F(x)= j f(t)dt.

Then

(Alternatively to highlight the similarity with Theorem 1

rX

Proof. For x > 0, F(x) = f(t)dt > xf(x) so that

pf(x)LF(x)f~1 > p aP~hf(x)f
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which yields by integration

rX

[F(x)lP £ p 1?~lf(t)lPdt almost everywhere .
1 n'0

(The fact that F is differentiable almost everywhere and has derivative

p f Ir follows from standard results in measure theory once we assume

that / is monotone.)

So

o -

>
'o & ' o

(by Fubini's Theorem),

= —^Y f Lf(t) f dt .
o

There is also an integral analogue of Theorem 2.

THEOREM 4 . Let f e L IO,<»), f + 0, p > 1 . Then

J r f f f t J d t l dx > | lxf(x)f dx .f f | f()
0 L i

x
 J

Proof. For x,y > 0 we have

rx+yrx+y

j f(t)dt > yf(x + y) ,

so that

fX+y -i 7

f(t)dt \P~ f(x + y) > p if lf(x + y) ~f
x

and by integration

IPf(t)dtY >pP iP~2Zf(x + t)f dt .
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Letting y

and hence

I" [ frt;dtl > p j iP~2lf(x + t)f dt
OS

= p j (u - xfi^lftulf du ,

fj f(t)dt\ dx>vri\(u- x^lfMfduldx
x ox ~

*v K L v *
-, f .w:
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