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Extreme Pick-Nevanlinna Interpolants
Stephen D. Fisher and Dmitry Khavinson

Abstract. Following the investigations of B. Abrahamse [1], F. Forelli [11], M. Heins [14] and others, we
continue the study of the Pick-Nevanlinna interpolation problem in multiply-connected planar domains. One
major focus is on the problem of characterizing the extreme points of the convex set of interpolants of a fixed
data set. Several other related problems are discussed.

Introduction

Let z0, . . . , zn be n + 1 distinct points in a bounded domainΩ in the complex plane. If n + 1
complex numbers w0, . . . ,wn are given, the classic Pick-Nevanlinna interpolation problem
is to determine whether there is an analytic function f on Ω that is bounded by one and
that interpolates this data: that is,

f (z j) = w j , j = 0, . . . , n and ‖ f ‖∞ ≤ 1.(1)

The linear fractional transformation w → 1+w
1−w converts the class of analytic functions

bounded by one on Ω into the class H+(Ω) of analytic functions with positive real part
on Ω. Hence, the interpolation problem (1) is equivalent to determining if the set M =
M(ζ0, . . . , ζn) defined by

M =

{
g ∈ H+(Ω) : g(z j ) = ζ j =

1 + w j

1− w j
, j = 0, . . . , n

}
(2)

is non-empty. If this is the case, then M is both convex and compact.

When Ω is the open unit disc ∆ = {z : |z| < 1}, there is a simple necessary and
sufficient condition that M be non-empty; moreover, it is also known when there is just one
element in M. For all of this and more, see, for instance, the book [6] by P. Duren or [8].
Under the normalizations that z0 = 0 and that g(0) = 1, M. Heins [14] demonstrated
that if M has more than one element, then its extreme points are precisely those members
of M that map ∆ onto the right half-plane with constant valence k, where k is any integer
between n + 1 and 2n + 1.

We also consider the more general case whenΩ is a domain whose boundary Γ consists
of p + 1 disjoint analytic simple closed curves, Γ0, . . . ,Γp; the case p = 0 corresponds,
of course, to the unit disc ∆. For a multiply-connected domain Ω of this type, B. Abra-
hamse [1] determined the necessary and sufficient condition that M is non-empty and, as
well, when there is just one interpolant; see also [8]. F. Forelli [11] characterized the ex-
treme points of M in the case when n = 0 (and ζ0 = 1). His result is that the extreme
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points of M are also functions of constant valence p + 1. We investigate both of these cases
further. Our analysis is most complete and our conclusions sharpest on the open unit disc
and so we devote Section 1 to this. Sections 2 and 3 contain extensions and generalizations
of these results to finitely-connected domains.

The Pick-Nevanlinna theorem in the unit disc has applications in circuit theory [5] and
the theory of n-widths of sets of analytic functions [10], among other places. It would be
interesting to see if the extensions elaborated here for multiply-connected domains have
similar applications.

1 The Unit Disc

∆ denotes the open unit disc in the complex plane and T its boundary, the unit circle.
H∞ denotes the space of bounded analytic functions on∆ with the supremum norm. H1

consists of those analytic functions f on∆ for which the quantity

sup

{∫ 2π

0
| f (reiθ)| dθ : 0 < r < 1

}
is finite. Each f ∈ H1 has boundary values on T and we may equivalently describe H1 as
those functions f ∈ L1(T, dθ) whose negative Fourier coefficients are zero. Yet again, H1

consists of those L1(T, dθ) functions that have an analytic extension to the open unit disc
∆. H1

0 consists of those elements of H1 that vanish at the origin (or whose mean-value over
T is zero.) The quotient space L1/H1

0 is the pre-dual of H∞ when all the spaces in question
are viewed on the unit circle T. Finally, a function in H∞ is inner if its boundary values
have modulus one a.e.

Definition A Blaschke product of degree m, m ≥ 1, is an analytic function B of the form

B(z) = λ
m∏

j=1

z − a j

1− a jz
, |λ| = 1, a j ∈ ∆, j = 1, . . . ,m.(3)

By definition a Blaschke product of degree 0 is a unimodular constant. We denote the set of
all Blaschke products of degree n or less by Bn. Bn is compact in the topology of uniform
convergence on compact subsets of∆.

Proposition 1

(a) Let R > 1 and letΩ = {z : 1/R < |z| < R}. Suppose that G is analytic onΩ. Then there
is a unique function h that is the best approximation to G in L1(T, dθ) from H1

0 ; further, h
is analytic in the disc {z : |z| < R}. Moreover, there is a Blaschke product B of some finite
degree such that B(G + h) ≥ 0 on the unit circle T. Any zero of G + h on T has even order.

(b) Suppose u ∈ L1(T, dθ) is not in H1
0 . If there is an H1

0 function h and an inner function
I ∈ H∞ with

I(u + h) ≥ 0 a.e. dθ on T(4)

then (i) h is the best approximation in L1(T, dθ) to u from H1
0 and (ii) I is the unique

solution to the extremal problem: sup{Re
∫

u f dθ : f ∈ H∞, ‖ f ‖∞ ≤ 1}.
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Proof (a) The existence and uniqueness of the best approximation in L1(T, dθ) to G from
H1

0 is standard; see [6; Chapter 8]. If h is this best approximation, then there is an analytic
function B ∈ H∞ with

B(G + h) ≥ 0 and |B| = 1, both a.e. dθ.(5)

It now follows that both B and G + h are analytic across the unit circle T (see, for instance,
[22; Lemma 4.5]) and hence that B is a finite Blaschke product of some degree. Since G is
analytic in the region {z : 1/R < |z| < 1}, the reflection principle establishes that B(G + h)
is analytic in the region {z : 1 < |z| < R}. But G is already analytic in this same region
and B is rational with no zeros in this same region. Hence, G + h and, therefore h, are both
analytic in this region. Moreover, B(G + h) ≥ 0 on T and hence any zeros of B(G + h) on T
have even order. But B has no zeros on T and so the zeros of G + h (if there are any) have
even order.

(b) For f ∈ H∞ and ‖ f ‖ ≤ 1, we have

Re

∫
u f dθ = Re

∫
(u + h) f dθ ≤

∫
|u + h| dθ =

∫
I(u + h) dθ = Re

∫
uI dθ.

Moreover, for any g ∈ H1
0 ,
∫
|u + g| dθ ≥

∫
I(u + g) dθ =

∫
I(u + h) dθ =

∫
|u + h| dθ.

The following result, which characterizes the boundary points of Λ when the domain Ω
is the open unit disc∆ is well-known; see [18] and the references therein. We give a proof
that highlights the role of the number of zeros of particular functions associated with the
solution that will be important in Theorem 3.

Theorem 2 Let z0, . . . , zn be n + 1 distinct points in∆ \ {0} and set

Λ = {
(

f (z0), . . . , f (zn)
)

: ‖ f ‖∞ ≤ 1}.

A point P =
(

F(z0), . . . , F(zn)
)

lies in the boundary of Λ if and only if F is a Blaschke product
of degree n or less.

Proof P is in the boundary of Λ if and only if there are complex scalars c0, . . . , cn not all of
which are zero with

Re
n∑

i=0

ciF(zi) ≥ Re
n∑

i=0

ci f (zi) for all f in the unit ball of H∞.

By replacing f by unimodular multiples of itself, we see that the quantity Re
∑n

i=0 ciF(zi)
is positive. Set

G(z) =
n∑

i=0

ci
z

z − zi
(6)

so that the inequality in the third line of the proof may be rewritten as∫
T

F(eiθ)G(eiθ) dθ ≥ Re

∫
T

f (eiθ)G(eiθ) dθ, for all f in the unit ball of H∞.
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The kernel G is analytic in an annular region r0 < |z| < 1/r0, r0 = max |zi |. Let h be
the best approximation to G in L1(T, dθ) from H1

0 and let B be the Blaschke product from
Proposition 1(a). Proposition 1(b) implies that F = B. Let λ1, . . . , λp be the distinct zeros
of G + h on T of respective orders 2m1, . . . , 2mp; let m =

∑p
i=1 mi . Finally, consider

R(z) = B(z)
(

G(z) + h(z)
) p∏

i=1

(
z

(z − λi)(1− λi z)

)mi

.

R is rational on a neighborhood of the closed unit disc and positive on the unit circle T. The
argument principle then implies that R has equally many zeros as poles in ∆. However, R
has as many poles as there are non-zero coefficients ci and so certainly no more than n + 1.
G + h has at least one zero at the origin and s zeros on ∆ \ {0}. Hence, R has at least
m + 1 zeros at the origin and s other zeros on ∆ \ {0}; B has d zeros on ∆. This gives
s + m + 1 + d ≤ n + 1 or

s + m + d ≤ n.(7)

Evidently, (7) implies that d ≤ n. This shows that each point in the boundary of Λ arises
from a Blaschke product of degree at most n.

To prove the converse, let B be a Blaschke product of degree n or less. Suppose that the
point P =

(
B(z0), . . . ,B(zn)

)
lies in the the interior of Λ. Then there is a scalar ρ > 1 so

that ρP ∈ ∂Λ. By the first part of the theorem, there is a Blaschke product C of degree n
or less with C(z j) = ρB(z j), j = 0, . . . , n. However, |(C − ρB) + ρB| = 1 < ρ = |ρB| on
the unit circle T. By Rouché’s theorem, C − ρB and ρB have equally many zeros in∆. But
C − ρB has at least n + 1 zeros while B has at most n. This contradiction establishes that
P ∈ ∂Λ.

Theorem 3 Let TP be the set of supporting hyperplanes at a point P =
(
B(z0), . . . ,B(zn)

)
∈

∂Λ. The degree of B is n if and only if TP has a single element (up to scalar multiples). If B has
degree d, d < n, then c ∈ TP is an extreme point of TP if and only if G + h has no zeros on∆
and 2(n− d) zeros on the unit circle T.

Proof We note first that if the degree of B is precisely n, then (7) shows that G + h has
no zeros in ∆ \ {0} and none on the unit circle T and all the coefficients ci must be non-
zero. Suppose now that B has degree exactly n and that c, d ∈ Cn+1 both give supporting
hyperplanes at P with

∑n
j=0 c jB(z j ) =

∑n
j=0 d jB(z j ) = µ ≥ Re

∑n
j=0 c j f (z j) for all f in

the unit ball of H∞. Let

G1(z) =
n∑

j=0

c j
z

z − z j
and G2(z) =

n∑
j=0

d j
z

z − z j
.

Let h1, h2 be the best approximation to G1, G2, respectively, from H1
0 . Then B(Gi + hi) > 0

on the unit circle T, i = 1, 2, all the scalars c0, . . . , cn and d0, . . . , dn are non-zero, and both
G1 + h1 and G2 + h2 are zero-free in∆. Hence, (G1 + h1)/(G2 + h2) is analytic on∆ (their
poles cancel) and positive on the unit circle T. Thus, this function is identically constant.
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The constant must be one since G1 + h1 and G2 + h2 have the same L1 norm. From this, it
follows easily that c j = d j , j = 0, . . . , n. Suppose that P =

(
B(z0), . . . ,B(zn)

)
where B has

degree d, d < n. Assume first that G + h has 2(n− d) zeros on the unit circle T (and hence
none in∆). If G + h = 1

2 (G1 + h1) + 1
2 (G2 + h2) where Gi + hi ∈ TP, i = 1, 2, then G1 + h1

and G2 + h2 have the same argument on T and simple division shows that both G1 + h1 and
G2 + h2 vanish at the zeros of G + h on T to at least the same order as G + h. Hence, the
zeros have exactly the same order (since s + m + d = n) and so (G1 + h1)/(G + h) is analytic
on∆ and postive on T. Thus, this rational function is constant and because the L1 norms
of these functions are the same, the functions coincide. Therefore, G = G1 = G2 and G + h
is an extreme point of TP.

Suppose next that B has degree d < n. Let ξ0, . . . , ξd be any d + 1 points from among
z0, . . . , zn. By Theorem 2, there are scalars c0, . . . , cd (none of which are zero) such that

d∑
j=0

c jB(ξ j) ≥ Re
d∑

j=0

c j f (ξ j)

for all f in the unit ball of H∞. Since the points ξ0, . . . , ξd may be chosen in
(n+1

d+1

)
ways,

there are many different supporting hyperplanes at
(
B(z0), . . . ,B(zn)

)
.

To see the assertion about the extreme points, let B have degree d, d < n, and suppose
that c gives an extreme point of TP. The function R = B(G+h) is rational and non-negative
on the unit circle. Hence, it has the form

R(z) = Az

∏d
j=1(z − ζ j)(1− zζ j)

∏n−d
k=1 (z − wk)(1− zwk)∏n

i=0(z − zi)(1− zzi)
(8)

where ζ1, . . . , ζd are the zeros of B, w1, . . . ,wn−d are some points in the closed unit disc,

and A > 0. For a polynomial P = Azm
∏d

j=1(z − z j), z j 6= 0, we introduce the notation

P∗(z) = zd+mP(1/z) = Azm
d∏

j=1

(1− zz j ).(9)

Let Q(z) =
∏n−d

k=1 (z − wk); we write Q = Q1Q2 where all the zeros of Q1 lie on T and all
the zeros of Q2 lie in∆. Suppose the degree of Q2 is r > 0; consequently, there is a positive
number δ so that |Q2|2 − δ ≥ 0 on T. Let τ (eit ) = a0 + ar cos rt where a0, ar are real, not
both zero, and chosen so that

|Q2|
2 ± τ ≥ 0 on T and

∫
T
τ |Q1|

2 |D| = 0(10)

where

D(z) = Az

∏d
j=1(z − ζ j)(1− zζ j)∏n
i=0(z − zi)(1− zzi)

.
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By the Riesz-Fejer theorem, there are polynomials (in z) S1 and S2 of degree r with all their
zeros in∆ such that |Q2|2 + τ = |S1|2 and |Q2|2 − τ = |S2|2 on T. Hence,

S1(eit )S∗1 (eit ) = eirt |S1(eit )|2 = Q2(eit )Q∗2 (eit ) + eirtτ (eit )(11)

and

S2(eit )S∗2 (eit ) = eirt |S2(eit )|2 = Q2(eit )Q∗2 (eit )− eirtτ (eit ).(12)

Define R1 = DQ1Q∗1 S1S∗1 and R2 = DQ1Q∗1 S2S∗2 . Then R1 and R2 both give supporting
hyperplanes at P, 1

2 (R1 +R2) = R, and R j = B(G j +h j), j = 1, 2 for appropriate coefficients
and functions h1, h2 ∈ H1

0 . This contradiction shows that Q2 must be constant; that is, all
the zeros of G + h lie on the unit circle if c is an extreme point of TP. To complete the proof
we note that if Q1 has r < n − d zeros on T, then there is a non-constant polynomial S of
degree n − d − r with 1 ± |S|2 ≥ 0 and so (just as above) there are polynomials S1, S2 of
degree n− d − r with all their zeros in ∆ so that |S1|2 = (1 + |S|2) and |S2|2 = (1 − |S|2);
set R1 = DQ1Q∗1 S1S∗1 and R2 = DQ1Q∗1 S2S∗2 ; then 1

2 (R1 + R2) = R. This contradicts the
fact that R is an extreme point.

Conversely, suppose that G + h has n − d zeros on T (and hence no zeros in ∆ \ 0). If
G + h = 1

2 (G1 + h1) + 1
2 (G2 + h2) where both G1 + h1 and G2 + h2 produce supporting

hyperplanes at P, then B(G1 + h1) ≥ 0 and B(G2 + h2) ≥ 0 on T and thus the zeros of both
G1 + h1 and G2 + h2 lie at the zeros of G + h. This also implies that G1 + h1 and G2 + h2 have
no zeros in ∆. The quotient (G1 + h1)/(G2 + h2) is therefore analytic in a neighborhood
of the closed disc and real (in fact, positive) on the unit circle. Thus, it is constant and so
G1 + h1 and G2 + h2 are both multiples of G + h.

2 Finitely-Connected Domains

Let Ω be a bounded domain whose boundary Γ consists of p + 1 disjoint analytic simple
closed curves. We fix a point t0 ∈ Ω and let ω denote harmonic measure on Γ for t0. On Γ
we have

dω =
i

2π
Q ′(z) dz(13)

where Q = G + iH, G is the Green’s function for Ω with pole at t0, and H is the harmonic
conjugate of G; see [8, p. 89]. Q ′ has precisely p zeros in Ω at, say, {ζ1, . . . , ζp}; these
are called the critical points of G. Q ′ has a single pole of order one at t0. H∞ denotes the
space of bounded analytic functions onΩ with the supremum norm. Each function in H∞

has boundary values a.e. ω on Γ. H1 consists of those analytic functions f on Ω whose
modulus has a harmonic majorant on Ω. The norm of f is the value of its (unique) least
harmonic majorant at the point t0. Each f ∈ H1 has boundary values a.e. ω on Γ and
the mapping from f to its boundary values is an isometry of H1 onto a closed subspace
of L1(Γ, ω). Hence, we may equivalently describe H1 as those functions f ∈ L1(Γ, ω) that
have an analytic extension to Ω. H1

0 consists of those functions f ∈ H1 that vanish at
t0; equivalently, the mean-value of f over Γ with respect to ω is zero. Here a significant
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difference between∆ and Ω appears: there is a linear space N of dimension p that consists
of all bounded measurable functions u on Γ that satisfy∫

Γ

u Re(h) dω = 0(14)

for all h ∈ H1. N is the Schottky space of Ω and is spanned by p functions Q1, . . . ,Qp

called the Schottky functions. Each Q j is real on Γ and has a meromorphic extension
to a neighborhood of the closure of Ω. Indeed, we can be more specific. Set P0(z) =∏p

j=1(z− ζ j) where {ζ1, . . . , ζp} are the critical points of the Green’s function with pole at
t0. Then

Qk = Hk/P0, k = 1, . . . , p(15)

where Hk is analytic on the closure of Ω and vanishes at t0. The predual of H∞ is
L1(Γ, ω)/(N + H1

0 ) when all these spaces are considered on Γ.

Definition A Blaschke product of degree r on Ω is a bounded analytic function B whose
modulus satisfies

− log |B(z)| =
r∑

k=1

g(z; wk)(16)

where g(z; w) is the Green’s function for Ω with pole at w ∈ Ω. We let Br denote the set of
Blaschke products of degree r or less.

In contrast to the open unit disc ∆, the location and number of the zeros of a finite
Blaschke product onΩ are not arbitrary. The radial Cauchy-Riemann equations imply that
the argument of finite Blaschke product is an increasing function on each component of
the boundary ofΩ. Hence, the argument must increase by an integer multiple of 2π. Thus,
it is necessary that r ≥ p + 1. Next, the increase in the argument of B along a component
Γ j of Γ is 2π

∑r
k=1 ω j(wk) where ω j(w) is the harmonic measure for Γ j relative to w ∈ Ω;

that is, the value at w of the harmonic function whose boundary values are 1 on Γ j and
zero on the other components of Γ. Hence, in order to be single-valued it is necessary (and
evidently sufficient) that

r∑
k=1

ω j(wk) is a positive integer, j = 0, . . . , p.(17)

Quite clearly, (17) can not hold for all selections of points w1, . . . ,wr in Ω even when r ≥
p + 1.

The double of Ω, denoted by Ω̂, is formed by gluing a second copy Ω∗ of Ω to Ω along
their common edges. Ω̂ is a compact Riemann surface of genus p. A meromorphic function
h onΩ that is real-valued onΓ extends to be meromorphic on Ω̂ by f (z∗) = f (z). Likewise,
if g is meromorphic (or analytic) on a neighborhood of the closure of Ω and unimodular
on Γ, then g has an extension to Ω̂ given by the rule g(z∗) = 1/g(z).
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The following theorem is a partial analogue of Theorem 3. Its main result is well-known;
see [13], [18], and [8, Theorem 5.4.1, p. 130].

Theorem 4 Let z0, . . . , zn, n ≥ 1 be distinct points in Ω \ {ζ1, . . . , ζp} and set

Λ = {
(

f (z0), . . . , f (zn)
)

: ‖ f ‖∞ ≤ 1}.(18)

A point P = (w0, . . . ,wn) lies in the boundary of Λ if and only if there is exactly one function
in the unit ball of H∞ that interpolates the data w0, . . . ,wn. If this is the case, then P =(
F(z0), . . . , F(zn)

)
where either F is a unimodular constant or F is a Blaschke product of degree

at most n + p. If the degree of F is p + n, then there is a unique tangent functional to the
boundary of Λ at P =

(
F(z0), . . . , F(zn)

)
.

Proof The first equivalence is Theorem 5.4.1, p. 130 of [8]. Let us assume that P is not
the same unimodular constant repeated n + 1 times. If P =

(
F(z0), . . . , F(zn)

)
lies in the

boundary of Λ, then there are scalars c0, . . . , cn, not all of which are zero, with

Re
n∑

j=0

c jF(z j ) ≥ Re
n∑

j=0

c j f (z j ), ‖ f ‖∞ ≤ 1.(19)

Let

G(z) =
n∑

j=0

c j
1

z − z j
.

Use the Cauchy integral formula and the relationship Q ′dz = −2πi dω, to rewrite this as∫
Γ

(GF/Q ′) dω ≥

∣∣∣∣∫
Γ

(G f /Q ′) dω

∣∣∣∣ , ‖ f ‖∞ ≤ 1.(20)

Let u be the best approximation to G/Q ′ in L1(Γ, ω) from H1
0 + N . Then

F(G/Q ′ + u) ≥ 0 a.e. dω on Γ.(21)

However, we know that u = h/Q ′ where h ∈ H1
0 . Thus, we learn that

F(G + h)/Q ′ ≥ 0 a.e. dω on Γ.(22)

It is standard that (22) then implies that h and F are analytic in a neighborhood of the
closure of Ω and that F is unimodular on Γ; that is, F is a finite Blaschke product of some
degree d. Let G + h have 2m zeros on Γ and s ′ zeros on Ω. Let n ′ be the number of non-
zero coefficients ci , so that n ′ ≤ n + 1 and n ′ is the degree of the rational function G.
Then R = (G + h)/Q ′ has n ′ + p poles, s ′ zeros on Ω, and 2m zeros on Γ. Because FR is
meromorphic on the double Ω̂, a compact Riemann surface, we find that

2m + 2(s ′ + d) = 2(n ′ + p).(23)
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Hence, s ′+d +m ≤ p +n+1. We let s be the number of zeros of R onΩ\t0 so that s ′ ≥ s+1
and we obtain

s + d + m ≤ p + n.(24)

Evidently, this implies that d ≤ p + n. Since a Blaschke product on Ω is single-valued only
if its degree is p + 1 or more, we see that each boundary point of Λ arises from a Blaschke
product of degree d, p + 1 ≤ d ≤ p + n.

Suppose now that the degree of F is exactly p + n. Then (23) implies that m = 0, s′ = 1
and n ′ = n + 1. If there is another supporting hyperplane at P, then the corresponding
rational function R1 has no zeros in Ω \ t0 and, as well, none on Γ. The ratio R/R1 is then
analytic on Ω and positive on Γ and therefore constant.

Example 1 When p ≥ 1, the converse implication of Theorem 4 may fail; that is, it is pos-
sible to find a Blaschke product B of degree p + n so that the point P =

(
B(z0), . . . ,B(zn)

)
lies in the interior of Λ rather than on the boundary. For instance, onΩ there is a Blaschke
product B of degree p + 1; one such Blaschke product is the Ahlfors function; see the end
of Section 3 or [8, Section 5.1]. Take n = p and let the points z0, . . . , zp be the zeros of B.
Then the degree of B is p + 1 ≤ 2p = n + p while P =

(
B(z0), . . . ,B(zn)

)
= (0, . . . , 0) lies

in the interior of Λ. (Recall that the origin is always interior to Λ since, for instance, it has
many different interpolants from the unit ball of H∞; cf. Theorem 4.)

Remarks 1. It would be very interesting to give an intrinsic characterization of those
Blaschke products B of degree n + p or less for which the point P =

(
B(z0), . . . ,B(zn)

)
lies

in the boundary of Λ.
2. Suppose that n ≥ p + 1. A simple application of Rouché’s theorem shows that if B

has degree n or less, then P =
(
B(z0), . . . ,B(zn)

)
lies in the boundary of Λ.

3. A different way of formulating the Pick-Nevanlinna interpolation problem on mul-
tiply-connected domains is explored in [9].

The convex compact subsetΛ of Cn+1 defined in (18) is carried homeomorphically onto
a closed (unbounded) convex subset Λ ′ in Cn+1 by the map

Φ(w0, . . . ,wn) =

(
1 + w0

1− w0
, . . . ,

1 + wn

1− wn

)
.

Moreover, each point of Λ ′ arises from an analytic function g whose real part is positive
on Ω and, conversely, each such function gives a point of Λ′. The homeomorphism carries
the boundary of Λ onto the boundary of Λ ′. Thus, investigating those Blaschke products
that give rise to boundary points of Λ is equivalent to investigating those analytic functions
with positive real part that give rise to boundary points of Λ ′. This is what we now set out
to do.

We begin with a discussion of the Poisson kernel for a point z ∈ Ω. Let dω be the
harmonic measure on Γ for the point t0; then the harmonic measure dωz for a point z ∈ Ω
has the form

dωz(ξ) = P(ξ, z) dω(ξ) =

(
1

ξ − z
+ Fz(ξ)

)
dξ

2πi
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where Fz is analytic on a neighborhood of the closure of Ω; for this, see [8]. We now apply
(13) to obtain

P(ξ, z) =
1

Q ′(ξ)

(
1

ξ − z
+ Fz(ξ)

)
.

This implies that P(ξ, z) has a meromorphic extension to Ω̂ with a zero at t0 and poles at
z and the critical points of the Green’s function {ζ1, . . . , ζp} and corresponding zeros and
poles at the reflections of these points.

Let u(z) be a positive harmonic function on Ω. Then there is a unique positive measure
µ on the boundary Γ of Ω such that

u(z) =

∫
Γ

P(ξ, z) dµ(ξ).(25)

If u = Re g where g is analytic on Ω, then there is another restriction on µ. Because g is
analytic on Ω, u has a single-valued harmonic conjugate on all of Ω and so we must have∫

Γ

Qk(ξ) dµ(ξ) = 0, k = 1, . . . , p(26)

where Q1, . . . ,Qp are the Schottky functions described earlier. The function g therefore
has the representation

g(z) =

∫
Γ

P(ξ, z) dµ(ξ)(27)

where

P(ξ, z) = P(ξ, z) + iP̃(ξ, z)(28)

and P̃(ξ, z) is the real-valued function on Γ satisfying∫
Γ

(
Re f (ξ)

)
P̃(ξ, z) dω0(ξ) = Im f (z), f ∈ H2(Ω) and Im f (t0) = 0.(29)

The function P̃(ξ, z) has the form:

P̃(ξ, z) =
1

Q ′(ξ)

(
i

ξ − z
+ H(ξ)

)
(30)

where H is analytic on the closure of Ω. To see this, note that (29) gives∫
Γ

h(ξ)P̃(ξ, z) dω(ξ) = −ih(z), h ∈ H2
0 (Ω)

and so P̃ − iP is orthogonal to H2
0 and therefore has the form

P̃ − iP = g +
p∑

j=1

c jQ j
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where g lies in H2. When we use (15) and the known form of P, we obtain (30). In particu-
lar, we learn that P̃(ξ, z) has a meromorphic extension to Ω̂ with poles at {z, ζ1, . . . , ζp}, a

zero at t0, and corresponding poles and zero at the reflections of these points, since P̃(ξ, z)
is real on Γ.

Notations and Remarks (1) M+
0 denotes the convex cone of those non-negative measures

on Γ that satisfy the p homogeneous conditions (26). We shall henceforth assume that all
the analytic functions g with non-negative real part on Ω are normalized by the condition
Im g(t0) = 0. With this assumption, every analytic function onΩwhose real part is positive
is obtained from an element of M+

0 by convolution with the family of Poisson kernels and
visa versa.

(2) We shall assume that the first interpolation point z0 coincides with the base point
t0; this does not reduce the generality of our results but does simplify some of the notation
since the Poisson kernel for t0 is identically 1. This assumption and (1) imply that the first
entry in the (n + 1)-tuple used in determining Λ ′ is a positive real number.

(3) Recall again that the points z0, . . . , zn lie in Ω \ {ζ1, . . . , ζp}. We define S to be the
real span of the 2n + p + 1 linearly independent functions

1, P(ξ, z1), . . . , P(ξ, zn), P̃(ξ, z1), . . . , P̃(ξ, zn),Q1(ξ), . . . ,Qp(ξ).

Every function in S is real on Γ and has a meromorphic extension to Ω̂ with at most simple
poles among the points z1, . . . , zn, ζ1, . . . , ζp and their reflections. Conversely, if h is mero-

morphic on Ω̂ with simple poles among z1, . . . , zn, ζ1, . . . , ζp and their reflections and h is
real-valued on Γ, then h ∈ S.

The following result is a special case of Lemma 2 of [18].

Proposition 5 There are p + 1 points x0, . . . , xp in Γ with this property: each p-tuple of real
numbers (r1, . . . , rp) has the form

r j =

p∑
k=0

ckQ j(xk), j = 1, . . . , p

for some choice of non-negative scalars c0, . . . , cp. There is a constant M with the property that∑
c2

j ≤ M
∑

r2
j .

Theorem 6 A point P = (ξ0, ξ1, . . . , ξn), ξ0 > 0, lies in the boundary of Λ ′ if and only if
there is a unique g with positive real part onΩwith g(z j) = ξ j , j = 0, . . . , n. If this is the case,
then the measure λ ∈M+

0 corresponding to g is supported in the set of zeros in Γ of a function
h ∈ S that is non-negative on Γ. Conversely, suppose that the measure λ ∈ M+

0 is supported
in the zero set of a function h ∈ S that is non-negative on Γ; let g(z) =

∫
Γ
P(ξ, z) dλ(ξ) be the

analytic extension of λ to Ω. Then P =
(
g(z0), . . . , g(zn)

)
lies in the boundary of Λ ′.

Proof Recall that the function P(ξ; z) is the complex Poisson kernel, defined in (28). Sup-
pose that the measure λ ∈M+

0 produces a boundary point of Λ ′. Then there is a non-zero
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vector (c0, . . . , cn) ∈ Cn+1 such that

Re
n∑

k=0

ck

∫
Γ

Pk dλ ≤ Re
n∑

k=1

ck

∫
Γ

Pk dρ(31)

for all measures ρ ∈ M+
0 . Since M+

0 is a cone, we evidently learn that the lefthand side
of (31) is zero. Let G = Re

∑n
k=0 ckPk so that

∫
Γ

G dρ ≥ 0 for all ρ ∈ M+
0 . We now show

that the hypotheses of Theorem 2.6.2 of [7] are valid. Let E be the space of real measures
on Γ in the weak-star topology; E is an ordered vector space using the cone of non-negative
measures to determine the partial order. Let M be the subspace of those measures that are
orthogonal to the Schottky functions Q1, . . . ,Qp. The linear functional `(µ) =

∫
G dµ is

non-negative on M by (31). Let ρ ∈ E; by Proposition 5 there is a non-negative measure ν
such that ρ+ ν ∈ M. Hence, by Theorem 2.6.2 of [7], `may be extended to a non-negative
linear functional on all of E; that is, there is a non-negative continuous function h on Γ so
that ∫

G dµ =

∫
h dµ, for all µ ∈ M.

Thus, G−h is a real linear combination of the Schottky functions Q1, . . . ,Qp; equivalently,
h = G + H where H is a linear combination of Q1, . . . ,Qp and∫

Γ

(G + H) dν ≥ 0, for all ν ∈M+

with equality when ν = λ. Moreover, h(ξ) =
∑n

j=0

(
a jP(ξ, z j)+ã j P̃(ξ, z j)

)
+
∑p

k=1 bkQk(ξ)
for some real scalars a0, . . . , an, ã0, . . . , ãn, b1, . . . , bp so h ∈ S and supp(λ)is a subset of
the zero set of h on Γ.

Conversely, if a non-negative function h lies in S and the measure λ ∈M+
0 is supported

within the zero set of h on Γ, then∫
Γ

h dρ ≥ 0, for all ρ ∈M+
0(32)

and equality holds for λ = ρ. Since h ∈ S there are real numbers a0, . . . , an, ã0, . . . , ãn

and b1, . . . , bp so that h =
∑n

k=0(akPk + ãkP̃k) +
∑p

j=1 b jQ j . Let ck = ak − iãk. Thus, (32)
implies that

Re
n∑

k=0

ckg(zk) ≥ 0(33)

for all analytic functions g whose real part is positive on Ω. Moreover, equality holds for
the function g0 determined by the measure λ. Evidently, (33) implies that P =

(
g0(z0), . . . ,

g0(zn)
)

lies in the boundary of Λ ′.

Pick Bodies and Interpolation Let z0, . . . , zn be distinct points in the open unit disc ∆
and let

Λ = {
(

f (z0), . . . , f (zn)
)

: f ∈ H∞(∆), ‖ f ‖ ≤ 1}.
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Λ has been termed a Pick body by B. Cole, J. Lewis, and J. Wermer. In a series of papers
[2], [3], and [4], these authors studied Pick bodies from the perspective of Banach algebras
and operator theory. They note that a Pick body K is hyperconvex; that is, for every positive
integer m and every polynomial P of m complex variables that is bounded by one in the
unit polydisc in Cm and every set of m points z1, . . . , zm in K, the point(

P(z11, . . . , zm1), P(z21, . . . , zm2), . . . , P(zm1, . . . , zmm)
)

lies in K. They characterized Pick bodies as compact, hyperconvex subsets of Cn+1 with the
property that ∂K contains some point w = (w0, . . . ,wn) with

(a) |wi| < 1 for all i; (b) wi 6= w j , if i 6= j; (c) w2, . . . ,wn ∈ ∂K.(34)

Specifically, what we mean by this is that if K is a convex compact subset of Cn+1 that
satisfies the conditions listed in (34), then there are points z0, . . . , zn in∆ so that

K = {
(

f (z0), . . . , f (zn)
)

: f ∈ H∞(∆), ‖ f ‖ ≤ 1}.

J. Wermer asked if a similar sort of characterization holds when the unit disc∆ is replaced
by a domain Ω of the type we have considered here. The answer to this is no. Indeed,
consider the case p = 1, n = 2, that is, 3 point interpolation on an annulus. Theorem 4
shows that any non-constant boundary point ofΛ arises from a Blaschke product of degree
at least p + 1 = 2 and at most n + p = 3. The Cole-Lewis-Wermer condition would say that
there is some (non-constant) point w = (w0,w1,w2) in ∂Λ such that w2 = (w2

0,w
2
1,w

2
2)

lies in ∂Λ, too. But boundary points of Λ are characterized by having unique interpolants.
Hence, if φ is the unique interpolant from the unit ball of H∞ of the data (w0,w1,w2),
then φ2 must be the unique interpolant of the data (w2

0,w
2
1,w

2
2). However, φ2 is a Blaschke

product of degree at least 4, contradicting the fact that boundary points of Λ come from
Blaschke products of degree at most 3.

It would be most interesting to characterize Pick bodies in the multiply-connected case;
in particular, is the boundary a subset of the zero set of a real analytic function?

3 Interpolation of Fixed Data

Because of our assumptions that the first interpolation point is t0 and that all analytic func-
tions with non-negative real part are strictly real at t0, the first interpolating condition
g(t0) = ζ0 involves only a real datum ζ0. With this in mind, let {ζ0, . . . , ζn} be given data
and suppose that there is at least one analytic function g on Ω with positive real part sat-
isfying g(z j) = ζ j , j = 0, . . . , n. We denote the set of all such interpolating functions by
M =M(ζ0, . . . , ζn). Evidently, M is a convex compact set. Each function in M arises from
a unique positive measure µ on Γ via the representation (27) and we use the same letter
M to denote the corresponding set of positive measures on Γ. We wish to determine the
extreme points of M. This was done by Heins [14] when Ω is the open unit disc ∆. He
demonstrated that if M has more than one element, then its extreme points are precisely
those functions that map ∆ onto the right half-plane with constant valence k, where k is
any integer between n+1 and 2n+1. Of course, if M has just one element, then it also maps
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∆ onto the right-half plane with constant valence k, 0 < k ≤ n. We shall obtain analogs of
these results in some cases and point out significant differences in other cases.

Remark The similar problem of determining the extreme points of the convex compact
set

B = { f ∈ H∞(Ω) : ‖ f ‖∞ ≤ 1 and f (z j) = w j , j = 0, . . . , n}

is actually far less interesting than the one we consider. A moment’s thought shows that a
function f ∈ B is an extreme point of B if and only if it is an extreme point of the unit
ball of H∞ (and lies in B, of course). The sets B and M are homeomorphic under the
correspondence f → 1+ f

1− f and so their boundaries are sent one to the other under this
mapping, but the extreme points of the sets B, M are not preserved by this (non-linear)
correspondence.

Theorem 7

(a) Each extreme point of M arises from a discrete measure with at most 2n + p + 1 points
of support. A discrete measure in M that is not an extreme point of M has at least 2n + 2
points of support.

(b) A discrete measure µ with 2n + p + 1 or fewer points of support gives rise to an extreme
point of M if and only if the restriction of S to the support of µ is linearly independent.

(c) A discrete measure µ ∈M is an extreme point of M if and only if it has minimal support;
that is, if β ∈M and supp(β) ⊂ supp(µ), then β = µ.

(d) If M has just one element, then the number of points in the support of the corresponding
measure is at most n + p.

Proof (a) Suppose that µ is an extreme point of M and that there are 2n + 2 + p disjoint
sets in Γ of positive µ measure. A simple linear algebra argument then shows that there
is a real-valued piecewise-constant function v that is not identically zero supported on the
union of these sets that satisfies the 2n + p + 1 real conditions:

∫
Γ

v(ξ)Qk(ξ) dµ(ξ) = 0, k = 1, . . . , p,∫
Γ

v(ξ)P(ξ, z j) dµ(ξ) = 0, j = 1, . . . , n,∫
Γ

dµ(ξ) = 0.

Thus, the measure (1 + εv)µ lies in M for all small ε, ε positive or negative. This clearly
contradicts the extremality of µ. Consequently, 2n + p + 2 such sets do not exist and so µ
must be the sum of at most 2n + p + 1 point masses.

Suppose that µ ∈ M is a discrete measure with support at the points x j ∈ Γ, j =
1, . . . ,m. If µ is not an extreme point of M, then there are measures ν1, ν2 ∈ M, ν1 6= ν2

with µ = 1
2 (ν1 + ν2). The support of both ν1 and ν2 lies in that of µ. Let g1, g2 be the

analytic functions on Ω determined according to (25) by ν1, ν2, respectively. The function
g = g1 − g2 is not identically zero and is meromorphic on Ω̂ with at most m poles and at
least 2n + 2 zeros: at the points z0, . . . , zn and their reflections. Hence, m ≥ 2n + 2.

(b) Let x1, . . . , xm ∈ Γ be the support of µ ∈ M. µ is an extreme point of M if and
only if there is not a (non-zero) measure ν supported on x1, . . . , xm with µ ± ν ∈ M.
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This is equivalent to saying that there is not a measure ν supported on x1, . . . , xm that is
orthogonal to S.

(c) Suppose that µ is an extreme point of M, β ∈ M, and supp(β) ⊂ supp(µ). Then
ν = µ − β is orthogonal to S and the support of ν is a subset of that of µ. By (b), ν = 0.
Hence, µ has minimal support. Conversely, suppose that µ ∈ M has minimal support. If
µ = 1

2 (µ1 +µ2) where µ1, µ2 ∈M, then evidently the support of both µ1 and µ2 is a subset
of that of µ. By the minimality assumption, µ1 = µ2 = µ.

(d) If M has just one element, then this function must be the unique interpolant de-
scribed in Theorem 4 and so the measure µ has no more than n + p points of support.

Example 2 There are non-extreme points in M with as few as 2n + 2 points of support. To
see this, let φ be an analytic function on Ω that is a p + 1-fold covering of ∆; the Ahlfors
function (see [6, Section 5.1], for instance) is one such function and others may be obtained
from Proposition 8 below. We may assume with no loss of generality thatφ has p+1 distinct
zeros in Ω, say at z0, . . . , zp and we take n = p. Let λ1, λ2 be distinct points on the unit

circle and set g j(z) = λ j−φ(z)
λ j +φ(z) , j = 1, 2. Then g j has positive real part on Ω; in fact, Re g j is

the Poisson extension of a positive measure µ j on Γ with exactly p + 1 points of support.
Moreover, g1(zk) = g2(zk) = 1, k = 0, . . . , p. The function g = 1

2 (g1 + g2) is then not
an extreme point of the set M of functions with positive real part that interpolate the data
1, . . . , 1 at the points z0, . . . , zp. Moreover, g is the Poisson extension of discrete measure
on Γ with at most 2p + 2 points of support. Since 2p + 2 ≤ 2n + p + 1 = 3p + 1 as soon as
p ≥ 1, we see that there are measures with as few as 2n + 2 points of support that are not
extreme points of M.

The following is another example of the phenomena displayed in Example 2.

Example 3 Let Ω be the annulus {z : R < |z| < 1} so that p = 1; we shall take n = 1
and consequently 2n + p + 1 = 4. We shall construct a measure µ supported on four points
in Γ that is not an extreme point of M. We take the four points on the boundary to be
x1 = i, x2 = iR, x3 = −iR, x4 = −i; we let µ1 be the measure determined by placing
masses at the points x1, x3 with weights w1 = 1, w3 = R, respectively, and let µ2 be the
measure determined by placing masses at the points x2, x4 with weights w2 = R, w4 = 1.
The (single) Schottky function Q for Ω is

Q(x) =

{
1

R log R if |x| = R
−1

log R if |x| = 1.

Thus, both µ1 and µ2 are orthogonal to Q. Let ν = µ1 − µ2; clearly, ν is orthogonal to
the function that is identically 1. Let u, u1, u2 denote the Poisson extensions to Ω of ν,
µ1, µ2, respectively, so that u = u1 − u2. Symmetry considerations show that u(t) = 0,
R < |t| < 1. Let v be a harmonic conjugate of u in Ω and set g = u + iv. Then g is purely
imaginary on the real axis and so by Schwarz reflection satisfies g(z) = −g(z), z ∈ Ω. In
particular, g(z) = 0 if and only if g(z) = 0. Next,

u(i y)→∞ as y ↑ 1 and u(i y)→ −∞ as y ↓ R.
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Therefore, there is a y0, R < y0 < 1 at which u(i y0) = 0. We now specify that the
harmonic conjugate v of u be chosen to be zero at i y0. Hence, g(i y0) = 0 and g(−i y0) =
−
(

g(i y0)
)
= 0, as well. We denote by g1, g2 the analytic functions on Ω whose real parts

are u1, u2, respectively, and whose imaginary parts vanish at i y0. Evidently, g = g1− g2. Set
z1 = i y0 and z2 = −i y0; we then have

g1(z1) = g2(z1) = ζ1 and g1(z2) = g2(z2) = ζ2.

Therefore, the function f = 1
2 (g1 + g2) is not an extreme point of M(ζ1, ζ2) but yet is the

Poisson integral of a measure µ = 1
2 (µ1 + µ2) on Γ with just 4 = 2n + p + 1 points of

support.

The case when n = 0 can be worked out fully. We shall need the following simple result.

Lemma 8 If µ is any non-negative discrete measure on Γ that is orthogonal to Q1, . . . ,Qp,
then µ has support on each component Γ0, . . . ,Γp of Γ. In particular, if µ is discrete, then it
has at least p + 1 points in its support.

Proof Let g be the analytic function on Ω obtained by extending the measure µ accord-
ing to (25); g has non-negative real part on Ω. Moreover, g extends analytically across any
component Γk of Γ on which µ has no support and Re g vanishes identically there. The
function f = g−1

g+1 is analytic on Ω and is bounded by one. Moreover, f extends continu-
ously to Γk and has unit modulus there. The Cauchy-Riemann equations then imply that
the argument of f is (strictly) increasing on Γk. Since f is single-valued, this means that
the argument of f must increase by an integer multiple of 2π on Γk and so f must take on
the value 1 on Γk. However, f (x) = 1 at some point x ∈ Γk only if the function g has a
discontinuity at x. That is, µ has a point of support at x.

Proposition 9 A measure µ ∈ M+
0 lies in an extremal ray of M+

0 if and only if µ has p + 1
points of support.

Proof Suppose first that µ ∈ M+
0 lies in an extremal ray of M+

0 . If there are p + 2 disjoint
sets of positive µ-measure, we may construct a bounded piecewise constant function v that
is not identically 1 such that v dµ is orthogonal to Q1, . . . ,Qp. Thus, for a sufficiently small
ε, we have 1 = 1

2 [(1 + εv) + (1− εv)] and so µ fails to be extremal, a contradiction. Hence,
the support of µ has at most p + 1 points. Since the support has at least p + 1 points, it
must have exactly p + 1 points. Conversely, suppose µ ∈M+

0 has p + 1 points of support. If
µ = 1

2 (ν1 + ν2) where ν1, ν2 ∈M+
0 , then the support of ν1, ν2 is a subset of that of µ and so

is the exact same set of p + 1 points. Suppose that ν1 6= µ. Then there is a constant A with
µ− Aν1 ≥ 0 and µ− Aν1 has p or fewer points of support. But this contradicts Lemma 7.
Hence, µ is extremal.

Ahlfors’ Functions Let Ω be a domain in the complex plane that supports non-constant
bounded analytic functions. Fix some point z0 ∈ Ω and consider the extremal problem

γ = sup
f∈H∞

Re f ′(z0).(35)
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It is known (cf. [8, Theorem 5.1.1]) that there is a unique solution F to this problem, called
the Ahlfors function for Ω and z0 and F(z0) = 0. In the case when Ω is bounded by p + 1
disjoint smooth simple closed curves, the Ahlfors’ function may be extended analytically
across Γ and maps each component Γ j of Γ one-to-one onto the unit circle. As a conse-
quence, it is a p +1-fold cover of the unit disc∆ and the associated function G with positive
real part G = (1 + F)/(1−F) is the (complex) Poisson integral of a positive measure µG on
Γ with precisely p + 1 points of support, one in each Γ j .

We now demonstrate that the converse of this statement does not hold. That is, there
is an analytic function on Ω with positive real part determined by a positive measure
on Γ with exactly one point of support in each component Γ j that is not of the form
(1 + F)/(1 − F) where F is the Ahlfors function for some point in Ω. Equivalently, not
every Blaschke product onΩ of degree p + 1 is an Ahlfors function. To see this, we suppose
the contrary. Let z0, z1 be distinct points of Ω. Theorem 4 tells us that each point in the
boundary of

Λ = {
(

f (z0), f (z1)
)

: f ∈ H∞, ‖ f ‖ ≤ 1}

arises from a Blaschke product of degree p + 1, unless f (z0) = f (z1) ∈ T, the unit cir-
cle. In particular, if we (forever) fix two non-zero complex numbers c0, c1 with different
arguments, then the solution to the extremal problem

sup Re{c0 f (z0) + c1 f (z1) : f ∈ H∞, ‖ f ‖ ≤ 1}(36)

is a Blaschke product of degree exactly p + 1. Suppose that for each choice of z0, z1 ∈ Ω,
there is some point z2 ∈ Ω so that the solution of the extremal problem (36) is the Ahlfors
function F for z2. Let R0 be the kernel for the extremal problem (36) and let R1 be the
kernel for the extremal problem (35); that is, for the Ahlfors function. We know that R0

has poles of order 1 at z0, z1 and at the critical points of the Green’s function for t0; further,
from (23), R0 has no zeros on Ω ∪ Γ except at t0. Likewise, R1 has a pole of order 2 at z2,
poles of order one at the critical points of the Green’s function for t0, and no zeros onΩ∪Γ
except at t0. Finally, we also know that

R0F > 0 and R1F > 0 on Γ.

Hence,

R = R0/R1 = FR0/FR1 > 0 on Γ.(37)

R has poles of order one at z0, z1 and a double zero at z2. R extends to be meromorphic
on the double Ω̂ since it is real on Γ; thus, it is a 4-fold cover of the Riemann sphere with
poles at z0, z1 and their reflections z∗0 , z∗1 across Γ. We now show this can not be the case
for arbitrary z0, z1.

Ω̂ is a compact Riemann surface of genus p. Let ω j , j = 1, . . . , p, be the harmonic
function on Ω whose boundary values are identically one on Γ j and identically zero on
Γ\Γ j ; see the material preceding (17). Let ω̃ j be the (multiple-valued) harmonic conjugate
of ω j , s j = ω j + iω̃ j and b j = s ′j dz. Then b1, . . . , bp are a basis of the holomorphic
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differentials on the double Ω̂ that are real on Γ. According to Theorem 18.2 of [12], we
must have ∑

z

Res[R(z)b j (z)] = 0, j = 1, . . . , p(38)

where the sum is taken over all points in Ω̂. Near the point zk, the 1-form b j has the
expansion

b j(z) = ak j dz + O(z − zk) dz, k = 0, 1; j = 1, . . . , p.

By symmetry at the points z∗0 , z∗1 , we have

b j(z) = ak j dz + O(z − z∗k ) dz, k = 0, 1; j = 1, . . . , p.

Let w0, w1 be the residues of R at z0, z1, respectively. Thus,

Res[Rb j ; zk] = wkak j and Res[Rb j ; z∗k ] = wkak j , k = 0, 1; j = 1, . . . , p.(39)

Using (39) in (38) we find that

Re(w0a0 j + w1a1 j) = 0, j = 1, . . . , p.(40)

This implies that

Re s ′j(z1) = Re cs ′j(z0), j = 1, . . . , p(41)

where c is a complex number depending on z0, z1. Fix z1 and set z = z0. Define V1 =(
Re s ′1(z1), . . . ,Re s ′p(z1)

)
and V2 =

(
Im s ′1(z1), . . . , Im s ′p(z1)

)
. We then note that equa-

tion (41) implies that the vector
(
Re s ′1(z), . . . ,Re s ′p(z)

)
∈ Rp lies in the two dimensional

plane spanned by V1, V2 for every z ∈ Ω. Therefore, this continues to be true when
z → ξ ∈ Γ. If we let ξ be in turn a point ξk ∈ Γk, k = 1, . . . , p, we obtain p vectors
Wk =

(
s ′1(ξk), . . . , s ′p(ξk)

)
, k = 1, . . . , p that lie in the span of V1, V2. However, on Γ we

have s ′j = ∂ω j/∂n, j = 1, . . . , p, which is purely real. Moreover, these p vectors are linearly
independent; see [18, Lemma 1]. This is surely a contradiction if p ≥ 3.
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