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Hot hadronic matter

We know that QCD is the formal theory of the strong interaction. In prin-
ciple, its solution should yield the complete particle spectrum as well as
produce the interaction terms that regulate how different particle species
interact. However, this complete solution is at present impossible, partly
owing to the fact that at the scale of the lighter degrees of freedom QCD is
strongly coupled. To describe the interaction and the properties of hot and
dense hadronic ensembles, one must turn to effective approaches. They
vary in character and in philosophy. In this chapter, we shall discuss some
of these techniques. They comprise effective Lagrangian theories, which
aim to represent in a simple way the dynamical content of a theory in the
low-energy limit. The heavier fields are integrated out, leaving a set of
constants to be determined by experiment. In the specific case of QCD,
the choice of low-energy effective Lagrangian is dictated by general sym-
metry principles, and chiral symmetry will be seen to play a special role.

A remarkably successful effective Lagrangian approach to low-energy
QCD is that of chiral perturbation theory. We consider this first and
study its finite-temperature behavior. Next, we will use the fact that the
spectrum of strongly interacting particles is quite well known experimen-
tally to outline a technique that enables an evaluation of in-medium self-
energies directly from experimental data input. The rest of the chapter
will be devoted to a discussion of the Weinberg sum rules at nonzero tem-
peratures [1] and to investigations of the characteristics of the linear and
nonlinear σ models [2].

12.1 Chiral perturbation theory

Chiral perturbation theory draws its power from the observation that
the light pseudoscalar degrees of freedom in the spectrum of the con-
fined sector of QCD can be explained in terms of a spontaneously broken
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symmetry. Let us first elaborate how and why this statement is true. Con-
sider for example the QCD Lagrangian for massless quarks, assuming a
generic quark field, ψ, for simplicity:

L = iψ̄ 
Dψ (12.1)

Based on a comparison with the QCD scale, the massless approximation
is a good one for u and d quarks, is less so for s quarks, and is simply
bad for c, t, and b (see Table 8.2). The free-particle Dirac equation for
massless fermions is


kψ = 0 (12.2)

Using the fact that {γμ, γ5} = 0, a solution is also γ5ψ. Consequently, two
solutions are ψL/R = 1

2 (1 ∓ γ5)ψ, and this establishes γ5 as a chirality
operator: γ5ψL/R = ∓ ψL/R. The subscripts L and R refer to the left-
and right-handed solutions, respectively. Finally, this labeling is made
more explicit by manipulating the free massless-particle Dirac equation
(12.2) into the form

σ · k̂ψ = ±γ5ψ (12.3)

where γ5γ0γ = σ. Therefore, for right-handed solutions, the helicity and
the sign of the energy (identified by the ± symbols) are correlated, whereas
they are anticorrelated for left-handed solutions.

One can then rewrite (12.1) as

L = iψ̄L 
DψL + iψ̄R 
DψR (12.4)

and it is seen that the L and R sectors decouple. Consequently, symmetry
transformations of the type

ψL/R → exp

⎛⎝−i
∑
j

αj
L/Rλ

j

⎞⎠ψL/R (12.5)

will leave the Lagrangian invariant. Note that it is also invariant with
respect to U(1)A, but there is an anomaly which we will not discuss here.
In the case of SU(2), the matrices λj are Pauli matrices and ψL/R are

the chiral projections of the light
(
u
d

)
doublet. Similarly, for SU(3) the

matrices λj are then the Gell-Mann matrices and the chiral projections
involved are those obtained from the u, d, and s fields. The elements
αj
L/R are the components of arbitrary constant vectors. Using the case of

SU(2) as an example, the invariance of the Lagrangian under the sym-
metry transformations (12.5) is usually labeled chiral SU(2), SU(2)L ×
SU(2)R, or SU(2)V × SU(2)A; in the latter case, we have defined αj

V/A =
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(αj
R ± αj

L)/2. Thus, in the case of SU(2), if chiral symmetry were real-
ized in the conventional fashion in Nature then one would expect to have
three time-independent vector charges and three time-independent axial
charges. Since those charges are proportional to number operators, this
leads to the prediction of parity doublets (owing to the transformation
properties of γ5), which are not observed. What has gone wrong? It turns
out that this is another case where a symmetry of the Lagrangian is bro-
ken by the ground state of the theory. As we have seen in Chapter 7, this
leads to the appearance of Goldstone bosons.

In the case at hand the breaking is dynamical, meaning that the Noether
current associated with the axial sector is not divergenceless but receives
contributions from quantum corrections. This was discussed early on by
Adler and by Bell and Jackiw [3]. Another puzzling fact is that there is
indeed a triplet of light particles, the pions, but these are not massless.
This is to be understood in terms of the fact that our original assumption
that the quarks have no bare mass is in fact incorrect. If u and d quarks
were strictly massless, the pion would be a genuine Goldstone boson, with
mπ = 0. To first order in the explicit symmetry breaking, the finite pion
mass can be traced back to the u and d quark condensates [4].

The aim of chiral perturbation theory is to provide an effective theory
that possesses the symmetries of the complete theory, QCD, and is appli-
cable at low energies where the exact theory is strongly coupled. Then
the effective theory of QCD is formulated in terms of the lightest hadron
fields, the pions. Bearing in mind that the chiral symmetry is not manifest
in the ground state of QCD, there is a procedure to implement a sponta-
neously broken symmetry in a quantum field theory [5]. In the special case
of chiral symmetry, a convenient way to collect the Goldstone fields is the
exponential parametrization. For SU(3) it is U(φ) = exp

(
i
∑8

1 λaφ
a/F

)
,

λa being a Gell-Mann matrix and F a constant. Specifically,

1√
2

8∑
a=1

λaφ
a =

⎛⎜⎜⎝
1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

⎞⎟⎟⎠ (12.6)

Strictly speaking, the Lagrangian of the standard model is not chirally
invariant. The chiral symmetry of the strong interactions is broken by the
electroweak interaction owing to the quark Yukawa coupling, which gen-
erates nonzero quark masses. The basic assumption of chiral perturbation
theory is that the chiral limit is a viable starting point for a perturba-
tive expansion. This expansion is in fact a double expansion, in powers
of both the momentum and the quark masses. The Goldstone bosons will
decouple from each other in the low-energy limit.
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12.1 Chiral perturbation theory 243

An elegant technique that enables one to calculate Green’s functions
of quark currents is that associated with the introduction of external
fields. Following Gasser and Leutwyler [6], the chirally invariant QCD
Lagrangian is extended by coupling the quarks to external Hermitian
matrix fields s(x), p(x), vμ(x), and aμ(x):

L = LQCD + ψ̄γμ(vμ + aμγ5)ψ − ψ̄(s− ipγ5)ψ (12.7)

The external fields transform under parity as a scalar, a pseudoscalar,
a vector, and an axial vector, respectively. They are color-neutral 3 × 3
matrices, where the matrix character with respect to the flavor indices
u, d, and s can be illustrated, for example, by the vector field

vμ = vμ0 +
8∑

j=1

1
2λjv

μ
j (12.8)

As before, chiral fields can be defined: rμ = vμ + aμ, lμ = vμ − aμ.
The usual QCD Lagrangian is recovered in the limit p = vμ = aμ = 0

and s = diag(mu,md,ms). The physically relevant Green’s functions are
functional derivatives of the usual zero-temperature generating functional
Z(s, p, v, a). For example,

〈0|ψ̄(x)ψ(x)|0〉 = i
δ lnZ

δs0(x)

∣∣∣∣
p=v=a=0, s=m

(12.9)

where, as in the vector example above, the subscript 0 identifies the singlet
component. Similarly, various currents can be obtained directly from the
Lagrangian, such as the left-handed current jl,aμ (x) derived from ∂L/∂lμa .

Inclusion of the external fields transforms the global chiral symmetry
to a local one. The invariance requirements are now contained in the
following set of transformation rules. For any gR/L in SU(3) such that

ψR → gRψR (12.10)
ψL → gLψL

the invariance is preserved if the external fields transform as gauge fields,

rμ → gRrμg
†
R + igR∂μg

†
R

lμ → gLlμg
†
L + igL∂μg

†
L (12.11)

s + ip → gR(s + ip)g†L

and if U → gRUg†L. The covariant derivative which, by definition, has the
same transformation properties as the object on which it is acting, is
DμU = ∂μU − irμU + iUlμ.

We are now in a position to formulate the basic premises of chiral
perturbation theory. At zero temperature, one can write a generating
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functional of QCD as

Z(s, p, v, a) =
∫

[dAμ
a ][dψ̄][dψ] exp

(
i

∫
d4xL

)
(12.12)

For simplicity, the possible ghost fields have been omitted. At low energy,
the propagating modes are the Goldstone modes. In the language of effec-
tive field theory, all the heavy degrees of freedom are integrated out and
are absorbed into the parameters of the effective action. Specifically,

Z(s, p, v, a) =
∫

[dU ] exp
(
i

∫
d4xLeff

)
(12.13)

One starts by constructing an effective Lagrangian in terms of derivatives
and of the external fields. The limit where the external fields vanish is
that of low-energy QCD. Whereas it is plausible that this procedure does
reproduce the Green’s functions of QCD at low energy, its formal validity
has not been proven here. This was done by Leutwyler [7].

Searching for an interaction that would constitute the leading-order
term in a momentum expansion, one realizes that that there are no candi-
dates with the required invariance properties that have no derivatives and
no external fields. In fact, the only candidate is Tr(UU †) = 3, which is sim-
ply a constant. The most general chirally invariant effective Lagrangian
with the minimum number of derivatives is

L2 = 1
4F

2 Tr(DμUDμU † + χU † + χ†U) (12.14)

where χ = 2B(s + ip). Thus at this order there are two parameters, F
and B. Observe that in order to reproduce the kinetic term in the free-
pion Lagrangian, the constant F above needs to be the same as that
in the definition of the field matrix, U(φ) (just above (12.6)). The two
constants F and B are related to the pion decay constant and to the
quark condensate, up to chiral corrections [6]:

fπ = F + O(mq)
(12.15)〈0|ūu|0〉 = −F 2B + O(mq)

Using our definition for U(φ) and setting the external scalar field s equal to
the quark mass matrix, one can read off from L2 the pseudoscalar meson
masses, again up to leading order in chiral corrections. For example,

m2
π = 2m̄B

m2
K+ = (mu + ms)B (12.16)

m2
K0 = (md + ms)B

with m̄ = 1
2(mu + md). Those relations are consistent with the chiral

counting rules, which stipulate the dimensions of the operators and of
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the fields in the chiral expansion in terms of the momentum k:

U : O(1)
DμU, vμ, aμ : O(k)

s, p : O(k2)

With these rules, the meaning of the subscript in L2 is clear. The effective
Lagrangian is then expanded up to order k4 [6].

We now formulate the problem at finite temperature and calculate the
pressure of a pion gas using chiral perturbation theory. The symmetry
requirements will translate into exact statements for the coefficients of
the expansion in powers of the temperature. Furthermore, we shall make
use of the fact that pions are considerably less massive than any of their
other SU(3) partners. Therefore these lighter degrees of freedom will be
excited first and should play a leading role: we then restrict our discussion
to SU(2). We can rewrite L2 in terms of the nonlinear σ model:

L2 = 1
4F

2Tr[∂μU∂μU † −M2(U + U †)] (12.17)

with M2 = (mu + md)B. The effective Lagrangian to order k4 is written
down by identifying all the independent terms to this order that have
the required symmetry properties (Lorentz invariance, P , C, and chiral
symmetry):

L4 = −1
4 l1 [Tr(∂μU∂μU †)]2 − 1

4 l2 Tr(∂μU∂μU †) Tr(∂μU∂μU †)
+ 1

8 l4M
2 Tr(∂μU∂μU †) Tr(U + U †)

− 1
16(l3 + l4)M4 Tr(U + U †) − h1M

4 (12.18)

The contact term h1 is a vacuum contribution, and isospin-breaking effects
are ignored. The evaluation of the finite-temperature contribution to the
thermodynamic potential proceeds as in preceding chapters, only now the
chiral effective Lagrangian is used:

Z ≈
∫

periodic
[dU ] exp

(∫ β

0
dτ

∫
d3x (L2 + L4)

)
(12.19)

The complete expansion in loop topologies that yield terms up to T 8

was worked out by Gerber and Leutwyler [8].A few of those diagrams are
shown in Figure 12.1. The diagrams so obtained fall into three categories.

1 Those that generate temperature-independent contributions. These
only renormalize the vacuum contribution.

2 The genuine temperature-dependent terms that will generate the ther-
mal pressure. These are shown in Figure 12.1.
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246 Hot hadronic matter

Fig. 12.1. Some of the diagrams that occur in the finite-temperature expansion
of the thermodynamic potential in chiral perturbation theory, up to order T 8.
The labeling of the vertices refers to the order of the chiral Lagrangian that
provided the vertex.

3 Up to O(T 8), the thermodynamic potential will contain some diagrams
with vertices coming from chiral Lagrangians of order higher than 4.
These temperature-dependent contributions renormalize the bare mass
M in the free-gas term, in such a way that

M → M1

with

M1 = M2 + 2l3
M4

F 2
+ c0

M6

F 4
(12.20)

where c0 is a constant.

The divergences present in the zero-temperature theory are isolated using
dimensional regularization then subtracted away by appropriate counter-
terms. At low temperatures, the pressure will be of order exp(−mπ/T ).
Using this prescription in the expansion of the pressure enables identifi-
cation of the physical pion mass with parameters of the theory:

m2
π = M2 + (2l3 + λ)

M4

F 2
+ c

M6

F 4
+ O(M8) (12.21)

The constant c is a linear combination of some regularization counter-
terms and l3. When the physical pion mass is used in the theory, the
parametrical dependence on counterterms disappears. Also, λ isolates the
pole appearing when d → 4 in the zero-temperature part of the bare-mass
coordinate-space propagator, D(x), when its argument vanishes:

lim
x→0

D(x) = 2M2λ
(12.22)

λ =
1
2

(4π)−d/2 Γ(1 − d/2)Md−4
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Putting all these ingredients together, the pressure can be written as
[8]

P =3P0+
4
π3

aT 4h2
3 +

24
π3

T 6h5

(
8T 2h5 + m2

πh3

)(
b− I

π3F 4

)
+ O(T 10)

(12.23)
The first term is the pressure of a noninteracting Bose gas of pions (the
factor 3 arising from the three charged states of the pion) with

P0 =
4
π2

T 4h5

(mπ

T

)
(12.24)

The functions hn(m/T ) are discussed in the Appendix. It is amusing to
note that h3 is proportional to the field fluctuations of noninteracting
bosons:

〈φ2〉 =
∂P0(T,m)

∂m2
=
∫

d3k

(2π)3
1
ω

1
eβω − 1

=
T 2

π2
h3

(m
T

)
(12.25)

The dimensionless function I(mπ/T ) in (12.23) represents a three-
dimensional integral that must be calculated numerically. Its low-
temperature limit is

I(x) = 0.6x−1 + O(x−2)

while the high-temperature limit is

I(x) = −5
8

lnx + 0.6360 + 0.1289x2 + O(x3)

Some constants, such as c in (12.21), are absent in the final result as
they are absorbed into the physical pion mass. The two constants that do
appear explicitly in the pressure, a and b, are functions of the renormalized
Lagrangian parameters:

a = − 3M2

32πF 2
+

5M4

128π3F 4

(
l̄1 + 2l̄2 − 3

10
l̄3 +

9
8

)
(12.26)

b =
1

16π3F 4

(
l̄1 + 4l̄2 − 29

24

)
where

li = γi

(
λ +

1
32π2

l̄i

)
γ1 =

1
3

γ2 =
2
3

γ3 = −1
2

γ4 = 2 (12.27)

The quantity λ, defined in (12.21), contains the singularity.
It is extremely satisfying to verify that the expression for the pressure,

derived in finite-temperature chiral perturbation theory, agrees with a
treatment based on the virial expansion [8]. This represents an important
consistency check.
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12.2 Self-energy from experimental data

At this point, it is clear that any quantum field in interaction with other
fields will see its vacuum properties modified. A rigorous formalism for
calculating these changes was set up in the previous chapters and, given
an interaction Lagrangian, it mainly consists of calculating an in-medium
self-energy. This can in turn be related to in-medium masses and decay
widths, through the real and imaginary parts, respectively. Up to now we
have seen that a satisfactory way of organizing the perturbation expansion
was to follow the topology of the multiloop diagrams. However, this pro-
cedure becomes questionable when large coupling constants are involved,
as the very validity of the perturbation expansion is called into ques-
tion. Owing to asymptotic freedom, QCD in its nonperturbative sector
will involve just such large constants, and a calculation of hadronic prop-
erties from first principles becomes prohibitively difficult. Nevertheless,
data does exist on the scattering of the different QCD bound states
among themselves. As those measurements carry some information on
the underlying interaction, it should be possible to infer from them how
the fundamental characteristics of a specific field get changed in a strongly
interacting medium. Relying on experimental measurements to the extent
that they are available will help to develop a procedure that is as model
independent as possible. A method that is applicable to dilute media is
described in what follows.

For a particle of type a traversing a medium with a de Broglie wave-
length less than the interparticle spacing of target particles of type b,
there is a direct proportionality between the scattering amplitude and
the energy. The dispersion relation of a boson is determined by

E2 = m2 + p2 + Π (12.28)

In the nonrelativistic limit we may wish to express the energy in terms of
an optical potential U as

E = m +
p2

2m
+ U (12.29)

The optical potential will in general have both real and imaginary parts.
This leads to real and imaginary parts of the energy: E = ER − iΓ/2. The
imaginary part is related to the mean free path 1/ρσ, where σ is
the scattering cross section and ρ is the density of scatterers, and to
the velocity, as Γ = vρσ. Using the forward scattering amplitude f and
the optical theorem pσ = 4πf gives

ImΠ = 2m ImU = −4πρ Im f (12.30)
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In the low-energy limit the mean potential energy of the particle is

ReU = ρ

∫
d3xV (x) (12.31)

where V is the two-body potential. In this limit the Born approximation
gives

Re f = −m

2π

∫
d3xV (x) (12.32)

Hence both the real and imaginary parts fit a simple formula,

Π = −4πρf (12.33)

This formula has a wider range of applicability than this derivation might
suggest; it is the leading term in a multiple-scattering expansion [9].

The generalization to target particles that are moving, and to relativis-
tic kinematics, is straightforward. For meson a scattering from hadron b
in the medium, the contribution to the self-energy is:

Πab(E, p) = −4π
∫

d3k

(2π)3
nb(ω)

√
s

ω
f

(cm)
ab (s)

= − 1
2πp

∫ ∞

mb

dω nb(ω)
∫ s+

s−

ds
√
sf

(cm)
ab (s) (12.34)

where E and p are the energy and momentum of the particle, ω2 = m2
b +

k2,

s± = E2 − p2 + m2
b + 2(Eω ± pk) (12.35)

nb is either a Bose–Einstein or Fermi–Dirac occupation number, and fab
is the forward scattering amplitude. The normalization of the amplitude
corresponds to the standard form of the optical theorem,

σ =
4π
qcm

Im f (cm)(s) (12.36)

where qcm is the momentum in the cm frame. The dispersion relation is
determined by the poles of the propagator after summing over all target
species and including the vacuum contribution to the self-energy:

E2 −m2
a − p2 − Πvac

a (E, p) −
∑
b

Πab(E, p) = 0 (12.37)

The applicability of (12.34) is limited to those cases where interference
between sequential scatterings is negligible.

Taking various limits of (12.34) is instructive. First of all, we note that
the cross section is invariant under longitudinal boosts. It is convenient to
know how the scattering amplitude transforms. They are related to each
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other as follows.

maf
(a’s rest frame)
ab = mbf

(b’s rest frame)
ab =

√
sf

(cm)
ab (12.38)

In the limit that the target particles b move nonrelativistically we can
approximate ω in the first line of (12.34) by mb, in which case

Πab = −4πf (b’s rest frame)
ab ρb (12.39)

where ρb is the spatial density. Next consider the chiral limit when
pions serve as the target particles, relevant for low-temperature baryon-
free matter. From (12.38)

√
sf

(cm)
aπ = maf

(a’s rest frame)
aπ . Since f

(a’s rest frame)
aπ

involves two derivative couplings of the pion to the massive state a
(Adler’s theorem) one sees from (12.34) that Πaπ ∼ T 4. Finally, if the
self-energy is evaluated in the rest frame of a it is possible to do all the
integrations but one:

Πab(E, p) = −m2
aT

πp

∫ ∞

mb

dω ln
(

1 − exp(−ω+/T )
1 − exp(−ω−/T )

)
f

(a’s rest frame)
ab (ω)

(12.40)

Here ω± = (Eω ± pk)/ma. This assumes that b is a boson; a similar for-
mula ensues if it is a fermion.

As a specific application, we will estimate the ρ meson dispersion rela-
tion for finite temperature and baryon density and for momenta up to 1
GeV/c. This is of special interest, as vector mesons can couple directly
to the photon [10] and therefore the in-medium modification of vector
meson properties can in principle be inferred from the measurement of
electromagnetic observables. This direct conversion of a vector meson to
a photon (real or virtual) is often referred to as vector meson dominance
(VMD). The low-energy part of the ρ meson scattering amplitude will
be dominated by coupling to resonances. The physical context assumed
here is that ρ mesons are formed during the last stage of the evolution
of hadronic matter created in a heavy ion collision. The matter there is
approximated as a weakly interacting gas of pions and nucleons. This
stage is formed when the local temperature is of the order of 100 to 150
MeV and when the local baryon density is of the order of the normal
nucleon density in a nucleus. The main ingredients of the calculation are
ρπ and ρN forward scattering amplitudes and total cross sections.

We will consider the momentum p to be real and evaluate the scattering
amplitudes on-shell, that is, evaluate the self-energy at E =

√
p2 + m2

ρ.
In this case (12.37) takes the form

E2 = m2
ρ + p2 + Πvac

ρ + Πρπ(p) + ΠρN (p) (12.41)
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Since the self-energy has real and imaginary parts, so does E(p) =
ER(p) − iΓ(p)/2. In the narrow-width approximation the dispersion rela-
tion is determined from

E2
R(p) = p2 + m2

ρ + ReΠρπ(p) + ReΠρN (p)
(12.42)

Γ(p) = −[ImΠvac
ρ + ImΠρπ(p) + ImΠρN (p)

]
/ER(p)

The width of the ρ meson in vacuum, Γvac
ρ = −ImΠvac

ρ /mρ, is 150 MeV.
We can also define a mass shift and an optical potential:

Δmρ(p) =
√
m2

ρ + ReΠρπ(p) + ReΠρN (p) −mρ

(12.43)
U(p) = ER(p) −

√
m2

ρ + p2

These will be evaluated for temperatures of 100 and 150 MeV and nucleon
densities of 0, 1, and 2 times the normal nuclear matter density (0.155
nucleons per fm3). Recall that one needs a Bose–Einstein distribution
for pions and a Fermi–Dirac distribution for nucleons. The pion chemical
potentials are zero and the nucleon chemical potentials are 745 and 820
MeV for densities of 1 and 2 times normal at T = 100 MeV, and 540
and 645 MeV at T = 150 MeV. Antinucleons are not considered here. For
a ρ meson scattering from a particle a and going to a resonance R, the
forward scattering amplitude can be written in its usual nonrelativistic
form, in the center of mass:

f cm
ρa (s) =

1
2qcm

∑
R

WR
ρa

ΓR→ρa

MR −√
s− 1

2 iΓR
− qcmrρaP

4πs
(1 + exp−iπαP)

sinπαP
sαP

(12.44)

In familiar notation, the subscript P refers to the Pomeron,
√
s is the

total cm energy and the magnitude of the cm momentum is

qcm =
1

2
√
s

√
[s− (mρ + ma)2][s− (mρ −ma)2] (12.45)

The statistical averaging factor for spin and isospin is

WR
ρa =

(2sR + 1)
(2sρ + 1)(2sa + 1)

(2tR + 1)
(2tρ + 1)(2ta + 1)

(12.46)

The second part of the forward scattering amplitude is a nonresonant
background contribution, a description of which goes beyond this text.
See, for example, Collins [11] for a detailed discussion. It suffices here to
state that the parameters are determined by high-energy scattering phe-
nomenology. Also, the real and imaginary parts of the scattering ampli-
tude are related by a dispersion relation. This constraint turns out to be
better satisfied in the presence of the background term [12].
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Fig. 12.2. The vector meson mass shift as a function of momentum for various
temperatures and nucleon densities nN (expressed in units of equilibrium nuclear
matter density).

For the case of ρN scattering, the intermediate resonance can be one of
several species of N∗ or Δ resonances. One then needs to know the width
of that resonance in the channel where there is a ρ meson and a nucleon.
Because of kinematical constraints, this width is often not measured, but
the radiative decays often are. These can be related to the width one is
after, using the VMD relationship of the scattering amplitudes:

fγN = 4πα

(
1
g2
ρ

fρN +
1
g2
ω

fωN +
1
g2
φ

fφN

)
(12.47)

where α is the fine structure constant. From measurements of φ photopro-
duction, the last term is small and can be neglected. In the spirit of the
quark model, one further assumes that fωN ≈ fρN . This assumption may
in fact be examined more closely [13] The direct vector-meson–photon
coupling can be deduced from V → l+l− measurements. With these ingre-
dients, the widths in the ρN channel can be directly extracted from the
radiative decay widths. The details of the procedure outlined here, along
with specific parameter values and relevant references, can be found in
Eletsky et al. [12] Note that the calculation of the real and imaginary
parts of the in-medium self-energy of any species can proceed in the same
way, provided that enough experimental data can map its interaction with
other fields. The mass shift and width of the ρ meson, as defined in (12.43)
and (12.42), are shown in Figures 12.2 and 12.3 for different temperatures
and densities (nN is in units of n0, the equilibrium nuclear matter den-
sity). The width is systematically larger at larger temperatures and den-
sities. The change in mass is numerically less important. Any interaction
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Fig. 12.3. The vector meson width as a function of momentum for various tem-
peratures and densities.

Fig. 12.4. The imaginary part of the vector meson propagator as a function of
invariant mass at a momentum 300 MeV and temperature 150 MeV.

will contribute to a larger width, but the real part of the self-energy can
be less affected owing to cancellations between different channels. The
information in the mass shift and in the width is also contained in a plot
of the imaginary part of the ρ propagator, shown in Figure 12.4, and is
directly related to the in-medium spectral density. Note that since the
thermal medium constitutes a preferred rest frame (that in which tem-
perature is defined), the self-energy in general depends on the energy and
the momentum separately. Alternatively, one may fix the momentum at
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a specific value (300 MeV here) and study the self-energy as a function
of invariant mass, since E =

√
p2 + M2.

Alternatively, a method complementary to the one presented here con-
sists of using effective hadronic Lagrangians (i.e., those whose basic sym-
metries are consistent with that of QCD), with parameters fitted to
measured properties [14–16]. Because they are both constrained by exper-
imental data, the two techniques should of course yield comparable results
unless ones deviates significantly from the on-shell condition for the vector
field.

12.3 Weinberg sum rules

Spectral sum rules were in use before the advent of QCD as the theory
of the strong interaction. Weinberg had in fact proposed two sum rules
based on current algebra, relating moments of the spectral density of
vector and axial-vector currents [17]. These relied on the validity of chiral
symmetry. It is instructive to revisit these sum rules in the language
of QCD and then to pursue a finite-temperature extension, in order to
explore the implications of the approach to chiral symmetry restoration
at finite temperature that follow from sum rules of the Weinberg type [1].
Note that the up and down quark masses are then implicitly assumed to
be zero, so that chiral symmetry is indeed exact.

12.3.1 Sum rules at zero temperature

One first defines vector and axial-vector currents (using an explicit nota-
tion for the current operators):

V a
μ = ψ̄γμ(τa/2)ψ (12.48)

Aa
μ = ψ̄γμγ5(τa/2)ψ (12.49)

where τa/2 is the isospin generator. With this normalization the current
algebra of charges obeys the equal-time commutation relations[

Qa
V , Q

b
V

]
= iεabcQc

V (12.50)[
Qa

V , Q
b
A

]
= iεabcQc

A (12.51)[
Qa

A, Q
b
A

]
= iεabcQc

V (12.52)

Each charge is the volume integral of the zeroth component of the
corresponding current operator. We now write the vector and axial-
vector spectral densities. They are positive definite quantities defined for

https://doi.org/10.1017/9781009401968.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.013


12.3 Weinberg sum rules 255

positive s:

〈0|V μ
a (x)V ν

b (0)|0〉 = − δab

(2π)3

∫
d4p θ(p0) eip·x

(
gμν − pμpν

p2

)
ρV (s)

(12.53)

〈0|Aμ
a(x)Aν

b (0)|0〉 = − δab

(2π)3

∫
d4p θ(p0) eip·x

[(
gμν − pμpν

p2

)
ρA(s)

+f2
πδ(s)p

μpν
]

(12.54)

The dimension of the spectral densities is energy-squared. Note that the
pion contribution to the axial-vector correlator has been written out
explicitly in the second term in (12.54).

Imaginary time is used, so that all distances are space-like, or Euclidean:
x2 = t2 − r2 = −τ2. In this domain the spectral representation of the cor-
relation functions is as follows:

ΔDabμ
μ (τ) ≡ 〈0|Tτ

[
V aμ(x)V b

μ (0) − Aaμ(x)Ab
μ(0)

]
|0〉

= − δab

4π2τ

∫ ∞

0
ds

√
s
[
3ρV (s) − 3ρA(s) − s f2

πδ(s)
]
K1(

√
sτ)

(12.55)

and
ΔD00

ab(τ) ≡ 〈0|Tτ

[
V 0
a (x)V 0

b (0) − A0
a(x)A0

b(0)
] |0〉

= − δab
4π2τ

∫ ∞

0
ds

√
s
[
ρV (s) − ρA(s) − s f2

πδ(s)
]

×
[
K0(

√
sτ)√

sτ
+
(

2
sτ2

+ 1
)
K1(

√
sτ)
]

(12.56)

Notice that the integrands essentially involve the standard Feynman prop-
agator for a particle of mass m, which, in the Euclidean domain, is

D(m, τ)free scalar =
m

4π2τ
K1(mτ) (12.57)

Exponential decay of the Bessel function K1 at large values of the argu-
ment ensures the convergence of such integrals for any QCD correlation
functions, except probably at τ = 0.

Each sum rule will correspond to a particular term in the small-distance
asymptotic expansion of the correlation function. In the limit τ → 0 the
product of currents can be expanded according to the operator product
expansion (OPE), a very successful means of connecting vacuum expec-
tation values (VEVs) of quark and gluon operators with experimentally
observable hadronic properties. We will refer the reader to the original
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literature for a discussion of this powerful theoretical method, but a gen-
eral description can be given as follows. Consider for example the current–
current correlator in real time and its expansion:

i

∫
d4x eiq·xTt{ψ̄(x)γμψ(x), ψ̄(0)γνψ(0)} = (qμqν − q2gμν)

∑
d

Cd(q2)Od

(12.58)

The Od are local operators and the Cd(q2) are c-numbers called Wilson
coefficients. The operator expansion is organized according to dimension.
When considering a vacuum matrix element of the current–current corre-
lator, one might simply expect all operators except the unit operator to
have a vanishing expectation value. However, long-distance nonperturba-
tive effects will make this expectation unrealized. In principle, all vacuum
expectation values, often called vacuum condensates, should be calcula-
ble in lattice gauge theory. The initial terms in this expansion were first
computed perturbatively by Shifman, Vainshtein, and Zakharov [18]. For
the contracted polarization tensor the result is

Dabμ
μ (τ) ≡ 〈0|Tτ

[
V aμ(x)V b

μ (0)
]
|0〉

= − 3δab

π4τ6

(
1 +

αs(τ)
π

− 〈0| (gF c
μν

)2 |0〉τ4

3 × 27

−π2τ6

8
ln(μτ) 〈0|Oρ|0〉 + · · ·

)
(12.59)

where, in the argument of the logarithm, μ � 1/τ is the renormalization
scale, and Oρ is a complicated four-quark operator. There is a similar
expression for the correlator of two axial-vector currents but it has a
different four-quark operator Oa1 . For our purposes we only need their
difference, which is given below.

Since chiral symmetry breaking is a long-wavelength phenomenon, at
very short distances or at very high energies the difference between vector
and axial-vector correlators should go to zero. Indeed, taking this differ-
ence one finds that all terms except for the four-quark operators in (12.59)
drop out. One can now look for consequences of this statement for the
spectral density. Expanding the Bessel function in (12.55) for small values
of τ we get

ΔDabμ
μ (τ) = −3δab

4π2

∫ ∞

0
ds [ρV (s) − ρA(s)]

×
[

1
τ2

+
s

2
ln
(√

sτ

2
eγE−1/2

)
+ O(τ2, τ2 ln τ

)]
(12.60)
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where γE is Euler’s constant. The OPE has no power divergence in τ in
the difference ΔDabμ

μ . Therefore the coefficient of 1/τ2 in (12.60) must
vanish. This gives the second Weinberg sum rule (see below). In the OPE
framework it simply follows from the observation that the first covariant
operators which are not chirality blind are four-quark ones that have
dimension 6 or more. Similarly expanding (12.56) for small τ and applying
the observation of chirality blindness we get∫ ∞

0

ds

s

[
ρV (s) − ρA(s) − s f2

πδ(s)
]( 1

τ4
+

s

4τ2

)
= 0 (12.61)

The first and second terms in the last parentheses give

I
∫ ∞

0

ds

s
[ρV (s) − ρA(s)] = f2

π (12.62)

and

II
∫ ∞

0
ds [ρV (s) − ρA(s)] = 0 (12.63)

respectively. These are Weinberg’s first and second sum rules.
The phenomenological implications of the zero-temperature sum rules

have been discussed numerous times in the literature and we will therefore
not do so here.

12.3.2 Sum rules at finite temperature

Weinberg’s two sum rules can be extended to finite temperature using
essentially the same methods as he used without any specific reference to
QCD. As seen in other applications, earlier in this text, the introduction of
a thermal medium will complicate some expressions as Lorentz invariance
is no longer manifest. This preferred rest frame will cause functions that
previously depended only on

√
s to depend separately on energy and

momentum, and the number of Lorentz tensors will increase because there
is a new vector available, namely, the vector uμ = (1, 0, 0, 0) that specifies
the rest frame of the matter.

We now define the longitudinal and transverse spectral densities for the
vector current as

〈V μ
a (x)V ν

b (0)〉 =
δab

(2π)3

∫
d4p eip·x[1 + NB(p0)]

(
ρL
V P

μν
L + ρT

V P
μν
T

)
(12.64)

and for the axial-vector current as

〈Aμ
a(x)Aν

b (0)〉 =
δab

(2π)3

∫
d4p eip·x[1 + NB(p0)]

[
ρL
AP

μν
L + ρT

AP
μν
T

]
(12.65)
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In these expressions the angle brackets refer to the thermal average. The
longitudinal and transverse projection tensors were defined in Chapter 5.
These spectral densities are the ρn discussed in Section 6.2. In general
the spectral densities depend on p0 and p separately as well as on the
temperature (and chemical potential). In the vacuum we can always go
to the rest frame of a massive particle and in this frame there can be
no difference between longitudinal and transverse polarizations, so that
ρL = ρT = ρ. Since Pμν

L + Pμν
T = −(gμν − pμpν/p2), (12.64) and (12.65)

collapse to (12.53) and (12.54). The pion, being a massless Goldstone
boson, is special. It contributes to the longitudinal axial spectral density
and not to the transverse one. In fact, we could write

f2
πδ(p

2)pμpν = f2
πp

2δ(p2)Pμν
L (12.66)

This should not be done at finite temperature because the contribution of
the pion to the longitudinal spectral density cannot be assumed to be a
delta function in p2. In general the pion’s dispersion relation will be more
complicated and will develop a width at nonzero momentum. Therefore,
we do not try to separate out the pionic contribution but subsume it into
the spectral density ρL

A, without any loss of generality.
Following Weinberg, we define a three-point function by

−iεabcM
μνλ(q, p) =

∫
d4x d4y e−i(q·x+p·y)

〈
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]〉
(12.67)

We multiply both sides by qμ. On the right-hand side we can use

qμe−i(q·x+p·y) = i
∂

∂xμ
e−i(q·x+p·y) (12.68)

Both the vector and axial-vector currents are conserved. We assume that
we can integrate by parts and that the surface term is zero. The nonzero
contribution comes from

∂

∂xμ

{
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]}
= δ(x0−y0)

{
θ(x0)

[
A0

a(x), Aν
b (y)

]
V λ
c (0)+θ(−x0)V λ

c (0)
[
A0

a(x), Aν
b (y)

]}
+ δ(x0)

{
θ(y0)Aν

b (y)
[
A0

a(x), V λ
c (0)

]
+ θ(−y0)

[
A0

a(x), V λ
c (0)

]
Aν

b (y)
}

(12.69)

From this expression we see the need for knowledge of the equal-time
commutators. Consistently with the normalization of (12.50)–(12.52) we
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have

δ(z0)
[
A0

a(x), Aν
b (y)

]
= iεabdV

ν
d (x)δ(z) + Sνj

V ab(x)
∂

∂zj
δ(z)

δ(z0)
[
A0

a(x), V ν
b (y)

]
= iεabdA

ν
d(x)δ(z) + Sνj

Aab(x)
∂

∂zj
δ(z)

(12.70)

Here z = x− y and the S’s denote the Schwinger terms. These terms do
not vanish, in general, and they need to appear to guarantee the self-
consistency of the current algebra.

Consider now the contribution of the Schwinger terms to the thermal
average. Generically they will be of the form

〈SJ〉 = Z−1
∑
m,n

e−Kn/T 〈n|S|m〉〈m|J |n〉 (12.71)

where K = H − μN is the Hamiltonian minus the chemical potential
times the conserved particle number, the states are chosen to be eigen-
states of H, N , and isospin, and J is either the vector or the axial-vector
current. J has isospin 1, so we get zero if either (i) S is a c-number, or
(ii) S is an operator with no isospin-1 component. We shall assume that
one of these holds. Then

∂

∂xμ

〈
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]〉
= iεabdδ(x− y)

〈
Tt

[
V ν
d (x)V λ

c (0)
]〉

+ iεacdδ(x)
〈
Tt

[
Aν

b (y)A
λ
d(0)

]〉
(12.72)

It is now a simple matter to show that
1
2qμM

μνλ(q, p) = Dνλ
V (q + p) −Dνλ

A (p) (12.73)

where the D’s are the propagators for the currents; for example,

δabD
νλ
A (p) =

∫
d4y e−ip·y

〈
Tt

[
Aν

a(y)A
λ
b (0)

]〉
(12.74)

Similarly, one can show that
1
2(q + p)λMμνλ(q, p) = Dμν

A (q) −Dμν
A (p) (12.75)

These Ward identities have exactly the same form as at zero temperature
[17].

With a similar consideration of the three-point function

−iεabcN
μνλ(q, p) =

∫
d4x d4y e−i(q·x+p·y)

〈
Tt

[
V μ
a (x)V ν

b (y)V λ
c (0)

]〉
(12.76)

one can prove two more Ward identities,
1
2qμN

μνλ(q, p) = Dνλ
V (q + p) −Dνλ

V (p) (12.77)
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and

1
2(q + p)λNμνλ(q, p) = Dμν

V (q) −Dμν
V (p) (12.78)

Multiply (12.75) by (q + p)λ and (12.77) by qμ. Doing the same for the
other two Ward identities, one obtains the constraints

(q + p)λDνλ
V (q + p) = qλD

νλ
V (q) + pλD

νλ
V (p) = qλD

νλ
A (q) + pλD

νλ
A (p)
(12.79)

The equation above holds for all values of q and p. This implies

kλD
νλ
V (k) = kλD

νλ
A (k) = Cνλkλ (12.80)

where Cνλ is momentum independent (but can depend on temperature)
and is the same for the vector and axial-vector channels. By taking the
Fourier transform of these relations we can find the thermal averages of
the equal-time commutators,

δ(x0)
〈 [

V ν
a (x), V 0

b (0)
] 〉

= δ(x0)
〈 [

Aν
a(x), A0

b(0)
] 〉

= δabC
νλ ∂

∂xλ
δ(x)

(12.81)

The commutators above can be expressed in terms of the spectral densities
from (12.64) and (12.65). Taking their difference one obtains the finite-
temperature generalization of the first Weinberg sum rule,

I
∫ ∞

0

dω ω

ω2 − p2

[
ρL
V (ω,p) − ρL

A(ω,p)
]

= 0 (12.82)

Here (6.44) has been used to write the integral over positive ω only. Notice
that this sum rule involves only the longitudinal spectral densities and not
the transverse ones. At zero temperature the spectral densities depend
only on p2 = s = ω2 − p2. Then this equation reduces to (12.62) once we
remember to separate out the pion part of ρL

A, namely, sf2
πδ(s). At finite

temperature, the spectral densities in general will depend on ω and p
separately and not just on the combination s. Then this sum rule must
be satisfied at each value of the momentum.

For the second sum rule, we follow a method due to Das, Mathur, and
Okubo [19]. Omitting the index V or A the explicit expressions for the
time-ordered propagator are

D00(p0,p) = p2DL(p0,p) (12.83)
D0j(p0,p) = p0pjDL(p0,p) (12.84)

Dij(p0,p) =
(
δij − pipj

p2

)
DT(p0,p) +

pipj

p2
D′

L(p0,p) (12.85)
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where

DL(p0,p) = 2i
∫ ∞

−∞
dω ω

ω2 − p2

[
ρL(ω,p)

(ω + iε)2 − p2
0

]
[1 + NB(ω)] (12.86)

D′
L(p0,p) = 2i

∫ ∞

−∞
dω ω3

ω2 − p2

∣∣∣∣ ρL(ω,p)
(ω + iε)2 − p2

0

∣∣∣∣ [1 + NB(ω)] (12.87)

DT(p0,p) = 2i
∫ ∞

−∞
dω ω

∣∣∣∣ ρT(ω,p)
(ω + iε)2 − p2

0

∣∣∣∣ [1 + NB(ω)] (12.88)

and for the Schwinger term they are

C00 = C0j = Cj0 = 0 Cij(p) = δijDS(p) (12.89)

where

DS(p) = 2i
∫ ∞

−∞
dω ω

ω2 − p2
ρL(ω,p) [1 + NB(ω)] (12.90)

The first observation we can make concerns the thermally averaged
generic Schwinger term C. Since it is the same for the vector and the
axial-vector correlators, by (12.80), the factor DS(p) must be the same
as well. Equating them reproduces the first finite-temperature sum rule
(12.82).

The essence of the argument of Das, Mathur, and Okubo is that spon-
taneous chiral symmetry breaking is a low-energy phenomenon. At very
high energy it must disappear, at least in the limit that quark masses are
zero and chiral symmetry is exact. Thus the difference between the vector
and axial-vector propagators should go to zero at very high energy,

lim
p0→∞, pfixed

[
Dμν

V (p0,p) − Dμν
A (p0,p)

]
= 0 (12.91)

If we do this for the time–time or time–space components of the propaga-
tors, that is, for the DL, we again reproduce the first finite-temperature
sum rule. Expanding to the next order in 1/p2

0 we obtain a finite-
temperature generalization of the second zero-temperature sum rule,
which is

II-L
∫ ∞

0
dω ω

[
ρL
V (ω,p) − ρL

A(ω,p)
]

= 0 (12.92)

Like the first, this sum rule involves only the longitudinal spectral den-
sities, and so we call it II-L. Also like the first, it reduces to the original
Weinberg sum rule as the temperature and/or chemical potential go to
zero.

Next we consider the space–space components of the propagators.
Examination of the D′

L in the infinite-energy limit gives us the sum rule
II-L and nothing new. Examination of the DT in the infinite-energy limit
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gives us another sum rule, which we call II-T because it involves the
transverse spectral densities,

II-T
∫ ∞

0
dω ω

[
ρT
V (ω,p) − ρT

A(ω,p)
]

= 0 (12.93)

The finite-temperature sum rules II-L and II-T should become degenerate
at p = 0 because there ought not to be any difference between longitudinal
and transverse excitations at rest. The sum rule II-T then reduces to the
original second sum rule in the vacuum.

We want to emphasize that the sum rules derived in this section, I, II-L,
and II-T, must be satisfied for every value of the momentum. Furthermore,
our derivation is more general than QCD; any theory that satisfies the
assumptions we have made must obey these sum rules.

Low-temperature behavior

As we are taking the zero-quark-mass limit here the pion is massless below
any critical temperature for chiral symmetry restoration and/or decon-
finement, and thus at parametrically low temperatures the heat bath is
dominated by pions. In [20] the so-called Dey–Eletsky–Ioffe mixing theo-
rem was proven, which says that, to order T 2, there is no change in the
masses of vector and axial-vector mesons. What does change are the cou-
plings to the currents. The finite-temperature correlators can be described
by a mixing between the vector and axial-vector T = 0 correlators with a
temperature-dependent coefficient:

Dμν
V (p, T ) = (1 − ε)Dμν

V (p, 0) + εDμν
A (p, 0) (12.94)

Dμν
A (p, T ) = (1 − ε)Dμν

A (p, 0) + εDμν
V (p, 0) (12.95)

These are valid to first order in ε ≡ T 2/6f2
π . This implies the same mixing

of the spectral densities, namely,

ρV (p0,p, T ) = (1 − ε)ρV (s, 0) + ερA(s, 0) (12.96)
ρA(p0,p, T ) = (1 − ε)ρA(s, 0) + ερV (s, 0) (12.97)

with the appropriate longitudinal and transverse subscripts. The tem-
perature dependence of the pion decay coupling was thus proven to be
f2
π(T ) = (1 − ε)f2

π for small T , consistent with the prediction of chiral
perturbation theory [21]. Therefore, the finite-temperature sum rules
I (12.82), II-L (12.92), and II-T (12.93), reduce to the original zero-
temperature sum rules but with both sides of (12.62) and (12.63) mul-
tiplied by the factor 1 − 2ε. This satisfies the Dey–Eletsky–Ioffe mixing
theorem.
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The approach to chiral-symmetry restoration

Chiral transformations are rotations of the quark field with γ5, and they
may or may not have the SU(Nf) (isospin) generators. The corresponding
U(1)A and SU(Nf)A generators have different fates in QCD; the former
is explicitly violated by the anomaly, the latter is broken spontaneously
at low temperature and is restored at some critical temperature Tc, pro-
vided that the quark mass is strictly zero, as is assumed for the purposes
of the current discussion. The ρ and a1 currents are both unchanged by
the U(1)A transformation but are mixed under SU(Nf)A. Therefore, if this
symmetry is restored at high temperatures then there should be no differ-
ence between the vector and the axial-vector correlators. In this section
we speculate on exactly how this difference goes to zero with increasing
temperature. Generally, one may suggest many different scenarios. Let us
discuss the following three.

The simplest scenario is that the T -dependence factorizes. It means
that the vector and axial-vector spectral densities mix, without chang-
ing their shape, as in the low-temperature limit considered in the previ-
ous section, only with a more general function ε(T ). When the mixing
becomes maximal, ε = 1/2, chiral symmetry is restored. It is interest-
ing to see the temperature at which this occurs using the lowest-order
formula, ε = T 2/6f2

π . This estimate gives Tcomplete mixing =
√

3fπ ≈ 164
MeV, which is indeed roughly equal to the expected critical temperature
Tc.

The second scenario assumes that the ρ and a1 mesons retain their iden-
tities and dominate the correlation function. However, their parameters
change with temperature. In particular, the masses may move towards
each other [22] or go to zero [23]. At Tc they become degenerate, and
chiral symmetry is restored.

It is instructive then to look at the sum rules. Let us assume that vector
meson dominance is a good approximation for the spectral densities and
not worry about the continuum contribution for the time being. We focus
on zero momentum for the sake of simplicity. When a pole mass is defined
at finite temperature, it is usually defined as the energy of the excitation
at zero momentum.

The vector spectral density is (note that there is no difference between
the longitudinal and transverse cases at zero momentum)

sign(ω) ρV (ω) = − 1
π

m4
ρ

g2
ρ

Im
1

ω2 −m2
ρ − Πρ

R(ω) − iΠρ
I (ω)

(12.98)

where Πρ
R and Πρ

I are the real and imaginary parts of the ρ self-
energy at temperature T . In the narrow-width approximation this
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becomes

sign(ω) ρV (ω) =
m4

ρ

g2
ρ

δ
(
ω2 −m2

ρ − Πρ
R(ω)

)
(12.99)

The pole mass is determined self-consistently from m2
ρ(T ) = m2

ρ +
Πρ

R(mρ(T )). Then the spectral density can be rewritten as

sign(ω) ρV (ω) = Zρ(T )
m4

ρ

g2
ρ

δ
(
ω2 −m2

ρ(T )
)

(12.100)

where the temperature-dependent residue is

Z−1
ρ (T ) =

∣∣∣∣1 − d

dω2
Πρ

R(ω)
∣∣∣∣ (12.101)

The normalization is Zρ(0) = 1. Similarly

sign(ω) ρA(ω) = Za(T )
m4

a1

g2
a

δ
(
ω2 −m2

a1
(T )
)

+ Zπ(T )f2
πω

2δ
(
ω2
)

(12.102)
Substituting these spectral densities into the finite-temperature sum

rules I, II-L, and II-T tells us that the ρ and a1 residues are equal:

Zρ(T ) = Za(T ) (12.103)

and that the pion residue is

Zπ(T ) = 2Zρ(T )

(
m2

ρ

m2
ρ(T )

− m2
ρ

m2
a1

(T )

)
(12.104)

We expect that m2
a1

(T ) −m2
ρ(T ) → 0 as the temperature increases. Three

types of behavior can be distinguished: both the ρ and the a1 masses
decrease with T , both masses increase with T , or the ρ mass increases
while the a1 mass decreases with T . The sum rules do not appear to rule
out any of these possibilities. In any case, the result is that Zπ(T ) → 0
unless Zρ(T ) → ∞, which seems rather unphysical.

As distinct from the previous two scenarios, it may be that particles
are not well defined as we approach a chiral-symmetry-restoring phase
transition. That is, the imaginary part of the self-energy may become
larger with increasing temperature. This broadening would also decrease
the maximum peak value of the spectral density. Picturesquely, the vector
and axial-vector mesons melt away in a very broad distribution of strength
in the spectral densities.

Concluding this section, we say once more that the sum rules by them-
selves cannot of course tell which scenario is preferable. However, they
can be used to restrict significantly the parametrization of the spectral
densities at nonzero temperature.
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12.4 Linear and nonlinear σ models

The O(N) model as a quantum field theory in d + 1 dimensions [24] is a
basis or prototype for many interesting physical systems. The bosonic field
Φ has N components. When the Lagrangian is such that the vacuum state
exhibits spontaneous symmetry breaking, it is known as a sigma model.
This is the case of interest to us here. In d = 3 space dimensions the linear
sigma model has the potential

1
4λ
(
Φ2 − f2

π

)2
where λ is a positive coupling constant and fπ is the pion decay constant.
The model is renormalizable. In the limit λ → ∞ the potential goes over
to a delta-function constraint on the length of the field vector and is then
known as a nonlinear sigma model.

When N = 4 one has a model for the low-energy dynamics of quan-
tum chromodynamics (QCD). More explicitly, it is essentially the unique
description of the dynamics of very soft pions. This is basically due to
the isomorphism between the groups O(4) and SU(2) × SU(2), the latter
being the appropriate group for two flavors of massless quarks in QCD.
The linear sigma model, including the nucleon, goes back to the work of
Gell-Mann and Levy [25]. This subject has a vast literature.

As we have seen earlier in this chapter, much work has been done
on chiral perturbation theory that starts with the nonlinear sigma model
and adds higher-order, nonrenormalizable, terms to the Lagrangian; these
are determined by the dimensionality of the coefficients or field deriva-
tives [26]. The goal is to construct an effective Lagrangian that describes
the low-energy properties of QCD to the desired accuracy. This whole
program owes a considerable amount to the classic works of Weinberg
[27, 28]

Finally, the standard model of the electroweak interactions, due to
Weinberg, Salam, and Glashow, has an SU(2) doublet scalar Higgs field
responsible for spontaneous symmetry breaking. If one neglects spin-1
gauge fields then the Higgs sector is also an O(4) field theory.

Since both linear and nonlinear σ models are prototypical field theories
in many respects, one expects that much insight on the nature of the
chiral-restoring phase transition, for example, can be had by studying
those at finite temperature.

12.4.1 Linear σ model at finite temperature

The linear σ model Lagrangian is

L = 1
2(∂μΦ)2 − 1

4λ
(
Φ2 − f2

π

)2 (12.105)

https://doi.org/10.1017/9781009401968.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.013


266 Hot hadronic matter

where λ is a positive coupling constant. The bosonic field Φ has N com-
ponents. Rather arbitrarily, we define the first N − 1 components to rep-
resent a pion field π and the last, Nth, component to represent the sigma
field. Since the O(N) symmetry is broken to an O(N − 1) symmetry at
low temperatures, we immediately allow for a sigma condensate v whose
value is temperature-dependent and yet to be determined. We write

Φi(x, t) = πi(x, t) i = 1, . . . , N − 1
(12.106)

ΦN (x, t) = v + σ(x, t)

In terms of these fields the Lagrangian is

L = 1
2 (∂μπ)2 + 1

2 (∂μσ)2 − 1
4λ
(
v2 − f2

π + 2vσ + σ2 + π2
)2 (12.107)

The action at finite temperature is obtained by rotating to imaginary
time, τ = it, and integrating τ from 0 to β = 1/T . The action is defined
as

S = −1
4λ
(
f2
π − v2

)2
βV

+
∫ β

0
dτ

∫
V
d3x
{

1
2

[
(∂μπ)2 − m̄2

ππ
2 + (∂μσ)2 − m̄2

σσ
2
]

+ 1
2λv

(
v2 − f2

π

)
σ − λvσ(π2 + σ2) − 1

4λ(σ2 + π2)2
}

(12.108)

where the effective masses are

m̄2
π = λ

(
v2 − f2

π

)
(12.109)

m̄2
σ = λ

(
3v2 − f2

π

)
At any temperature v is chosen such that 〈σ〉 = 0. This eliminates any
one-particle reducible (1PR) diagrams in perturbation theory, leaving only
one-particle irreducible (1PI) diagrams.

At zero temperature the potential is minimized when v = fπ. The pion
is massless and the σ particle has a mass of

√
2λfπ. The Goldstone theo-

rem is satisfied.
Lin and Serot [29] argued that the σ meson should not be identified

with the attractive s-wave interaction in the π − π interaction, which is
responsible for nuclear attraction. Rather, they argue that the σ meson
should have a mass which is at least 1 GeV if not more. This means that
λ is of order 50 or greater.
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The simplest approximation at finite temperature is the mean field
approximation. One allows for v to be temperature dependent; hence
the effective masses are temperature dependent as well. However, inter-
actions among the particles or collective excitations are neglected. The
pressure includes only the contribution of the condensate and of the ther-
mal motion of the independently moving particles. Thus

P =
T

V
lnZ = −λ

4
(
f2
π − v2

)2 + P0(T,mσ) + (N − 1)P0(T,mπ)

(12.110)
The pressure of a free relativistic boson gas can be written in two ways:

P0 = −T

∫
d3p

(2π)3
ln(1 − e−βω) =

∫
d3p

(2π)3
p2

3ω
1

eβω − 1
(12.111)

As pointed out earlier, this is a relatively simple but surprisingly power-
ful first approximation, which allows one to gain much insight into the
behavior of relativistic quantum field theories at high temperature.

One expects that, as the temperature is raised, thermal fluctuations
will tend to disorder the condensate field v, and at sufficiently high tem-
perature it may even disappear. If there is a second-order phase transition
then the correlation length should go to infinity, which is equivalent to
the effective σ mass going to zero. With such an expectation one may
expand the free-boson gas pressure about zero mass to obtain

P0(T,m) =
π2

90
T 4 − m2T 2

24
+

m3T

12π
+ · · · (12.112)

Since the masses are proportional to the square root of λ it is generally
inconsistent to retain the cubic term in m because there exist loop
diagrams which are not included in the mean field approximation but
which contribute to the same order in λ. Therefore we take

P (T, v) = N
π2

90
T 4 +

λ

2
v2

(
f2
π − N + 2

12
T 2

)
− λ

4
v4 (12.113)

where the pion and σ masses have been expressed in terms of λ, v, and
fπ. Maximizing the pressure with respect to v gives

v2 = f2
π − N + 2

12
T 2 (12.114)

This result is easily understood. Going back to (12.108), we can
differentiate lnZ with respect to v with the result that

v2 = f2
π − 3〈σ2〉 − 〈π2〉 (12.115)
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Fig. 12.5. The diagrams contributing to the one-loop pion self-energy, in the lin-
ear σ model. The broken lines represent the pion whereas the solid lines represent
the σ. The overall sign and combinatoric factors are shown. In the contributions
involving the pion four-point vertex, the signs = and 
= stand for cases where the
pion loop and the external field have the same, or different, quantum numbers.

as long as we choose 〈σ〉 = 0. For any free bosonic field φ with mass m,

〈φ2〉 =
∫

d3p

(2π)3
1
ω

1
eβω − 1

(12.116)

where ω =
√

p2 + m2. In the limit where the temperature is greater than
the mass, 〈φ2〉 → T 2/12. This yields (12.114) directly.

The condensate goes to zero at a critical temperature given by

T 2
c =

12
N + 2

f2
π (12.117)

Above this temperature thermal fluctuations are too large to allow a
nonzero condensate. It is a straightforward exercise to show that the
pressure and its first derivative are continuous at Tc but that the sec-
ond derivative is discontinuous. This is therefore a second-order phase
transition.

There are two major problems with the mean field approximation as
described. The first is that the pion has a negative mass-squared at every
temperature greater than zero. Not only is the Goldstone theorem not sat-
isfied, but there are tachyons as well! The sigma particle also gets a neg-
ative mass-squared at temperatures above

√
8/(N + 2) fπ < Tc. Recall-

ing the analysis in Section 7.3, this violation of basic physical principles
is resolved by recognizing that the finite-temperature corrections to the
squared masses are proportional to λT 2 and that one-loop self-energy cor-
rections, not included in the mean field analysis, are of the same order.
This can be understood from the following analysis.

https://doi.org/10.1017/9781009401968.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.013


12.4 Linear and nonlinear σ models 269

Fig. 12.6. The diagrams contributing to the one-loop σ self-energy.

At high temperatures, when the masses can be neglected in the loops,
the mean field result is obtained by combining (12.110) and (12.114):

m̄2
π = −N + 2

12
λT 2

(12.118)
m̄2

σ = 2λf2
π − N + 2

4
λT 2

The full one-loop self-energies for pions and the σ meson are shown in
Figures 12.5 and 12.6. If one chooses 〈σ〉 = 0 then there are no 1PR dia-
grams and the tadpoles should not be included; they are already included
in the temperature dependence of v. One may check this by fixing v = fπ
and then computing the tadpole contributions to the effective masses.
One gets precisely (12.118). The diagrams involving the four-point ver-
tices contribute an amount (N + 2)λT 2/12 to both the pion and σ meson
self-energies. When evaluated in the high-temperature approximation and
at low frequency and momentum the 1PI diagrams involving three-point
vertices may be neglected. (This follows from power counting. These dia-
grams involve two propagators instead of one, and so are only logarithmi-
cally divergent in the ultraviolet in the vacuum. The other diagrams are
quadratically divergent, which leads to a T 2 behavior at finite tempera-
ture.) When all contributions of order λT 2 are included, the pole positions
of the pion and σ meson propagators move, with the result that below Tc

m2
π = m̄2

π + Ππ = 0
(12.119)

m2
σ = m̄2

σ + Πσ = 2λf2
π

(
1 − T 2

T 2
c

)
and above Tc

m2
π = m2

σ = m2
Φ = −λf2

π + ΠΦ =
N + 2

12
λ
(
T 2 − T 2

c

)
(12.120)
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The Goldstone theorem is satisfied, there are no tachyons, and restoration
of the full symmetry of the Lagrangian above Tc is evident.

It must be recognized that the results (12.118)–(12.120) are valid to
order λ and cannot be extrapolated to λ → ∞. At low temperature,
where pions scatter from each other sequentially and there is essentially
no propagation off mass shell between scatterings because of the low par-
ticle density, one may take the point of view that λ is a parameter to be
adjusted to fit π–π scattering data and it does not matter how large λ
is. This point of view cannot be taken at high temperature, where the
pion number density is large, for then multiple scatterings will occur and
they cannot be factorized into independent scatterings. This means that
multiloop self-energy diagrams will be important at high temperature if
λ is not perturbatively small.

The second major problem is that long-wavelength fluctuations very
near the phase transition cannot be treated with perturbation theory
because the self-interacting boson fields become massless just at the tran-
sition. Although this is a well-known problem in the statistical mechanics
of second-order phase transitions, exactly how it affects the critical tem-
perature is not known for the linear σ model in 3 + 1 dimensions. The
result presented here must be accepted for what it is: a one-loop estimate
of the critical temperature.

12.4.2 Nonlinear σ model at finite temperature

The nonlinear σ model may be defined by the Lagrangian

L = 1
2 (∂μΦ)2 (12.121)

together with the constraint

f2
π = Φ2(x, t) (12.122)

The partition function is

Z =
∫

[dΦ] δ
(
f2
π − Φ2

)
exp

(∫ β

0
dτ

∫
d3xL

)
(12.123)

Because the length of the chiral field is fixed and cannot be changed by
thermal fluctuations it is often said that on the one hand chiral symmetry-
breaking is built into this model and therefore there can be no chiral-
symmetry-restoring phase transition. On the other hand, the linear sigma
model does undergo a symmetry-restoring phase transition. Taking the
quartic coupling constant λ to infinity essentially constrains the length
of the chiral field to be fπ, just as in the nonlinear model. The criti-
cal temperature, however, is independent of λ at least in the mean field
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approximation. So it would seem that the phase transition survives. If this
is true then one ought to be able to derive it entirely within the context
of the nonlinear model. That is what we shall do, although it involves a
lot more effort than the treatment of the linear model in the mean field
approximation. Since the only parameter in the model is fπ and we are
interested in temperatures comparable with it, we cannot make an expan-
sion in powers of T/fπ. The only other parameter is N , the number of
field components. This suggests an expansion in 1/N .

We begin by representing the field-constraining delta function by an
integral,

Z =
∫

[dΦ]
[
db′
]
exp

{∫ β

0
dτ

∫
d3x

[L + ib′
(
Φ2 − f2

π

)]}
(12.124)

As with the linear model, we define the first N − 1 components of Φ
to be the pion field and the last component to be the sigma field. We
allow for a zero-frequency and zero-momentum condensate of the sigma
field, referred to as v. Following Polyakov [30] we also separate out explic-
itly the zero-frequency and zero-momentum mode of the auxiliary field
b′. Integrating over all the other modes will give us an effective action
involving the constant part of the fields. We will then minimize the free
energy with respect to these constant parts, which gives us a saddle point
approximation. Integrating over fluctuations about the saddle point is
a finite-volume correction and of no consequence in the thermodynamic
limit. The Fourier expansions are

Φi(x, τ) = πi(x, τ) =

√
β

V

∑
n

∑
p

ei(x·p+ωnτ) π̃i(p, n)

ΦN (x, τ) = v + σ(x, τ) = v +

√
β

V

∑
n

∑
p

ei(x·p+ωnτ) σ̃(p, n)

b′(x, τ) = 1
2 im

2 + b(x, τ) = 1
2 im

2 + T

√
β

V

∑
n

∑
p

ei(x·p+νnτ) b̃(p, n)

(12.125)

One must remember to exclude the zero-frequency and zero-momentum
mode from the summations. The field Φ must be periodic in imaginary
time for the usual reasons, but there is no such requirement on the aux-
iliary field b, hence we must have ωn = 2πnT and νn = πnT . Since the
field b has dimensions of inverse length squared we have inserted another
factor of T so as to make its Fourier amplitude dimensionless, as is the
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case for the other fields. The action then becomes

S =
∫ β

0
dτ

∫
V
d3x

{
1
2

[
(∂μπ)2 −m2π2 + (∂μσ)2 −m2σ2

]
−ib

(
2vσ + π2 + σ2

)}
+ 1

2m
2
(
f2
π − v2

)
βV (12.126)

Note that terms linear in the fields integrate to zero because 〈πi〉 = 〈σ〉 =
〈b〉 = 0.

An effective action is derived by expanding exp(S) in powers of b and
integrating over the pion and σ fields. The term linear in b vanishes on
account of b̃(0, 0) ∝ 〈b〉 = 0. The term proportional to b2 is nonzero and
is exponentiated, thus summing a whole series of contributions. The term
proportional to b3 is also nonzero and it, too, may be exponentiated,
summing an infinite series of higher-order terms left out of the order-b2

exponentiation. After making the scaling b → b/
√

2N the effective action
becomes

Seff = − 1
2

∑
n

∑
p

(
ω2
n+p2+m2

)
[π̃(p, n) · π̃(−p,−n)+ σ̃(p, n)σ̃(−p,−n)]

− 1
2

∑
n

∑
p

(
Π(p, ωn, T,m)+

2
N

v2

ω2
n + p2 + m2

)
b̃(p, 2n)b̃(−p,−2n)

+ 1
2m

2
(
f2
π − v2

)
βV + O

(
b̃3√
N

)
(12.127)

Note that only even Matsubara frequencies contribute in the b-field:
νn = 2πnT . This may have been anticipated. There appears the one-loop
function

Π(p, ωn, T,m) = T
∑
l

∫
d3k

(2π)3
1

(ωn − ωl)2 + (p − k)2 + m2

1
ω2
l + k2 + m2

(12.128)
The effective action is an infinite series in b. The coefficients are frequency
and momentum dependent, arising from one-loop diagrams. In addition,
each successive term is suppressed by 1/

√
N compared with the previous

one. This is the large-N expansion.
The propagators for the π and σ fields are of the usual form,

D−1
0 (p, ωn,m) = ω2

n + p2 + m2 (12.129)

with an effective mass m yet to be determined. The propagator for the
b-field is more complicated:

D−1
b (p, ωn,m) = Π(p, ωn, T,m) +

2
N

v2

ω2
n + p2 + m2

(12.130)
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The value of the condensate v is not yet determined, either.
Keeping only the terms up to order b2 in Seff (the rest vanish in the

limit N → ∞) allows us to obtain an explicit expression for the partition
function and the pressure; this includes the next-to-leading order terms
in N :

P =
T

V
lnZ = 1

2m
2
(
f2
π − v2

)
− 1

2N T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)]
− 1

2T
∑
n

∫
d3p

(2π)3
ln
(

Π(p, ωn, T,m) +
2
N

v2

ω2
n + p2 + m2

)
(12.131)

The second term in the argument of the last logarithm should and will be
set to zero at this order. It may be needed at higher order in the large-N
expansion to regulate infrared divergences.

The pressure is extremized with respect to the mass parameter m.
Therefore ∂P/∂m2 = 0. From the initial expression for Z this is seen to
be equivalent to the thermal average of the constraint:

f2
π = 〈Φ2〉 = v2 + 〈π2〉 + 〈σ2〉 (12.132)

If an approximation to the exact partition function is made, such as the
large-N expansion, this constraint should still be satisfied. It may, in fact,
single out a preferred value of m.

To leading order in N we may neglect the term involving Π entirely.
The pressure is then

P = 1
2m

2
(
f2
π − v2

)
+ N P0(T,m) (12.133)

The pressure must be a maximum with respect to variations in the con-
densate v. This means that

∂P

∂v
= −m2v = 0 (12.134)

which is equivalent to the condition 〈σ〉 = 0. There are two possibilities.

1 m = 0 There exist massless particles, or Goldstone bosons, and the
value of the condensate is determined by the thermally averaged con-
straint. This is the symmetry-broken phase.

2 v = 0 The thermally averaged constraint is satisfied by a nonzero
temperature-dependent mass. There are no Goldstone bosons. This is
the symmetry-restored phase.

Evidently there is a chiral-symmetry-restoring phase transition!
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In the leading order of the large-N approximation the particles are
represented by free fields with a potentially temperature-dependent mass
m. Again, we may use

∂P0(T,m)
∂m2

= 〈φ2〉 =
∫

d3p

(2π)3
1
ω

1
eβω − 1

(12.135)

with ω =
√
p2 + m2. Thus extremizing the pressure with respect to m2

is equivalent to satisfying the thermally averaged constraint

f2
π = v2 + 〈π2〉 + 〈σ2〉 (12.136)

Note however that the pion and σ fields have the same mass and therefore
〈π2〉 = (N − 1)〈σ2〉. Consider now the two different phases.

In the asymmetric, symmetry-broken, phase the mass is zero. The above
constraint is satisfied by a temperature-dependent condensate:

v2(T ) = f2
π − N T 2

12
(12.137)

This condensate goes to zero at a critical temperature

T 2
c =

12
N

f2
π (leading-N approximation) (12.138)

Exactly at Tc the thermally averaged constraint is satisfied by the fluctu-
ations of N massless degrees of freedom without the help of a condensate.

In the symmetric phase the condensate is zero. The constraint is satis-
fied by thermal fluctuations alone:

f2
π = N

∫
d3p

(2π)3
1
ω

1
eβω − 1

(12.139)

Thermal fluctuations decrease with increasing mass at fixed temperature.
The constraint is only satisfied by massless excitations at one tempera-
ture, namely, Tc. At temperatures T > Tc the mass must be greater than
zero. Near the critical temperature the mass should be small, and the
fluctuations may be expanded about m = 0 as

f2
π = NT 2

[
1
12

− m

4πT
− m2

8π2T 2
ln
( m

4πT

)
− m2

16π2T 2
+ · · ·

]
(12.140)

As T approaches Tc from above, the mass approaches zero as follows:

m(T ) =
π

3T
(
T 2 − T 2

c

)
+ · · · (12.141)

This is a second-order phase transition since there is no possibility of
metastable supercooled or superheated states.

The mass must grow faster than the temperature at very high tem-
peratures in order to keep the field fluctuations fixed and equal to f2

π .

https://doi.org/10.1017/9781009401968.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.013


12.4 Linear and nonlinear σ models 275

Asymptotically the particles move nonrelativistically. This allows us to
compute the fluctuations analytically. We get

f2
π = N

(
T

2π

)3/2 √
m e−m/T (12.142)

This is a transcendental equation for m(T ). It can also be written as

m = T ln

(
NT

2πfπ

√
mT

2πf2
π

)
(12.143)

Roughly, the solution behaves as follows:

m ∼ T ln
(
T 2

T 2
c

)
(12.144)

It is rather amusing that, at the leading order of the large-N approxi-
mation, the elementary excitations are massless below Tc, become massive
above Tc, and at asymptotically high temperatures move nonrelativisti-
cally.

The result to first order of the large-N expansion provides good insight
into the nature of the two-phase structure of the nonlinear σ model, but
it is not quite satisfactory for two reasons. First, it predicts N massless
Goldstone bosons in the broken-symmetry phase when in fact we know
there ought to be only N − 1. Second, the square of the critical temper-
ature is 12f2

π/N whereas it is 12f2
π/(N + 2) in the linear σ model in the

mean field approximation; we expect them to be the same in the limit
λ → ∞. Both these problems can be rectified by inclusion of the next-to-
leading-order term in N , which gives the contribution of the b-field.

It is natural to expect that the b-field will contribute essentially one
negative degree of freedom to the T 4 term in the pressure so as to give
N − 1 Goldstone bosons in the low-temperature phase. Therefore we move
one of the N degrees of freedom and put it together with the b-field
contribution as

P = 1
2m

2
(
f2
π − v2

)− 1
2(N − 1)T

∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)]
−1

2T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)
Π
]

(12.145)

The function Π(p, ωn, T,m) can be reduced to a one-dimensional integral:

Π =
1

8π2p

∫ ∞

0

dk k

ω
ln
(
k2 + pk + Λ2

k2 − pk + Λ2

)
1

eβω − 1
(12.146)

https://doi.org/10.1017/9781009401968.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.013


276 Hot hadronic matter

where

Λ2 = Λ2(p, ωn,m) =
(ω2

n + p2)2 + 4m2ω2
n

4(ω2
n + p2)

(12.147)

but unfortunately Π cannot be simplified any further. In any case, to the
order in N to which we are working, the pressure is

P = 1
2m

2
(
f2
π − v2

)
+ (N − 1)P0(T,m) + PI(T,m) (12.148)

The pressure can be thought of, in the low-temperature phase, as due to
N − 1 Goldstone bosons with an interaction term PI.

Because of the logarithm, the main contribution to the interaction pres-
sure will come when Π is very small compared to unity. This corresponds
to very large values of the parameter Λ; in other words, to very high
momentum, Matsubara frequency, or mass. In this limit,

Π → 1
4π2Λ2

∫ ∞

0

dk k2

ω

1
eβω − 1

=
T 2

2π2Λ2
h3

(m
T

)
(12.149)

This may be considered as a high-energy approximation, and we shall
henceforth refer to it as such. Then

PI = 1
2 T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)
Π
]

≈ −1
2 T
∑
n

∫
d3p

(2π)3
ln
(
h3

π2

(ω2
n + p2)(ω2

n + p2 + m2)
(ω2

n + ω2
+)(ω2

n + ω2−)

)
(12.150)

with dispersion relations

ω2
± = p2 + 2m2 ± 2m

√
p2 + m2 (12.151)

The interaction pressure can now be determined in the usual way to be

PI = −T

∫
d3p

(2π)3
[
ln(1 − e−βp) + ln(1 − e−βω(p))

− ln(1 − e−βω+(p)) − ln(1 − e−βω−(p))
]

(12.152)

Note that h3(m/T ) has no effect within this approximation. Note also that
in the broken-symmetry phase where m = 0 the contribution of the b-field
cancels one of the massless degrees of freedom to give N − 1 Goldstone
bosons.

Now we are prepared to examine the behavior of the system near the
critical temperature with the inclusion of next-to-leading terms in N . We
make an expansion in m/T as before. The pressure is, up to and including
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order m3,

P = (N − 1)
π2

90
T 4 − N + 2

24
m2T 2 +

1
2
m2
(
f2
π − v2

)
+

N

12π
m3T

(12.153)

In the high-temperature phase, where v = 0, maximization with respect
to m yields

f2
π = T 2

(
N + 2

12
− N

4π
m

T

)
(12.154)

This gives the same critical temperature as in the mean field treatment
of the linear σ model.

T 2
c =

12
N + 2

f2
π (sub-leading-N approximation) (12.155)

The mass approaches zero from above as follows:

m(T ) =
π(N + 2)

3NT

(
T 2 − T 2

c

)
(12.156)

In the results obtained immediately above, an approximation for Π to
which we have referred as a high-energy approximation has been used.
Relaxing this approximation can be done, albeit at the cost of a numer-
ical calculation. Of course, one should also go beyond the mean field
approximation in the linear model.

12.4.3 Finite-temperature behavior of fπ

Consideration of correlation functions at finite temperature is more
involved than at zero temperature. Lorentz invariance is not manifest
because there is a preferred frame of reference, the frame in which the
matter is at rest. Thus spectral densities and other functions may depend
on energy and momentum separately and not just on their invariant s.
Also, the number of Lorentz tensors is greater because there is a new vec-
tor available, namely, the vector uμ = (1, 0, 0, 0) that specifies the rest
frame of the matter.

In the usual fashion one may construct a Green’s function for the axial-
vector current Aμ

a :

Gμν
ab (z,q) =

∫ ∞

−∞
dω

ω − z
ρμνab (ω,q) (12.157)
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where the spectral density tensor is

ρμνab (ω,q) =
1
Z

∑
m,n

(2π)3δ(ω − Em + En)δ(q − pm + pn)

×
(
e−En/T − e−Em/T

)
〈n|Aμ

a(0)|m〉〈m|Aν
b (0)|n〉 (12.158)

The summation is over a complete set of energy eigenstates.
Owing to current conservation the spectral density tensor can be decom-

posed into longitudinal and transverse terms:

ρμνab (q) = δab
[
ρL
A(q)Pμν

L + ρT
A(q)Pμν

T

]
(12.159)

In general the spectral densities depend on q0 and q separately as well as
on the temperature. In the vacuum we can always go to the rest frame of
a massive particle and in that frame there can be no difference between
longitudinal and transverse polarizations, so that ρL = ρT = ρ. We also
observe that Pμν

L + Pμν
T = −(gμν − qμqν/q2). The pion, being a massless

Goldstone boson, is special. It contributes to the longitudinal axial spec-
tral density and not to the transverse one. In vacuum,

ρμν(q) =
(
qμqν

q2
− gμν

)
ρA(q2) + f2

πδ(q
2)qμqν (12.160)

This may be taken to be the definition of the pion decay constant at zero
temperature. In fact, one can write the pion’s contribution as

f2
πδ(q

2)qμqν = f2
πq

2δ(q2)Pμν
L (12.161)

This cannot be taken as the definition of the pion decay constant at finite
temperature because the contribution of the pion to the longitudinal spec-
tral density cannot be assumed to be a delta function in q2. In general, as
mentioned previously, the pion’s dispersion relation will be more compli-
cated and will develop a width at nonzero momentum. This smears out
the delta function into something like a relativistic Breit–Wigner distri-
bution. Fortunately, the Goldstone theorem [31] requires that there be a
zero-frequency excitation when the momentum is zero (see Chapter 7).
This implies that the width must go to zero at q = 0, which results in a
delta function at zero frequency. Explicit calculations support this asser-
tion [32, 33]. Therefore it would seem to make sense to define

f2
π(T ) ≡ 2 lim

ε→0

∫ ε

0

dq2
0

q2
0

ρL
A(q0, q = 0) (12.162)

Physically this means that the pion decay constant at finite temperature
measures the strength of the coupling of the Goldstone boson to the lon-
gitudinal part of the retarded axial-vector response function in the limit
of zero momentum.
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We shall first study the pion’s contribution to the spectral density at
temperatures small compared with fπ. We shall study both the nonlinear
and linear σ models. At low temperatures the σ meson’s contribution
as a material degree of freedom is frozen out and one might expect the
same dynamics to be operative in both models; in other words, one might
expect the result to be the same and so independent of λ.

The nonlinear σ model

The nonlinear σ model was defined at the beginning of subsection
12.4.2. One can make a nonlinear redefinition of the field without chang-
ing the physical content of the theory. Various redefinitions may be found
in the literature. First we will list the most common ones and then we
will compute fπ(T ) for each of them, thereby illustrating that one always
gets the same result. It is interesting to see how this comes about; it is
also reassuring that it does.

A convenient way to express the sigma and pion fields that explicitly
contains the constraint is

σ = fπ cos(φ/fπ)
(12.163)

π = fπφ̂ sin(φ/fπ)

where φ = |φ| and φ̂ = φ/φ. The Lagrangian may then be expressed in
terms of the fields of choice:

L = 1
2∂μπ · ∂μπ + 1

2∂μσ ∂μσ

= 1
2∂μπ · ∂μπ + 1

2

(π · ∂μπ) (π · ∂μπ)
f2
π − π2

= 1
2

f2
π

φ2
sin2

(
φ

fπ

)
∂μφ · ∂μφ + 1

2

[
1 − f2

π

φ2
sin2

(
φ

fπ

)]
∂μ ∂

μφ (12.164)

Another representation to consider is due to Weinberg [27], who makes
the definition

p = 2
f2
π

π2

(
1 −

√
1 − π2

f2
π

)
π (12.165)

or inversely

π =
p

1 + p2/4f2
π

(12.166)

In terms of Weinberg’s field definition the Lagrangian is very compact:

L =
1
2

∂μp · ∂μp

(1 + p2/4f2
π)2

(12.167)
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The (σ,π) representation is cumbersome because of the constraint,
although it can be handled by the Lagrange multiplier method of subsec-
tion 12.4.2. However, it is inconvenient for exposing the physical particle
content and for doing perturbation theory in terms of physical particles.
Among the three physical representations we choose to work with here,
it is interesting to note the range of allowed values of the fields. The
magnitude of the p-field can range from zero to infinity, the magnitude
of the π-field can range from 0 to fπ, and the magnitude of the φ-field
can range from 0 to πfπ. This distinction is important when dealing with
nonperturbative large-amplitude motion; whether it makes any difference
in low orders of perturbation theory is not known.

The first step in our quest to extract the temperature dependence of fπ
from the theory is to obtain the form of the axial-vector current in terms
of the chosen fields. Starting from

Aμ = −σ ∂μπ + π ∂μσ (12.168)

one directly computes

Aμ = −σ

(
∂μπ +

π (π · ∂μπ)
f2
π − π2

)

= −f2
π

2φ
sin
(

2φ
fπ

)
∂μφ− fπφ̂

[
1 − fπ

2φ
sin
(

2φ
fπ

)]
φ̂ · ∂μφ

= − 1
fπ

1
(1 + p2/4f2

π)2

[(
f2
π − 1

4
p2

)
∂μp +

1
2
p (p · ∂μp)

]
(12.169)

Every form of the axial-vector current is an odd function of the pion field.
Obviously it is not possible to compute the axial-vector correlation func-

tion exactly. We will restrict our attention to low temperatures. Roughly
speaking, a loop expansion of the correlation function is an expansion in
powers of T 2/f2

π , each additional loop contributing one more such factor.
To one-loop order, we need the axial-vector current to third order in the
pion field:

Aμ = −fπ ∂μπ +
π2

2fπ
∂μπ − 1

fπ
π (π · ∂μπ)

= −fπ ∂μφ +
2φ2

3fπ
∂μφ− 2

3fπ
φ (φ · ∂μφ)

= −fπ ∂μp +
3p2

4fπ
∂μp − 1

2fπ
p (p · ∂μp) (12.170)
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We will also need the Lagrangian to fourth order in the pion field:

L4 =
1

2f2
π

(π · ∂μπ) (π · ∂μπ)

=
1

6f2
π

[
(φ · ∂μφ) (φ · ∂μφ) − φ2 ∂μφ · ∂μφ

]
= − 1

4f2
π

p2 ∂μp · ∂μp

(12.171)

The correlation function 〈Ai
μ(x)Aj

ν(y)〉 will have a zero-loop contribu-
tion from the π–π correlation function 〈∂μπi(x) ∂νπj(y)〉, a one-loop
self-energy correction to the same π–π correlation function, and a one-
loop contribution from the correlation function involving four pions,
〈∂μπi(x)πj(y)πk(y)∂νπl(y)〉.

The contribution of the bare-pion propagator D0 to the longitudinal
spectral density is easily found to be

ρL
A(q0,q) = f2

π q
2 δ
(
q2
)

(12.172)

At zero temperature this is just the definition of the pion decay constant.
The one-loop pion self-energy may be computed by standard diagram-

matic or functional integral techniques. The results are:

Ππ(q) = − T 2

12f2
π

q2

Πp(q) = (N − 1)
T 2

24f2
π

q2 (12.173)

Πφ(q) =
1
3

Ππ(q) +
2
3

Πp(q)

These are rather dependent on the definition of the pion field! Neverthe-
less, it is worth noting that the Goldstone theorem is satisfied on account
of the fact that the self-energy is always proportional to q2.

The final contribution comes from the correlation function for a pion
at point x with three pions at point y. Again, standard diagrammatic
or functional integral techniques may be used. To express the answers,
we gather together the contributions from the bare propagator, from
the one-loop self-energy, and from this correlation function and quote
the coefficient of the term f2

π q
2 δ
(
q2
)

in the longitudinal part of the
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axial-vector spectral density:

π :
(

1 − T 2

12f2
π

)
− (N − 3)

T 2

12f2
π

p :
(

1 + (N − 1)
T 2

24f2
π

)
−
(
N − 5

3

)
T 2

8f2
π

(12.174)

φ :
(

1 + (N − 2)
T 2

36f2
π

)
− (N − 2)

T 2

9f2
π

In all three cases the results are the same and amount to a temperature
dependence of

f2
π(T ) = f2

π

(
1 − N − 2

12
T 2

f2
π

)
(12.175)

This agrees with the analysis of Gasser and Leutwyler [21] for the only
case where they can be compared, N2

f = N = 4.

The linear σ model

It is now not surprising to discover that the linear σ model gives the
same result for fπ(T ) at low temperatures as the nonlinear sigma model.
The reason is that the σ meson is very heavy at low temperatures and
cannot contribute materially in the way that the pions do. However, the
way in which the linear σ model works out is very different.

Let us go back to the axial-vector current before shifting the sigma
field:

Aμ = −σ ∂μπ + π ∂μσ (12.176)

After making the shift σ → v + σ the current takes the form

Aμ = −v ∂μπ − σ ∂μπ + π ∂μσ (12.177)

By maximizing the pressure (which is equivalent to minimizing the
effective potential) with respect to v at each temperature we effectively
sum all tadpole diagrams, leaving only 1PI diagrams in any subsequent
perturbative treatment. If this is done, one’s inclination is to identify v(T )
with fπ(T ). This is wrong; fπ(T ) has additional contributions, as we shall
now see.

The first contribution to f2
π(T ) does come from v2(T ) since it involves

the cross term of ∂μπa(x) with ∂νπ
a(y). Following the analysis of subsec-

tion 12.4.1, but at low temperature rather than high, we simply leave out
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the contribution of the heavy σ meson. This gives

P (T, v) = (N − 1)
π2

90
T 4 +

λ

2
v2

(
f2
π − N − 1

12
T 2

)
− λ

4
v4 (12.178)

Maximizing with respect to v gives

v2(T ) = f2
π − N − 1

12
T 2 (12.179)

There is another, nonlocal, contribution to the vertex, corresponding to
the emission and absorption of a virtual σ meson. One might think that
it would be suppressed by the large σ mass, m2

σ = 2λf2
π , but in fact this is

compensated by the coupling constant λ in the extra vertex. Evaluation
of this diagram gives a contribution to f2

π(T ) of T 2/6f2
π .

Finally there is a contribution coming from the dressed pion propagator
analogous to that in the nonlinear σ model. The full one-loop 1PI pion
self-energy diagrams have been shown already in Figure 12.5. We know
that the sum of the momentum-independent terms is zero on account of
Goldstone’s theorem. We just need the contribution that is quadratic in
the energy and momentum of the pion. This can arise only from the so-
called exchange diagram involving two σππ vertices. In imaginary time
(Euclidean space) it is

Πex(ωn,q) = −4λ2f2
π T
∑
l

∫
d3k

(2π)3
1

ω2
l + k2

1
(ωl + ωn)2 + (k + q)2 + m2

σ

(12.180)

Since T � mσ it is easy to extract the part that is quadratic in the
momentum. Analytically continuing to Minkowski space (ωn → iq0), it
is q2T 2/12f2

π .
The residue of the pion pole in the axial-vector correlation function can

now be obtained by adding the vacuum contribution, the pion self-energy
correction, and the tadpole and nonlocal vertex corrections as follows:(

1 − 1
12

T 2

f2
π

)
− N − 1

12
T 2

f2
π

+
1
6
T 2

f2
π

The final result,

f2
π(T ) = f2

π

(
1 − N − 2

12
T 2

f2
π

)
(12.181)

is identical to that of the nonlinear σ model. We remark that this cannot
be used to compute the critical temperature since it was obtained under
the condition that T � fπ.
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The approach to chiral-symmetry restoration

Calculation of fπ(T ) as T → Tc is more involved than in the low-
temperature limit. It was done for the nonlinear model by Jeon and
Kapusta [34]. Here we just quote the result:

f2
π(T ) = f2

π − N + 2
12

T 2 (12.182)

It goes to zero at the correct critical temperature. Notice that the coef-
ficient of the T 2 term is different from that in the low-temperature
limit. A relatively simple Padé approximation may be used to extrap-
olate smoothly from low temperatures to the critical temperature:

f2
π(T )
f2
π

≈
1 − T 2

T 2
c

1 − 4
(N + 2)

T 2

T 2
c

(
1 − T 2

T 2
c

) (12.183)

12.4.4 Finite-temperature scalar condensate

The scalar condensate is defined as |〈Φ〉|. Our convention has been to
allow the last, Nth, component of the field to condense, and to refer to
this as either v, if the field is shifted, or 〈σ〉 if the field is not shifted. In
this section we use the latter convention.

It is interesting to ask what happens to this condensate as a function
of temperature in the nonlinear model. The constraint as an operator
equation is f2

π = Φ2 and as a thermal average is f2
π = 〈Φ2〉; it is not

fπ = |〈Φ〉|. The condensate can indeed change with temperature. In fact
we can quite easily compute it to two-loop order. Before doing so, we
first discuss the connection of this condensate with the quark condensate
〈ψ̄ψ〉.

In two-flavor QCD one often associates the sigma and pion fields with
certain bilinear forms of the quark fields:

ψ̄ψ ∼ σ

iψ̄γ5τψ ∼ π

This association is made because the quark bilinear forms transform in
the same way under SU(2)×SU(2) as the corresponding meson fields.
The dimensions do not match, so there must be some dimensional coeffi-
cient relating them; this coefficient could even be a function of the group
invariant σ2 + π2 ∼ (ψ̄ψ)2 − (ψ̄γ5τψ

)2. Does this particular combination
of four-quark condensates change with temperature? The temperature
dependence of the four-quark condensates at low temperatures was first
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calculated in [35] with the help of the fluctuation–dissipation theorem.
The contribution of pions alone was later discussed in [36] using soft-pion
techniques. From [35, 36] one can state the two condensates separately:〈 (

ψ̄ψ
)2 〉 =

(
1 − T 2

4f2
π

)〈
0
∣∣(ψ̄ψ)2

∣∣0〉− T 2

12f2
π

〈
0
∣∣(ψ̄γ5τψ)2

∣∣0〉 (12.184)

and〈
(ψ̄γ5τψ)2

〉
=
(

1 − T 2

12f2
π

)〈
0
∣∣(ψ̄γ5τψ)2

∣∣0〉− T 2

4f2
π

〈
0
∣∣(ψ̄ψ)2

∣∣0〉 (12.185)

Therefore there is no correction to this group invariant to order T 2/f2
π

inclusive:〈
(ψ̄ψ)2 − (ψ̄γ5τψ)2

〉
=
〈
0
∣∣(ψ̄ψ)2 − (ψ̄γ5τψ)2

∣∣0〉 (12.186)

This result is consistent with our analysis of the nonlinear σ model in
previous sections.

Now let us return to the business of computing the temperature depen-
dence of the scalar condensate to one- and two-loop order. In terms of the
three representations used in the discussion of the nonlinear σ model in
Section 12.4.3 the σ field is given by

σ

fπ
=

√
1 − π2

f2
π

= 1 − π2

2f2
π

−
(
π2
)2

8f4
π

+ · · ·

=
(

1 − p2

2f2
π

+
(p2)2

16f4
π

)1/2(
1 +

p2

4f2
π

)−1

= 1 − p2

2f2
π

+
(p2)2

8f4
π

+ · · ·

= cos
(

φ

fπ

)
= 1 − φ2

2f2
π

+
(φ2)2

24f4
π

+ · · · (12.187)

To second order in the pion field all three representations are the same.
Using the free-field expression for the thermal average of the field squared
we get

〈σ〉
fπ

= 1 − N − 1
2

(
T 2

12f2
π

)
+ · · · (12.188)

For N = 4, the only value for that we can quantitatively compare with
QCD, this agrees with the result of Gasser and Leutwyler [21].

The coefficient of the term that is fourth order in the pion field differs
in sign and magnitude among the three representations. It would be a
miracle if the thermal average of

√
1 − π2/f2

π , cos(φ/fπ), and the Wein-
berg expression were all the same! But regarding the order (T 2/12f2

π)2 we
must recognize that the term that is second order in the pion field gets
modified owing to a one-loop self-energy. This was computed for each
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representation in Section 12.4.3 and the results were listed in (12.173).
The term that is fourth order in the pion field can be evaluated using free
fields. The result is

〈
(φ2)2

〉
= (N2 − 1)

(
T 2

12

)2

(12.189)

and is obviously representation independent. The contributions for each
representation are

π : 1 − N − 1
2

(
T 2

12f2
π

)[
1 −

(
T 2

12f2
π

)]
− N2 − 1

8

(
T 2

12f2
π

)2

p : 1 − N − 1
2

(
T 2

12f2
π

)[
1 +

N − 1
2

(
T 2

12f2
π

)]
+

N2 − 1
8

(
T 2

12f2
π

)2

φ : 1 − N − 1
2

(
T 2

12f2
π

)[
1 +

N − 2
3

(
T 2

12f2
π

)]
+

N2 − 1
24

(
T 2

12f2
π

)2

(12.190)

where the second term in each line comes from the square of the pion field
and the last term comes from the pion field in fourth order. The sum of
all terms is identical in all three representations; it is

〈σ〉
fπ

= 1 − (N − 1)
(

T 2

24f2
π

)
− (N − 1)(N − 3)

2

(
T 2

24f2
π

)2

+ · · · (12.191)

The miracle happens. It is a consequence of the fact that physical quan-
tities must be independent of field redefinition. What is more, for N =
4 it agrees with the previously obtained result of Gasser and Leutwyler.
However, we emphasize once more that this expression should not be
used to infer a critical temperature because it has been derived under the
assumption that the temperature is small compared with fπ.

A calculation of the scalar condensate in the nonlinear model near the
critical temperature was made by Jeon and Kapusta [34]. The result is
exactly the same as in the linear model, (12.114), namely

〈σ〉2 = v2(T ) = f2
π − N + 2

12
T 2 (12.192)

This expression has corrections of order v2(T )/N and T 2/N in the large-N
expansion.
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12.5 Exercises

12.1 Use the exponential representation of the pseudoscalar fields (just
above (12.6)) in the leading-order chiral Lagrangian L2 to calculate
the four-pion interaction.

12.2 Use the four-pion interaction calculated in the first exercise to calcu-
late the two-loop contribution to the pressure of a pion gas. Compare
with (12.23).

12.3 Use the chiral Lagrangian L2 to compute the π–π scattering ampli-
tude. Use it to calculate the pion self-energy as in Section 12.2. Com-
pare your result with (12.173).

12.4 Read the paper by Dey, Eletsky, and Ioffe and rederive the mixing
rule for vector and axial-vector correlators at finite temperature.

12.5 Derive (12.116).
12.6 Construct a Padé approximation for 〈σ〉 = v(T ) to extrapolate from

T � fπ to T → Tc.
12.7 Do the linear and nonlinear σ models satisfy the Weinberg sum rules

at finite temperature? Explain your answer.
12.8 How are conditions (12.103) and (12.104) modified if the ρ and a1

spectral densities are taken to be relativistic Breit–Wigner distri-
butions with momentum-independent but temperature-dependent
widths instead of delta functions?
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