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CHAOS ON FUNCTION SPACES

RICHARD M. ARON, JUAN B. SEOANE-SEPULVEDA AND ANDREAS W E B E R

We give a sufficient condition for an operator to be chaotic and we use this condition
to show that, in the Banach space Co[0,oo) the operator (T\tCf)(t) = Xf(t + c) (with
A > 1 and c > 0) is chaotic, with every n G N being a period for this operator.
We also describe a technique to construct, explicitly, hypercyclic functions for this
operator.

1. INTRODUCTION AND PRELIMINARIES

Let X denote a separable infinite dimensional Banach space and T : X —• X a
bounded linear operator on X. We call i G X a hypercyclic vector for T if the orbit,

{T"x: n G N},

is dense in X. If there exists such an x G X we call T a hypercyclic operator. T is called
chaotic if T is hypercyclic and the set of periodic points,

Xp := {x G X\{0} | 3n G N : T"x = x},

is dense in X. This definition of the term chaos is due to Devaney ([2], see also [1]).

There are a number of significant criteria that imply hypercyclicity (see, for example,

[4]). However, for the purposes of this paper, the original version of Kitai will be adequate.

KITAI'S CRITERION. Let X be a separable Banach space and T a bounded operator on
X. Suppose that Y\ and Yi are dense subsets of X and Z : Y\ —> Y\ is a (not necessarily
linear nor continuous) map with:

1. TZx = x for all x G Yu

2. lim Znx = 0 for all xeYu
n-»oo

3. lim T"y = 0 for all y G Y2.
n-ioo
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Then T is hypercyclic.

In this paper, we give a sufficient condition for an operator T to be chaotic using
some properties of the point spectrum <rp(T) of T. The Co-semigroup version of this result
was first proved in [3]; here we give the result in the setting of bounded operators. In
this theorem we assume that <JP(T) intersects the unit circle dD (note that this is always
true for a chaotic operator). We then apply this result to show that in the Banach space
Co[O, oo) of all C—valued continuous functions on [0, oo) that vanish at oo, the operators

TXtC : C0[0,oo) —• C0[0,co)
f{t) K» Xf(t + c)

with A > 1 and c > 0 are chaotic. In this case it is interesting that all n € N are periods
for T\iC, that is, for all n € N there is an 0 ^ x £ X such that T"cx = x and n cannot
be chosen smaller. We also give a technique to explicitly construct hypercyclic functions
for this chaotic operator.

2. CHAOTIC OPERATORS AND CHAOS ON C0[0, OO)

THEOREM 2 . 1 . Let X be a separable Banach space, T a bounded linear operator
on X and U C op(T) an open and connected subset of the point spectrum ofT.

For all X G U choose xx € X \ {0} with Txx = Xxx. For x* € X* (the dual space of
X), we define the function

Fx. : U —¥ C

A i-> (x\xx).

If
1. Fx. is analytic in U for all x* € X*,
2. Fx. = 0 if and oniy ifx' = 0, and

3. U n dD # 0,

then T is a chaotic operator.

In the proof we shall need the following lemma.

LEMMA 2 . 2 . Assume that the subset fi C U contains an accumulation point.

Then Yj? := span{x* | A E fi} is dense in X.

PROOF OF THE LEMMA: Assume F n # X. It follows from the Hahn-Banach
theorem that there is an x* e X'\{0} such that FX.(X) := (x',xx) = 0 for all A € ft. By
the identity theorem for analytic functions, it follows that Fx- = 0 and so x* — 0, which
is a contradiction. D

PROOF OF THE THEOREM: We define the sets

Qi-.= {XeU: | A | > 1} =UnD°,

Q2 •= { A € U: |A| < 1} =UHD, and

Q3 := {A G U : A G exp(27ri<(
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Choose \i € U D 3D. Since U is open, there exists a disk K with n € K and K C U.

It follows that fli and fi2 are nonempty and contain an accumulation point. Since K

contains an arc in dD, Q3 also contains an accumulation point.

With our previous lemma the sets Vhj ( i = 1)2,3) are dense in X. Now we are

ready to apply Kitai's criterion. We define Z on Yhi as follows:

Now it follows easily that T is hypercyclic. It remains to show that Xp (the set of periodic
points) is dense in X.

x = V ^ cikX\k with A* :=exp(27ri—)

and TV := f [ n/t, it follows that TNx = x. Since YQ3 is dense in X the same is true for

Xp, and the proof is complete. D

We next apply this result to the weighted translation operator 7\,c acting on the

Banach space Co[O, oo) of continuous functions on [0, oo) that vanish at oo with the

standard norm | | / | | = max | / ( t ) | .

We first show that Theorem 2.1 implies tha t if A > 1 and c > 0, then the bounded
operator

TAiC : C0[0,oo) —• C0[0,oo)

f{t) -> Xf{t + c)

is chaotic.

THEOREM 2 . 3 . For every A > 1 and c > 0, 7\iC is chaotic, and every natural
number is a period for 7\iC.

PROOF: TO simplify notation, call T = Tx,c. The function g(t) = eat for Re(a) < 0
is in X = Co[0,oo) and is an eigenfunction of T, since Tg = Xeacg. Thus the point
spectrum crp(T) contains XD = {n € C : \(M\ < A}. (One can even show that equality
holds but we shall not need it here.) Choose

U = {M e C : \n - 1| < min{l/2, A - 1}}.

U is an open and connected subset of ap{T) which intersects dD.

For all n G U we choose g^t) = eot where a is defined by the relation fi = Aeoc.

Then a = 1/clog/i/A with an analytic branch of the logarithm on U. For (p € Ll[0, oo),

we define

FM = (Sj.. <P)= g^Mt) dt = / e°V(«) dt.
Jo Jo
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Since the logarithm is analytic on U, Fv is analytic on U. Furthermore, Fv is the Laplace
transform of <p, so F^, = 0 implies (p = 0. It follows from the previous theorem that T is
chaotic.

It is known that the set of periods for a chaotic operator on a Banach space,

{n e N : 3 i / 0 6 X such that n is the smallest number with T"x — x},

is infinite (see [6]). However, in our case, every n G N is a period for T:

For n G N we define

L . , . /2TT \ ^ 1 . ,
nn{t) = Sinl • 11 • > —£ • Xln*c,n(fc+l)c]W-

c *=o A

Then Tnhn = hn and this is not true for a smaller n. D

We conclude with the following explicit construction.

EXAMPLE 2.4. The construction of a hypercyclic function for TxiC acting on Co[0, oo).

Let {fj | j G N} be dense in C0[0,oo). Suppose that \\fj\\\ = Mj and that nij > 0
is such that |/7-|[cnii,oo)|| < 1/j- F° r e a ch h w e choose kj G N inductively so that the
following conditions are satisfied:

(i) k0 — ki = 0.

(ii) Mj/\k>~k'-i < 1/j,

(iii) nij + kj + 2 ^ kj+i.

It will be convenient to use the auxiliary function Fj, defined for each j G N by Fj(x)

= l/\k> fj(x - Ckj) if Ckj ^ X ^ Cfcj + CTTlj.

Let / : [0, oo) -> R be defined as

Fj(y) if y G [cfy,cfcj + cm^],

0 if y G [cfcj + cnij + c, ckj+1 - c],
(1) f{y) =< . , ,

linear if y G [cnij + ckj, cnij + ckj + c],
or if y G [cfcJ+i - c, cfcJ+1]

and arranged so that / is continuous. We claim that / is hypercyclic for the operator T

given by T(g)(x) — Xg(x + c). To see this, note first that / G Co[O, oo), since for each j

and each x G [ckj,ckj+i}, \f(x)\ < 1/j.

Next, to prove that the set of iterates {Tnf \ n G N} is dense in C0[0, oo), we recall

that for any k G N, {fe \£ ^ k} is dense. Thus it suffices to show that | | T * J / - fj\\ -*• 0

as j —> oo. Let's fix j G N and examine Tk'f(x), as x varies in [0,oo). If 0 ^ i ^ crrij,

then ckj < x + cfcj ^ cfc, + cmj, and so

Tk'f(x) = Xk'f(x + cfc,-) - \k'Fj{x + ckj) = fj(
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\\Tk'f - fj\\ = sup \Tk'f(x) - fj(x)\ ^ sup \Tk'f{x)\ + 1/j.
x^cm x^crrt

Therefore,

To see that sup | T * J / ( X ) | —• 0 as j -> oo, it is enough to restrict x to intervals of
x^cmj

the form [ckn — ckj,ckn - ckj + cmn] where n > j . For x in this interval, we have
ckn ^ x + ckj ^ ckn + cmn and so

\Tk'f(x)\ = \\kif(x + cki)\ = \\kiFn{x + cki)\
= I\"i ( l /A*-)/B(i + ckj - ckn)| < A*'(MB/A*») < 1/n < 1/j.

This completes the construction.
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