SOME NON-CRITICAL IDEMPOTENTS IN THE CLOSURE OF THE CHARACTERS IN THE MAXIMAL IDEAL SPACE OF $M(D_2)$

JANE LAKE

(Received 3 April 1981; revised 29 September 1981)

Communicated by W. Moran

Abstract

This paper shows that the idempotent generalized characters associated with a Raikov System generated by a K_2 set in $D_2 = \prod_{i=1}^{\infty}(Z_2)$, is contained in the closure of the characters D_2^* in $\Delta M(D_2)$. 1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 46.

1. Introduction

We will be working with the compact totally disconnected abelian group $D_2 = \prod_{i=1}^{\infty}(Z_2)$, which has dual group $D_2^* = \Theta_{i=1}^{\infty}(Z_2)$, where Z_2 is the multiplicative group of order 2, $Z_2 = \{1, -1; \cdot\}$. The dual group D_2^* is canonically embedded in $\Delta M(D_2)$, the maximal ideal space of $M(D_2)$.

A compact perfect subset K of D_2 is called a K_2 subset of D_2 if for any continuous function $f: K \to Z_2$ there is a character $\phi \in D_2^*$ such that ϕ restricted to K is equal to f.

It will be shown that the idempotent associated with any Raikov System generated by a K_2 set is contained in the closure of the characters D_2^* in $\Delta M(D_2)$. Dunkl and Ramirez (1972) have shown that the idempotent associated with the Raikov System generated by a closed subgroup is in the closure of the characters.

As the maximal ideal space $\Delta M(D_2)$ has the weak topology from the Fourier-Stieltjes transforms of the measures in $M(D_2)$, an idempotent associated with a Raikov System is in the closure of the characters if and only if the Fourier-Stieltjes
transforms of the measures satisfy the following condition:

For all measures \(\mu \) concentrated on the Raikov System and for all measures \(\nu \) which annihilate all the sets in the Raikov System

\[||\mu||_\infty \leq ||(\mu + \nu)\||_\infty \]

where the sup norm is taken over \(D_2 \).

We will prove that Raikov Systems generated by \(K_2 \) subsets of \(D_2 \) satisfy this bound by constructing a series of positive definite functions such that, for each measure \(\mu \) and \(\nu \) as above, there is a positive definite function \(P_\gamma \) such that

\[\left| \int_{D_2} P_\gamma d\mu - \mu(1) \right| < \epsilon \quad \text{and} \quad \left| \int_{D_2} P_\gamma d\nu \right| < \epsilon. \]

Acknowledgement

The following research was done while the author was working towards a Ph.D. at the University of New South Wales, supported by a Commonwealth Postgraduate Research Award. The author wishes to express her thanks to her supervisor Gavin Brown for his help and encouragement.

2. Raikov systems and idempotents

Let \(G \) be a locally abelian group and let \(A \) be a subset of \(G \). We define the Raikov System of sets of \(G \) generated by \(A \), \(\mathcal{R}_A \), to be the collection of all measurable subsets of some countable union of translates of sums of \(A \).

That is to say

\[
\mathcal{R}_A = \left\{ B \subseteq G : \begin{array}{l} 1. \ B \text{ is measurable;} \\
2. \ \exists x_i \in G, m_i \in \mathbb{Z}^+, \text{ for } i \in \mathbb{Z}^+, \text{ such that } B \subseteq \bigcup_{i=1}^{\infty} x_i + (m_i)A \end{array} \right\}
\]

where for \(m \in \mathbb{Z}^+ \),

\[
(m)A = A + A + \cdots + A = \left\{ \sum_{i=1}^{m} x_i : x_i \in A, i = 1, \ldots, m \right\}.
\]

We notice that \(\mathcal{R}_A \) is closed under translation, intersection, countable unions and addition of sets.

The Raikov System \(\mathcal{R}_A \) is now used to define a direct sum splitting of \(M(G) \) into the \(L \)-algebra \(\mathcal{D}_A \) of measures concentrated on the sets in the Raikov System, and the \(L \)-ideal \(\mathcal{I}_A \) of measures which annihilate all the sets in the Raikov System.
The maximal ideal space of \(M(D_2) \)

That is to say,

\[\mathcal{A} = \{ \mu \in M(G) : \exists B \in \mathcal{B} \text{ such that } \mu \text{ is concentrated on } B \}, \quad \text{and} \]

\[\mathcal{A} = \{ \nu \in M(G) : \nu(B) = 0 \text{ for all } B \in \mathcal{A} \}. \]

The idempotent \(I_A \) associated with this Raikov system is the projection from \(M(G) \) onto \(\mathcal{A} \) and hence is a homomorphism and an element of the maximal ideal space of \(M(G) \).

The group of characters on \(G \), \(G^\ast \), is canonically embedded in \(\Delta M(G) \) and the idempotent \(I_A \) is contained in the closure of the characters \(G^\ast \) in \(\Delta M(G) \) if and only if the projection

\[I_A : M(G) \to \mathcal{A} \]

is bounded in the Fourier-Stieltjes transform norm, that is to say, for any measure \(\mu \in M(G) \)

\[\| (I_A \mu) \|_{\infty} \leq \| \mu \|_{\infty} \]

where the sup norm is taken over \(G^\ast \). If we have two direct sum splittings of \(M(G) \) into an \(L \)-subalgebra and \(L \)-ideal associated with idempotents in the closure of the characters, then the direct sum splitting

\[\mathcal{A}_1 \cap \mathcal{A}_2 \oplus \mathcal{A}_1 + \mathcal{A}_2 \]

is also a splitting of \(M(G) \) associated with an idempotent in the closure of the characters of \(G \).

3. Properties of \(K_2 \) sets

Let \(K \subseteq D_2 \) be a compact perfect \(K_2 \) subset of \(D_2 \). \(\overline{Gp K} \) is a closed subgroup of \(D_2 \) and so \(D_2 = \overline{Gp K} \oplus H \) where \(H \) is also a closed subgroup of \(D_2 \). \(\overline{Gp K} \) is isomorphic to \(D_2 \) and the idempotent associated with the Raikov System generated by \(Gp K \) is in the closure of the characters (Dunkl and Ramirez (1972)).

If we have a Raikov splitting of \(M(D_2) \) generated by a set \(A \subseteq \overline{Gp K} \) then the idempotent associated with this splitting is in the closure of the characters if and only if the condition

\[\|(I_A \mu)\|_{\infty} \leq \| \mu \|_{\infty} \]

holds for all measures \(\nu \) in \(M(\overline{Gp K}) \). For convenience therefore we assume that \(\overline{Gp K} = D_2 \).

For any continuous function \(\phi : K \to \mathbb{Z}_2 \) there is a character \(\chi \in D_2^\ast \) such that \(\chi|_K = \phi \). For each character \(\chi \) in \(D_2^\ast \) we let \(P_\chi = \{ x \in K : \chi(x) = -1 \} \). We say
that a set of characters \(\{ \chi_1, \cdots, \chi_n \} \) determines a partition of \(K \) if

1. \(P_{\chi_i} \cap P_{\chi_j} = \emptyset \quad \forall i \neq j, 1 \leq i, j \leq n; \)

2. \[K = \bigcup_{i=1}^{n} P_{\chi_i}. \]

Given two partitions \(\mathcal{P} = \{ P_{\chi_1}, P_{\chi_2}, \ldots, P_{\chi_n} \} \) and \(\mathcal{P}' = \{ P_{\phi_1}, P_{\phi_2}, \ldots, P_{\phi_m} \} \) of \(K \) determined by the characters \(\{ \chi_1, \chi_2, \ldots, \chi_n \} \) and \(\{ \phi_1, \ldots, \phi_m \} \) respectively we say \(\mathcal{P} \) is an everywhere finer partition of \(K \) than \(\mathcal{P}' \) if for each \(1 \leq i \leq m \) there exists an \(I_i \subseteq \{1, \ldots, n\} \) with \(\#I_i \geq 2 \) such that

\[P_{\phi_i} = \bigcup_{j \in I_i} P_{\chi_j}. \]

Since \(\varphi K = D_2 \) this implies that

\[\phi_i = \prod_{j \in I_i} \chi_j. \]

As \(K \) is a \(K_2 \) subset of \(D_2 \), for any continuous function \(f \) from \(K \) into \(Z_2 \) there is a partition (in fact, trivial) \(\mathcal{P} = \{ P_{\chi_1}, P_{\chi_2}, \ldots, P_{\chi_n} \} \) such that

\[f = \prod_{j \in I} \chi_j \bigg|_K \quad \text{for some } I \subseteq \{1, 2, \ldots, m\}. \]

We say that the function \(f \) can be generated by the partition \(\mathcal{P} \).

Given two partitions of \(K \), \(\mathcal{P} = \{ P_{\phi_1}, P_{\phi_2}, \ldots, P_{\phi_m} \} \) and \(\mathcal{P}' = \{ P_{\phi_1}, P_{\phi_2}, \ldots, P_{\phi_m} \} \), there exists a partition \(\mathcal{P}''' \) which is everywhere finer than \(\mathcal{P} \) and \(\mathcal{P}' \) since, for each \(1 \leq i \leq m \) and \(1 \leq j \leq n \), if we have that \(P_{\chi_i} \cap P_{\phi_j} \neq \emptyset \) then there exists a character \(\omega_{ij} \) such that

\[\omega_{ij} = \begin{cases} -1 & \text{on } P_{\chi_i} \cap P_{\phi_j} \\ 1 & \text{elsewhere on } K \end{cases} \]

and so the partition determined by the characters

\(\{ \omega_{ij} : P_{\chi_i} \cap P_{\phi_j} \neq \emptyset, 1 \leq i \leq m, 1 \leq j \leq n \} \)

is finer than \(\mathcal{P} \) and \(\mathcal{P}' \). Since \(K \) is totally disconnected there exists a partition \(\mathcal{P}''' \) which is everywhere finer than \(\{ \omega_{ij} : P_{\chi_i} \cap P_{\phi_j} \neq \emptyset, 1 \leq i \leq m, 1 \leq j \leq n \} \) and so is everywhere finer than both \(\mathcal{P} \) and \(\mathcal{P}' \).

We define a sequence of partitions of \(K \), \(\{ \mathcal{P}_i \}_{i \in \mathbb{Z}^+} \) where

\[\mathcal{P}_i = \{ P_{\phi_{i1}}, P_{\phi_{i2}}, \ldots, P_{\phi_{in}} \} \]

determined by a set of characters \(\{ \phi_{i1}, \phi_{i2}, \ldots, \phi_{in} \} \), to be a “separating sequence of partitions of \(K \)” if

1. \(\forall n \in \mathbb{Z}^+ \) \(\mathcal{P}_{n+1} \) is an everywhere finer partition of \(K \) than \(\mathcal{P}_n \):

2. for each continuous function \(f : K \to \mathbb{Z}_2 \) there is an \(N \in \mathbb{Z}^+ \) such that \(f \) can
be generated by the partition \mathcal{P}_N and hence f can be generated by each partition \mathcal{P}_n for $n \geq N$.

Lemma 1. Let K be a K_2 subset of D_2. Then there is a separating sequence of partitions of K.

Proof. The set of continuous functions from K into Z_2 is countable: denote it by $\{f_i : i \in Z^+\}$. We will define the sequence of partitions inductively. Let \mathcal{P}_1 be a partition of K which generates f_1. Let \mathcal{P}_2 be a partition of K everywhere finer than \mathcal{P}_1 which also generates f_2. Inductively, let \mathcal{P}_{n+1} be an everywhere finer partition than \mathcal{P}_n that generates f_{n+1} and hence also generates f_1, f_2, \ldots, f_n.

We can now characterize elements of K, $(m)K$ and $\overline{Gp_K}$ using a separating sequence of partitions of K. Let $\{\mathcal{P}_n\}_{n \in Z^+}$, where $\mathcal{P}_n = \{P_{\phi_1^n}, P_{\phi_2^n}, \ldots, P_{\phi_{|n|}^n}\}$, be a separating sequence of partitions of K. We define a sequence of characters $\{\phi_k^m\}_{m \in Z^+}$ where $1 \leq k(m) \leq j(m)$ to be a "chain" of characters from the separating sequence $\{\mathcal{P}_n\}_{n \in Z^+}$ if

$$P_{\phi_{k(1)}^1} \supset P_{\phi_{k(2)}^1} \supset P_{\phi_{k(3)}^1} \supset \cdots \supset P_{\phi_{k(n)}^1} \supset P_{\phi_{k(n+1)}^1} \supset \cdots.$$

Obviously if we have two chains $\{\phi_{k(i)}^i\}_{i \in Z^+}$ and $\{\phi_{m(i)}^i\}_{i \in Z^+}$ such that for some $N \in Z^+$, $\phi_{k(N)}^N \neq \phi_{m(N)}^N$, then $\phi_{k(n)}^n \neq \phi_{m(n)}^n$ for all $n \geq N$. We also have the following lemma.

Lemma 2. Given K a K_2 subset of D_2 with $\overline{Gp_K} = D_2$, and $\{\mathcal{P}_i\}_{i \in Z^+}$ a separating sequence of partitions of K, then K is equal to the set H where

$$H = \left\{ x \in C_2 : \begin{array}{l}
\exists \text{ chain } \{\phi_{k(i)}^i\}_{i \in Z^+} \text{ of characters from the separating sequence such that}
1. \phi_{k(i)}^i(x) = -1 \quad \forall i \in Z^+;
2. \phi_{m}^m(x) = 1 \quad \forall m \neq k(i), 1 \leq m \leq j(i).
\end{array} \right\}$$

Proof. Obviously $K \subseteq H$. Let $\{\phi_{k(i)}^i\}_{i \in Z^+}$ be a chain of characters from the separating sequence of K. By definition $P_{\phi_{k(i)}^i} \subseteq K$, and so we have $\bigcap_{i \in Z^+} P_{\phi_{k(i)}^i}$ is non-empty, as $\{\phi_{k(i)}^i\}_{i \in Z^+}$ is a chain, and so $\bigcap_{i \in Z^+} P_{\phi_{k(i)}^i} = \{x\}$ for some $x \in K$ as $\{\mathcal{P}_i\}_{i \in Z^+}$ is a separating sequence of partitions of K. So we have

$$\phi_{k(i)}^i(x) = -1 \quad \forall i \in Z^+$$

and

$$\phi_{m}^m(x) = 1, \quad m \neq k(i), \forall 1 \leq m \leq j(i).$$
To show that $K = H$, we need to show that for each chain $\{\phi_{k(i)}\}_{i \in \mathbb{Z}^+}$ from the separating sequence there is a unique $x \in D_2$ with

$$\phi_{k(i)}(x) = -1 \quad \forall \, i \in \mathbb{Z}^+$$

and

$$\phi_m(x) = 1 \quad \forall \, m \neq k(i), \, 1 \leq m \leq j(i).$$

Assume $x, y \in D_2$ with

$$\phi_{k(i)}(x) = \phi_{k(i)}(y) = -1 \quad \forall \, i \in \mathbb{Z}^+$$

and

$$\phi_m(x) = \phi_m(y) = 1 \quad \forall \, m \neq k(i), \, 1 \leq m \leq j(i),$$

so if x and y are distinct there must exist a character $\chi \in D_2^*$ such that $\chi(x) \neq \chi(y)$, but $\overline{\text{Gp}} K = D_2$ so $\chi|_K$ is not identically equal to 1. As $\{\phi_i\}_{i \in \mathbb{Z}^+}$ is a separating sequence of partitions of K there must be an $i \in \mathbb{Z}^+$ such that χ is generated by the functions $\{\phi_1, \phi_2, \ldots, \phi_{j(i)}\}$ on K. Thus

$$\phi_m(x) \neq \phi_m(y) \quad \text{for some} \, 1 \leq m \leq j(i)$$

and so $x = y$.

As $\overline{\text{Gp}} K = D_2$, every character on D_2 is uniquely determined by its restrictions to K, so given $\{\phi_i\}_{i \in \mathbb{Z}^+}$, a separating sequence of partitions of K, we have that every element of D_2 is uniquely determined by the values of the $\phi_k(x)$ where ϕ_k are the characters from the separating sequence $\{\phi_i\}_{i \in \mathbb{Z}^+}$.

For $x \in \overline{\text{Gp}} K = D_2$ we define the length of x on the nth partition of K to be

$$l(n, x) = \sum_{i=1}^{u(n)} \frac{1}{2} (1 - \phi_i^n(x)) = \# \{ \phi_i^n : \phi_i^n(x) = -1, \, 1 \leq i \leq j(n) \}.$$
PROOF. 1. We can see from Lemma 2 that each \(x \in K \) is uniquely associated with a chain of characters, say \(\{ \phi_{k(i)}^j \}_{i \in \mathbb{Z}^+} \), from the separating sequence with
\[
\phi_{k(i)}^j(x) = -1 \quad \forall \, i \in \mathbb{Z}^+
\]
and
\[
\phi_m^j(x) = 1 \quad \forall \, 1 \leq m \leq j(i), \, m \neq k(i),
\]
and so \(l(n, x) = 1 \).

2. \(x = x_1 + x_2 + \cdots + x_m, \, x_i \in K, \) all distinct. Each \(x_i \) is uniquely associated with a chain \(\{ \phi_{k(n,i)}^n \}_{n \in \mathbb{Z}^+} \) from the separating sequence with
\[
\phi_{k(n,i)}^n(x_i) = -1 \quad \forall \, n \in \mathbb{Z}^+
\]
and
\[
\phi_{j}^n(x_i) = 1, \quad 1 \leq j \leq j(n), \, j \neq k(n, i).
\]
As the \(x_i \) are distinct there exists an \(N \in \mathbb{Z}^+ \) with
\[
\phi_{k(N,i)}^N \neq \phi_{k(N,j)}^N \quad \forall \, i \neq j, \, 1 \leq i, j \leq m
\]
and so
\[
l(n, x) = m \quad \text{for all} \, n \geq N.
\]

3. a) As \(\text{Gp} K = D_2 \) and \(\{ \phi_i \}_{i \in \mathbb{Z}^+} \) is a separating sequence of partitions of \(K \), letting
\[
H_n = \{ x \in D_2 : l(i, x) = 0, \, i = 1, \ldots, n \}
\]
we have that \(\{ H_n : n \in \mathbb{Z}^+ \} \) forms a base of open neighbourhoods of zero in \(D_2 \). Let \(x \in \text{Gp} K = D_2 \) be such that \(l(n, x) = 0 \). We can write
\[
x = x_1 + x_2 + \cdots + x_r + h
\]
where \(h \in H_{n+1} \) and \(x_i \in K, \, i = 1, \ldots, r \) are distinct, so each \(x_i \) is uniquely associated with a chain \(\{ \phi_{k(m,i)}^m \}_{m \in \mathbb{Z}^+} \) where \(\phi_{k(m,i)}^m(x_i) = -1 \) and
\[
\phi_{j}^m(x_i) = 1, \quad 1 \leq j \leq j(m), \, j \neq k(m, i).
\]
Now \(l(n, x) = l(n, x_1 + x_2 + \cdots + x_r) = 0 \) so we must be able to group the \(x_i \) in pairs \(x_i, x_j \) with \(\phi_{k(n,i)}^n = \phi_{k(n,j)}^n \), and so
\[
\phi_{k(m,i)}^m = \phi_{k(m,j)}^m \quad \text{for all} \, m \leq n.
\]
Thus
\[
l(m, x_1 + x_2 + \cdots + x_r) = 0 \quad \forall \, m \leq n
\]
so \(l(m, x) = 0 \) for all \(m \leq n \).

3. b) For \(x \in \text{Gp} K = D_2 \) let \(l(n + 1, x) = m \). Then we can write \(x = x_1 + x_2 + \cdots + x_m + h \) where \(l(n + 1, h) = 0 \), so
\[
l(i, h) = 0, \quad 1 \leq i \leq n + 1,
\]
and so
\[l(n, x) = l(n, x_1 + x_2 + \cdots + x_m) \leq m \leq l(n + 1, x). \]

4. Let \(x \in \overline{\text{Gp} K} \) and suppose that \(\lim_{n \to \infty} l(n, x) = m \), so for each \(n \in \mathbb{Z}^+ \) we can find an \(h \in H_n \) and \(x_1 \cdots x_m \in K \) so that
\[x = x_1 + x_2 + \cdots + x_m + h. \]

As \(\{ H_n : n \in \mathbb{Z}^+ \} \) forms a base of open neighbourhoods of zero we have that
\[x \in (m)K = (m)K. \]

4. Positive definite functions

We will now use the separating sequence of partitions of \(K \), \(\{ \phi_m \}_{m \in \mathbb{Z}^+} \), with generating characters \(\{ \phi_1^m, \phi_2^m, \ldots, \phi_{s(n)}^m \} \), for \(m \in \mathbb{Z}^+ \), to construct a sequence of positive definite functions on \(\mathbb{D}_2 \).

LEMMA. Let \(r \in (0, 1) \) and \(n \in \mathbb{Z}^+ \). Then the function
\[F_r^n : \text{Gp} \bar{K} \to \mathbb{R} \]
\[: x \mapsto r^{l(n, x)} \]
is a positive definite function on \(\mathbb{D}_2 = \overline{\text{Gp} K} \).

PROOF. Consider the \(n \)th partition of \(K \), \(\phi_n = \{ P_{\phi_1^n}, P_{\phi_2^n}, \ldots, P_{\phi_{s(n)}^n} \} \), generated by the characters \(\{ \phi_1^n, \phi_2^n, \ldots, \phi_{s(n)}^n \} \). The measure \(\mu_{n,r} \) on \(\mathbb{D}_2 \)
\[\mu_{n,r} = \sum_{i=1}^{s(n)} \left(\frac{1 + r}{2} \right) \delta(1) + \left(\frac{1 - r}{2} \right) \delta(\phi_i^n) \]
is a positive measure for \(r \in (0, 1) \) and has Fourier transform
\[\hat{\mu}_{n,r}(x) = r^{l(n, x)} \]
and so \(F_r^n : \mathbb{D}_2 \to \mathbb{R} : x \mapsto r^{l(n, x)} \) is a positive definite function on \(\mathbb{D}_2 = \overline{\text{Gp} K} \).

We now have the main theorem of this section.

THEOREM 1. Let \(K \subseteq \mathbb{D}_2 \) be a \(K_2 \) subset of \(\mathbb{D}_2 \) such that \(\overline{\text{Gp} K} = \mathbb{D}_2 \). Then, for each \(m \in \mathbb{Z}^+ \) and \(\epsilon, \delta > 0 \) we can choose an \(h \in \mathbb{Z}^+ \) such that, for any open neighbourhood \(H \) of zero, there exists a positive definite function \(F \) with \(F(0) = 1 \).
and

1. $F(x) > 1 - \varepsilon$ for $x \in \bigcup_{i=1}^{m} (i)K$,

2. $|F(x)| < \delta$ for $x \in D_{2} \setminus \left(\bigcup_{j=1}^{m+h} (j)K + H \right)$.

Proof. Choose an $r \in (0, 1)$ such that $(1 - r^{m}) < \varepsilon$ and choose an $h \in \mathbb{Z}^{+}$ so that $r^{m+h} < \delta$. Now let H' be an open neighbourhood of zero of the form

$$H' = \left\{ x \in D_{2} : \phi_{j}(x) = 1 \forall 1 \leq j \leq j(i), 1 \leq i \leq I \right\} = H_{I},$$

for some $I \in \mathbb{Z}^{+}$. So we have

$$\left\{ \left(\bigcup_{i=1}^{m+h} (i)K \right) + H' \right\} = \left\{ x \in D_{2} : l(p, x) \leq m + h \text{ for } 1 \leq p \leq I \right\} = \left\{ x \in D_{2} : l(I, x) \leq m + h \right\}.$$

Now observe that $F_{r}^{I}(x) = r^{l(I, x)}$; so, for $x \in \bigcup_{i=1}^{m} (i)K$,

$$|1 - F_{r}^{I}(x)| \leq |1 - r^{m}| < \varepsilon.$$

For $x \in D_{2} \setminus \left(\bigcup_{i=1}^{m+h} (i)K + H' \right)$ we have $l(I, x) > m + h$, so $F_{r}^{I}(x) \leq r^{m+h} < \delta$.

5.

We now prove a general theorem about Raikov idempotent generalized characters in the closure of the characters of D_{2}, given the existence of positive definite functions with certain properties. The main result is then a corollary of Theorem 1 and the following theorem.

Theorem 2. Let $A \subseteq D_{2}$ be a compact perfect subset of D_{2} such that, for every $m \in \mathbb{Z}^{+}$, $\varepsilon, \delta > 0$ and open neighbourhood H of zero, there exists an integer $h \in \mathbb{Z}^{+}$ independent of the neighbourhood H and a positive definite function F on D_{2} with

1. $F(0) = 0$;

2. $|F(x) - 1| < \varepsilon \forall x \in \bigcup_{i=1}^{m} (i)A$;

3. $|F(x)| < \delta \forall x \in D_{2} \setminus \left(\bigcup_{i=1}^{m+h} (i)A + H \right)$.

Downloaded from https://www.cambridge.org/core. IP address: 52.11.211.149, on 18 Sep 2019 at 17:24:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700023739
Then the idempotent generalized character I_A associated with the Raikov System generated by A on D_2 is in the closure of the characters \hat{D}_2 in $\Delta M(D_2)$.

Proof. $\Delta M(D_2)$ has the weak topology induced from the Fourier-Stieltjes transforms of the measures in $M(D_2)$, so the idempotent I_A is in \hat{D}_2 if and only if

$$\|(I_A\mu)\|_\infty \leq \|\mu\|_\infty \quad \forall \mu \in M(D_2)$$

where the sup norms are taken over \hat{D}_2.

Let $\mu \in \mathbb{C}A$ and $\epsilon > 0$. We can find an $l \in \mathbb{Z}^+$ so that

$$\mu = \sum_{i=1}^{n} \delta_{x_i} \ast \mu_i + \mu'$$

where $\mu_i \in M(\bigcup_{j=1}^{l-1} (j)A)$, $\|\mu\| < \epsilon$ and $x_i \in D_2$. We will consider the measure $\Sigma_{i=1}^{n} \delta_{x_i} \ast \mu_i$ which is concentrated on

$$\bigcup_{j=1}^{n} \left(x_j + \bigcup_{i=1}^{l} (i)A \right).$$

We can assume (without loss of generality) that $S = \{x_1, x_2, \ldots, x_n\}$ is a finite subgroup of D_2. We can find a subgroup S_0 of S such that

$$S + \text{Gp}A = S_0 + \text{Gp}A \quad \text{and} \quad S_0 \cap \text{Gp}A = \{0\}$$

and can find an $m \in \mathbb{Z}^+$ so that

$$\bigcup_{x \in S} \left(x + \bigcup_{i=1}^{l} (i)A \right) \subset \bigcup_{y \in S_0} \left(y + \bigcup_{i=1}^{m} (i)A \right).$$

Now we have for each $q \in \mathbb{Z}^+$ and $x \neq y \in S_0$ that

$$\left\{ x + \bigcup_{i=1}^{q} (i)A \right\} \cap \left\{ y + \bigcup_{i=1}^{q} (i)A \right\} = \emptyset$$

so we can choose an open neighbourhood $H(q)$ of zero such that for all $x, y \in S_0$, $x \neq y$,

$$\left\{ \left(x + \bigcup_{i=1}^{q} (i)A \right) + H(q) \right\} \cap \left\{ \left(y + \bigcup_{i=1}^{q} (i)A \right) + H(q) \right\} = \emptyset.$$

Now choose an $h \in \mathbb{Z}^+$ such that for every open neighbourhood H of zero there exists a positive definite function F on D_2 with

1. $F(0) = 1$;
2. $|F(x) - 1| < \epsilon \quad \forall x \in \bigcup_{i=1}^{m} (i)A$;
3. $|F(x)| < \frac{\epsilon}{|S_0|} \quad \forall x \in D_2 \setminus \left\{ \left(\bigcup_{i=1}^{m+h} (i)A \right) + H \right\}$.

Downloaded from https://www.cambridge.org/core. IP address: 52.11.211.149, on 18 Sep 2019 at 17:24:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700023739
Let H be an open neighbourhood of zero contained in $H(m + h)$. Then we can find a positive definite function F satisfying

1. $F(0) = 1$;
2. $|F(x) - 1| < \epsilon$ for all $x \in \bigcup_{i=1}^{m} (i)A$;
3. $|F(x)| < \frac{\epsilon}{|S_0|}$ for all $x \in D_2 \setminus \left\{ \bigcup_{i=1}^{m+h} (i)A \right\} + H$.

Now the measure $|S_0| \cdot m_{S_0}$ where m_{S_0} is haar measure on S_0 has positive Fourier transform, so $\mathcal{F} = |S_0| \cdot m_{S_0} \ast F$ is a positive definite function on D_2, and

(1) \[\mathcal{F} = \sum_{x \in S_0} \delta_x \ast F. \]

\mathcal{F} has the following properties:

1. $\mathcal{F}(0) \leq 1 + \epsilon$.
2. $|\mathcal{F}(x) - 1| < 2\epsilon$, $x \in \bigcup_{y \in S_0} \left(y + \bigcup_{i=1}^{m} (i)A \right)$.
3. $|\mathcal{F}(x)| < \epsilon$, $x \in D_2 \setminus \left\{ \bigcup_{y \in S_0} y + \bigcup_{i=1}^{m+h} (i)A \right\} + H$.

Let ν be a measure in I_A. Then

$$ |\nu| \left(\bigcup_{y \in S_0} \left(y + \bigcup_{i=1}^{m+h} (i)A \right) \right) = 0. $$

So we can choose an open neighbourhood H of zero contained in $H(m + h)$ such that

$$ |\nu| \left(\bigcup_{y \in S_0} y + \bigcup_{i=1}^{m+h} (i)A \right) + H \right\} < \epsilon $$

and let \mathcal{F} be the associated positive definite function as in (1).
We then have, for $\gamma \in \mathcal{D}_2$,

$$|\hat{\mu}(\gamma)| \leq \left| \left(\sum_{i=1}^{n} \delta x_i * \mu_i \right)(\gamma) \right| + \varepsilon$$

$$\leq \int_{\mathcal{D}_2} \gamma d \left(\sum_{i=1}^{n} \delta x_i * \mu_i \right) + 2\varepsilon\|\mu\| + \varepsilon$$

$$\leq \int_{\mathcal{D}_2} \gamma d \left(\sum_{i=1}^{n} \delta x_i * \mu_i + \nu \right) + \varepsilon + 2\varepsilon\|\mu\| + \varepsilon\|\nu\| + 2)$$

$$\leq \left\| \left(\sum_{i=1}^{n} \delta x_i * \mu_i + \nu \right) \right\|_{\infty} + \varepsilon + 2\varepsilon\|\mu\| + \varepsilon\|\nu\| + 2)$$

(where the sup norm is taken over \mathcal{D}_2)

$$\leq (1 + \varepsilon)\|\mu + \nu\|_{\infty} + (1 + \varepsilon)(\varepsilon) + \varepsilon + 2\varepsilon\|\mu\| + \varepsilon\|\nu\| + 2)$$

and so

$$\|\hat{\mu}\|_{\infty} \leq \|\mu + \nu\|_{\infty}$$

where the supremum norm is taken over \mathcal{D}_2.

From this we have the corollary.

Corollary 1. Let $K \subseteq \mathcal{D}_2$ be a compact perfect K_2 subset of \mathcal{D}_2 such that $\text{Gp} K = \mathcal{D}_2$. Then the idempotent associated with the Raikov System generated by K is contained in the closure of the characters \mathcal{D}_2° in $\Delta M(\mathcal{D}_2)$.

Corollary 2. Let $K \subseteq \mathcal{D}_2$ be a compact perfect K_2 subset of \mathcal{D}_2. Then the idempotent associated with the Raikov System generated by K is contained in the closure of the characters \mathcal{D}_2° in $\Delta M(\mathcal{D}_2)$.

Proof. $\mathcal{D}_2 = \overline{\text{Gp} K} \oplus H$ for some closed subgroup H of \mathcal{D}_2. We can give \mathcal{D}_2 a finer l.c.a. topology \mathcal{T} where

$$(\mathcal{D}_2)_\mathcal{T} = \overline{\text{Gp} K} \oplus H_d$$

where H_d is the group H with the discrete topology. The positive definite function F with

1. $F(x) = 1 \quad \forall x \in \overline{\text{Gp} K}$
2. $F(x) = 0 \quad$ elsewhere

The positive definite function F is bounded on \mathcal{D}_2.

The set \mathcal{D}_2 is bounded, and so F is bounded on \mathcal{D}_2.
is continuous on \((D_2)_\sigma\) and so there exist continuous positive definite functions on \((D_2)_\sigma\) as required in Theorem 2. Hence the idempotent \(I_K \in \overline{(D_2)_\sigma^2}\) but \(\overline{(D_2)_\sigma^2}\) \(\subseteq D_2\), so \(I_K \in D_2\).

References

Department of Mathematics
University of New South Wales
Kensington, N.S.W. 2033
Australia