2. Consider the integral

$$
\begin{align*}
I & \equiv \int_{0}^{n} x(x-1)(x-2) \ldots(x-n) d x \\
& =\left\{\int_{0}^{\frac{n}{2}}+\int_{\frac{n}{2}}^{n}\right\} x(x-1)(x-2) \ldots(x-n) d x ;(\text { Put } y=n-x) \\
& =\int_{0}^{\frac{n}{2}} x(x-1) \ldots(x-n) d x-(-)^{n} \int_{0}^{\frac{n}{2}} y(y-1) \ldots(y-n) d y \\
& =0, \text { if } n \text { is even. } \quad \ldots \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now let $x(x-1) \ldots(x-n)=a_{1} x+a_{2} x^{2}+\ldots+a_{n+1} x^{n+1}$. Then if n is even, we have a consistent set of ($n+1$) equations in the a 's,

$$
\begin{aligned}
& 0=a_{1}+a_{2}+\ldots \ldots+a_{n+1} \\
& 0=2 a_{1}+2^{2} a_{2}+\ldots \ldots+2^{n+1} a_{n+1} \\
& \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\cdots+n^{n+1} a_{n+1} \\
& 0=n a_{1}+n^{2} a_{2}+\ldots \ldots+n^{n+1}
\end{aligned}
$$

and by (1), $0=\frac{n}{2} a_{1}+\frac{n^{2}}{3} a_{2}+\ldots+\frac{n^{n+1}}{n+2} a_{n+1}$,
and hence the determinant of the system is zero, which is Jung's result.
A. C. Aitken.

On the Roots of a Symmetrical Determinant.

The six values of x which make the determinant

$$
\Delta=\left|\begin{array}{cccccc}
x & 1 & . & . & . & . \\
1 & x & 1 & . & . & . \\
. & 1 & x & 1 & . & . \\
. & . & 1 & x & 1 & . \\
. & . & . & 1 & x & 1 \\
. & . & . & . & 1 & x
\end{array}\right|
$$

vanish, are $-2 \cos \frac{\pi}{7},-2 \cos \frac{2 \pi}{7}, \ldots,-2 \cos \frac{6 \pi}{7}$. In general, the n values of x which make the corresponding determinant of order n vanish are given by $-2 \cos \frac{r \pi}{n+1}, \quad r=1,2, \ldots, n$. Each determinant has a diagonal filled with x 's, bordered by adjacent parallels where each element is unity; and all other elements are zero.

The above result is no novelty, but the following geometrical proof may be of interest. Let $n+1$ be a prime number, such as 7 , and let a, b, c, d, e, f denote the distances of a vertex O, of a regular heptagon $O A B C D E F$, from the other six vertices, taken in cyclic order from O. Let α be the angle subtended at O by each of the equal sides $O A, A B$, etc., so that a is $\frac{\pi}{7}$, and in general is $\frac{\pi}{n+1}$.

Since $O A=C D$, it follows that $A C$ is parallel with $O D$, and $A D=O C$. Hence, by projection,
or

$$
(O C+A D) \cos a=O D+A C=O D+O B
$$

$$
O B-2 O C \cos \alpha+O D=0
$$

By repeating this process we obtain the six equations

$$
\begin{aligned}
& \quad-2 a \cos a+b=0, \\
& a \quad-2 b \cos \alpha+c=0, \\
& b-2 c \cos a+d=0, \\
& c-2 d \cos a+e=0, \\
& d \quad-2 e \cos a+f=0, \\
& e \quad-2 f \cos a \quad=0 ;
\end{aligned}
$$

whence, by elimination, $\Delta=0$ when $x=-2 \cos \alpha=-2 \cos \frac{\pi}{7}$.
The same argument proves that $-2 \cos \frac{2 \pi}{7}$ also is a root of the
equation $\triangle=0$, if $O B D F A C E$ is taken as the heptagon, and the angle $B O D$ is taken as a. Similarly the heptagon $O C F B E A D$ leads to $-2 \cos \frac{3 \pi}{7}$, and so on, until six different cases have been identified.

Manifestly the process will apply, giving n roots of $\Delta=0$, whenever $n+1$ is prime. If $n+1$ is composite the theorem is still true, as the argument remains applicable; but the proof is not so pretty, as several of the polygons degenerate.

The theorem may be stated otherwise:
The latent roots of the matrix of order n

$$
\left[\begin{array}{cccccc}
. & 1 & . & . & . & \ldots \\
1 & . & i & . & \cdot & \cdots \\
. & 1 & . & 1 & \cdot & \cdots \\
. & . & 1 & . & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots &
\end{array}\right]
$$

are given by $\quad-2 \cos \frac{r \pi}{n+1}, \quad r=1,2, \ldots, n$.
If the matrix is of infinite order its latent roots are all real, lying densely between -2 and +2 .
H. W. Turnbull.

