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Abstract

Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of
Toeplitz’s square peg problem. We prove Hadwiger’s 1971 conjecture that any simple loop in 3-
space inscribes a parallelogram. We show that any simple planar loop inscribes sufficiently many
rectangles that their vertices are dense in the loop. If the loop is rectifiable, there is a rectangle that
cuts the loop into four pieces which can be rearranged to form two loops of equal length. (The
previous two results are independently due to Schwartz.) A rectifiable loop in d-space can be cut
into (r − 1)(d + 1)+ 1 pieces that can be rearranged by translations to form r loops of equal length.
We relate our results to fair divisions of necklaces in the sense of Alon and to Tverberg-type results.
This provides a new approach and a common framework to obtain inscribability results for the class
of all continuous curves.

2010 Mathematics Subject Classification: 53A04 (primary); 51M04 (secondary)

1. Introduction

In 1911, Toeplitz [32] conjectured that an embedded continuous closed curve
(a loop) in the plane inscribes a square, that is, it contains the four vertices
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of a square. This conjecture has been settled in several special cases, such as
piecewise analytic curves (Emch [11] in 1916), C2 curves (Schnirelman [28] in
1929, published posthumously in 1944; see also Guggenheimer [13]), C1 curves
(Stromquist [30] in 1989), or homotopically nontrivial loops contained in certain
annuli, and an open and dense class of curves (Matschke [22] in 2011); also see
Matschke’s survey [23]. These results require some kind of regularity of the loop
since they rely on transversality arguments, which more generally establish the
existence of an odd number of inscribed squares. Emch’s proof proceeds by first
finding a rhombus with two sides parallel to a given direction, then turning the
direction and concluding by the intermediate value theorem. Schnirelman’s proof
is an early cobordism argument, while Stromquist uses a variant of the Knaster–
Kuratowski–Mazurkiewicz lemma about covers of the simplex. For the latter
proof, the curve must satisfy local monotonicity for the cover to be well behaved
at vertices, which allows Stromquist to conclude using the mapping degree of an
associated map.

Recently, Tao [31] provided a novel approach to Toeplitz’s conjecture proving
it for curves that arise as the union of two graphs of Lipschitz functions with
Lipschitz constant less than one. Results for the class of all continuous closed
curves are rare. It seems that the most general statements toward Toeplitz’s
conjecture are that any loop inscribes a rhombus with two sides parallel to a given
line (see Nielsen [26]) and that any loop inscribes a rectangle; this was proven by
Vaughan, and the proof appears in Meyerson’s manuscript [25]. See also Pak’s
book [27, Prop. 5.4] and Schwartz’s recent trichotomy of inscribed rectangles [29].
For additional very recent progress on special inscribed quadrilaterals,
see [1, 17, 24].

Nielsen’s result proceeds by approximating continuous curves by piecewise
linear curves while certifying that the rhombus does not degenerate in this process.
Similarly, Schwartz approximates loops by generic polygons. Vaughan’s result
is particular to the case of inscribed rectangles and does not lend itself easily
to proving variants. Here we describe a novel technique that proves relatives of
Toeplitz’s conjecture for all continuous curves in the same generalized fashion
without a need for approximation.

An important variant of the square peg problem is a 1971 conjecture of
Hadwiger [15] which states that any loop in R3 inscribes a parallelogram.
Guggenheimer [14] established this for C2 curves and Makeev [20] for C1 curves.
Vrećica and Živaljević [33] develop a general proof method that also yields
Hadwiger’s conjecture for C1 curves. In fact, all of these results establish the
existence of an inscribed rhombus. Again, these methods do not extend to the
case of continuous curves since they rely on transversality arguments.

We relate inscribing special n-gons into loops to results of fair division on the
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real line, such as the Hobby–Rice theorem in L1 approximation (see Theorem 1)
as well as its generalizations. We prove the following results:
• Hadwiger’s conjecture holds: any simple loop in R3 inscribes a

parallelogram. In fact, it inscribes so many parallelograms that the set of
vertices is dense in the loop; see Theorem 4. Here we allow parallelograms
that consist of four pairwise distinct points on a line and that are the limit
of a sequence of parallelograms (so does Hadwiger).
• Any simple planar loop inscribes sufficiently many rectangles that the set

of vertices is dense in the loop; see Theorem 6. Schwartz [29] recently
and independently proved that all but at most four points of a loop are the
vertices of a rectangle.
• Any rectifiable simple planar loop inscribes a rectangle that cuts the loop

into four parts γ (1), γ (2), γ (3), γ (4) in cyclic order such that the total length
of γ (1) and γ (3) is equal to the total length of γ (2) and γ (4); see Theorem 9.
This was also proven independently by Schwartz [29], who calls this result
‘tantalizingly close to the square-peg conjecture.’
• Any rectifiable loop in Rd can be cut into (r − 1)(d + 1) + 1 pieces that

may be rearranged by translations to form r loops of equal length; see
Theorem 8.
• We prove a proper extension of Alon’s necklace splitting result [3] for

divisions of the unit interval into a prime number of parts by applying
the topological machinery of the optimal colored Tverberg theorem of
Blagojević, Matschke, and Ziegler [6]; see Theorem 10. This allows us to
prove a proper strengthening of Theorem 8 for primes r ; see Corollary 15.

2. Inscribing parallelograms and rectangles

We find it instructive to first discuss why any planar C1 loop inscribes a
parallelogram with a prescribed vertex. This result follows easily from the Hobby–
Rice theorem below. After deducing this special case, we will discuss how to
obtain generalizations.

THEOREM 1 (Hobby and Rice [16]). Let µ be a finite nonatomic real measure
on [0, 1]. Let fi : [0, 1] −→ R, i = 1, . . . , n be functions in L1(dµ). Then there
are points ti with 0 = t0 6 t1 6 · · · 6 tn 6 tn+1 = 1 such that

n+1∑
j=1

(−1) j
∫ t j

t j−1

fi(t) dµ(t) = 0 for every i = 1, . . . , n.
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Let γ : [0, 1] −→ R2, t 7→ (γ1(t), γ2(t)) be a C1 loop in the plane. We note
that ∫ 1

0
γ ′i (t) dt = γi(1)− γi(0) = 0 for i = 1, 2.

The Hobby–Rice theorem implies that there are three points 0 6 a 6 b 6 c 6 1
such that∫ a

0
|γ ′(t)| dt +

∫ c

b
|γ ′(t)| dt =

∫ b

a
|γ ′(t)| dt +

∫ 1

c
|γ ′(t)| dt (2.1)

and ∫ a

0
γ ′i (t) dt +

∫ c

b
γ ′i (t) dt =

∫ b

a
γ ′i (t) dt +

∫ 1

c
γ ′i (t) dt,

which implies that both sides of this latter equation vanish. This implies that
γ (a) − γ (0) = γ (b) − γ (c) and γ (b) − γ (a) = γ (c) − γ (1). This implies that
the points γ (0), γ (a), γ (b), and γ (c) describe a parallelogram inscribed into γ ,
where the vertex γ (0) was prescribed in advance. Equation (2.1) ensures that the
parallelogram is nondegenerate.

Key Idea I: Fair division of continuous real-valued functions. The
requirement that γ be continuously differentiable may be relaxed to γ being
continuous since we differentiate γ and then integrate again. This will require a
slight extension of the Hobby–Rice theorem. In fact, we will immediately prove
a version that, instead of splitting [0, 1] into positive and negative subintervals,
splits a partition of [0, 1] into r parts that equalize given functions on the intervals
of each part. One such extension of the Hobby–Rice theorem is due to Alon [3].
The theorem below is a generalization but can be proven in a similar way. We
also refer to the statement and proof in Matoušek’s book [21].

THEOREM 2. Let f1, . . . , fm : [0, 1] −→ R be continuous functions. Let r > 2
be an integer, and set n = (r − 1)m. Then there are points 0 = t0 6 t1 6 · · · 6
tn+1 = 1 and a partition of the set [n + 1] into subsets T1, . . . , Tr such that for
k = 1, . . . ,m,∑

j∈T1

fk(t j)− fk(t j−1) =
∑
j∈T2

fk(t j)− fk(t j−1) = · · · =
∑
j∈Tr

fk(t j)− fk(t j−1).

Alon’s theorem guarantees a fair splitting of measures µ1, . . . , µm on [0, 1] that
are continuous in the sense that

∫ x
0 dµk is continuous in x . We recover this case

by setting fk(x) =
∫ x

0 dµk . The popular interpretation of Alon’s theorem is that
r thieves have stolen a necklace with m kinds of beads, whose densities along the
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necklace are given by µ1, . . . , µm . Then the thieves can split the necklace with
(r − 1)m cuts such that each thief receives an equal amount of each kind of bead.

We first need some notation before we can prove this result. By Wr = {(y1,

. . . , yr ) ∈ Rr
|
∑

yi = 0}, we denote the reduced standard representation of
the symmetric group Sr . For abstract simplicial complexes, K and L on disjoint
vertex sets denote their join by K ∗ L , that is, the abstract simplicial complex
whose faces are σ ∪ τ with σ ∈ K and τ ∈ L . If we take the join of simplicial
complexes whose vertex set is not disjoint to begin with, such as K ∗ K , we
first force the vertex sets to be disjoint. The r -fold, deleted join of K , denoted
K ∗r∆ , is the subcomplex of the r -fold join of K , where unions of faces σ1, . . . ,

σr that were not pairwise disjoint to begin with have been deleted. We refer to
Matoušek [21] for details. Given two topological spaces X and Y with G-actions,
we call a continuous map f : X −→ Y equivariant (or G-equivariant) if f (g ·x) =
g · f (x) for all x ∈ X and g ∈ G.

Matoušek [21, Theorem 6.6.1] describes how points in the r -fold deleted join
(∆n)

∗r
∆ of the n-simplex ∆n correspond to n points 0 6 t1 6 · · · 6 tn 6 1 and

partitions of [n + 1] into r parts. We describe an alternative way of seeing this
parametrization in the proof below. It follows from a theorem of Dold [10] that
for n = (r − 1)m and r a prime, any Sr -equivariant map (∆n)

∗r
∆ −→ W⊕m

r must
include the origin in its image; see [21, Corollary 6.4.4].

Proof of Theorem 2. First, let r > 2 be a prime. We will induct on the number
of prime divisors in the end. We first describe how points in the r -fold deleted
join (∆n)

∗r
∆ of an n-simplex correspond to divisions of [0, 1] into n + 1 (possibly

empty) intervals and a partition of those intervals into r (possibly empty) parts. In
the following, we will identify the vertex set of ∆n with [n + 1]. The simplicial
complex (∆n)

∗r
∆ consists of joins σ1 ∗ · · · ∗ σr of r pairwise disjoint faces σi of the

n-simplex ∆n . A point in the geometric realization of σ1 ∗ · · · ∗ σr corresponds to
a convex combination λ1x1 + · · · + λr xr of points xi ∈ σi . In particular, λi > 0
and

∑
λi = 1.

Let λ1x1 + · · · + λr xr be an arbitrary point in (∆n)
∗r
∆ . We can think of the

expression λ1x1+· · ·+λr xr as a convex combination of points xi in the simplex∆n

and, thus, as a point x in the standard n-simplex∆n = {(x0, . . . , xn) ∈ Rn+1
| x i >

0 and
∑

x i
= 1}. Such a point corresponds to a partition of [0, 1] into the n + 1

intervals [0, x0
], [x0, x0

+ x1
], . . . , [x0

+ · · · + xn−1, 1]. Let t j denote x0
+ x1
+

· · · + x j−1 for j ∈ [n], t0 = 0, and tn+1 = 1. The point λ1x1 + · · · + λr xr is in
a join of pairwise disjoint faces σ1 ∗ · · · ∗ σr , where σi is the minimal supporting
face of xi . To split the n+ 1 intervals into r groups of intervals, let j ∈ [n+ 1] be
in Ti if and only if the j th vertex of ∆n is contained in σi and λi > 0. Note that if
j is not contained in any Ti , then t j = t j−1 and we can add it to an arbitrary set Ti .
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For each i ∈ {1, . . . , r}, define the continuous map

Fi : (∆n)
∗r
∆ −→ Rm,

λ1x1 + · · · + λr xr 7→

(∑
j∈Ti

f1(t j)− f1(t j−1), . . . ,
∑
j∈Ti

fm(t j)− fm(t j−1)

)
,

and define F : (∆n)
∗r
∆ −→ (Rm)r by F(x) = (F1(x), . . . , Fr (x)). There is an

action by the symmetric group Sr on (∆n)
∗r
∆ that permutes copies of ∆n , and

the map F is equivariant with respect to this action, where Sr permutes the Fi

accordingly.
Observe that if the theorem was false, then the image of F would not map to

the diagonal D = {(y1, . . . , yr ) ∈ (Rm)r | y1 = · · · = yr }. Orthogonally projecting
along the diagonal gives an equivariant map F̂ : (∆n)

∗r
∆ −→ W⊕m

r that does not
include the origin in its image. This is a contradiction to [21, Corollary 6.4.4].

It remains to be shown that if the statement of the theorem holds for r = q and
r = p, then it also holds for their product r = pq. Let [ai , bi ] ⊂ [0, 1], i ∈ [`], be
a collection of pairwise disjoint intervals. Denote their union by I =

⋃
i [ai , bi ].

Let f1, . . . , fm : I −→ R be continuous functions with fk(bi) = fk(ai+1) for all
i ∈ [` − 1] and all k ∈ [m]. Then the theorem holds in the same way for the
functions fi since we can simply reparametrize to obtain continuous functions on
all of [0, 1].

Assume that we have shown the theorem for r = p and r = q . Now given
continuous maps f1, . . . , fm : [0, 1] −→ R, let n = (p − 1)m. Find points 0 =
t0 6 t1 6 · · · 6 tn+1 = 1 and a partition of the set [n + 1] into subsets T1, . . . , Tp

such that for k = 1, . . . ,m,∑
j∈T1

fk(t j)− fk(t j−1) =
∑
j∈T2

fk(t j)− fk(t j−1) = · · · =
∑
j∈Tp

fk(t j)− fk(t j−1).

The sum
∑p

i=1

∑
j∈Ti

fk(t j)− fk(t j−1) telescopes and is equal to fk(1)− fk(0).
Thus,

∑
j∈Ti

fk(t j) − fk(t j−1) =
1
p ( fk(1) − fk(0)) for all i and k. Fix one set Ti

and consider I =
⋃

j∈Ti
[t j−1, t j ]. Let y be the left-most point in I , and let z be

the right-most point in I . Define hk : I −→ R by hk(x) = fk(x) − fk(t j−1) +∑
fk(ts) − fk(ts−1) if x ∈ [t j−1, t j ], where the sum is taken over all s ∈ Ti with

s < j . The map hk is defined precisely in such a way that the value of hk at
a right endpoint of an interval in I is equal to its value at the successive left
endpoint of an interval in I . Thus, we can now split the maps h1, . . . , hm for
r = q . In this way, we obtain a partition T ′1, . . . , T ′q of [(q − 1)m + 1] and points
y = t ′0 6 t ′1 6 · · · 6 t ′(q−1)m+1 = z, t ′i ∈ I for i ∈ [(q − 1)m] such that for
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k = 1, . . . ,m,∑
j∈T ′1

hk(t ′j)− hk(t ′j−1) =
∑
j∈T ′2

hk(t ′j)− hk(t ′j−1) = · · · =
∑
j∈T ′q

hk(t ′j)− hk(t ′j−1).

The sum
∑q

i=1

∑
j∈T ′i

hk(t ′j)−hk(t ′j−1) is equal to hk(z)−hk(y). By definition of hk ,
this is equal to

∑
j∈Ti

fk(t j)− fk(t j−1) =
1
p ( fk(1)− fk(0)). Thus,

∑
j∈T ′i

hk(t ′j)−
hk(t ′j−1) =

1
pq ( fk(1) − fk(0)) for all i and k. Now if t ′j−1 and t ′j are in the same

interval [t`−1, t`], then hk(t ′j)−hk(t ′j−1)= fk(t ′j)− fk(t ′j−1). Whereas if t ′j−1 ∈ [tλ−1,

tλ] and t ′j ∈ [t`−1, t`], then

hk(t ′j)− hk(t ′j−1)

= fk(t ′j)− fk(t`−1)+

( ∑
s<`,s∈Ti

fk(ts)− fk(ts−1)

)

−

[
fk(t ′j−1)− fk(tλ−1)+

( ∑
s<λ,s∈Ti

fk(ts)− fk(ts−1)

)]

= fk(t ′j)− fk(t`−1)+

( ∑
λ6s<`,s∈Ti

fk(ts)− fk(ts−1)

)
+ fk(t ′j−1)− fk(tλ−1).

Let T ′′ be the set of points {t0, . . . , tn+1, t ′0, . . . , t ′(q−1)m+1}, and write t ′′0 < t ′′1 <
· · · < t ′′N for the points in T ′′. Let T ′′i ⊂ [N ] be the set of indices corresponding
to points in T ′i and for any pair of consecutive points in T ′i , add those indices
corresponding to all points of {t0, . . . , tn+1} that are between them. Then by the
above calculations,

1
pq
( fk(1)− fk(0)) =

∑
j∈T ′i

hk(t ′j)− hk(t ′j−1) =
∑
j∈T ′′i

fk(t ′′j )− fk(t ′′j−1).

The total number of points required for this division is (p−1)m+ p(q−1)m =
(pq − 1)m. This completes the induction on prime divisors.

For the reader who found the induction on the number of prime divisors in the
proof above difficult to follow, we mention that we use Theorem 2 for all integers
r > 2 only to show Theorem 8 in full generality. But the induction on prime
divisors for this latter theorem is of much lower technical difficulty.

Key Idea II: A generalization of the Hobby–Rice theorem to continuous
functions on the circle and the unit interval. To prove results about inscribing
parallelograms in spatial loops and rectangles in planar loops, we need a Hobby–
Rice theorem for maps defined on the circle S1. Consider the following first
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approximation to the desired result: for any m > 2 continuous maps f1, . . . ,

fm : S1
−→ R, one can find m points t1, . . . , tm ∈ S1 and a partition T1 t T2

of [m] such that
∑

j∈T1
fk(t j)− fk(t j−1) =

∑
j∈T2

fk(t j)− fk(t j−1) for all k. Here
t0 denotes tm . As stated, this result trivially holds for t1 = t2 = · · · = tm . To
avoid this degeneracy, we will cut the circle S1 open at an arbitrary point to obtain
maps fi : [0, 1] −→ R, and we will always require that at least one map, say fm ,
satisfies fm(0) 6= fm(1), that is, fm did not come from a map defined on S1. Then
the above theorem holds true if m is even (and is false for odd m by a degrees of
freedom counting argument). We will mostly need the following special case.

COROLLARY 3. Let f1, . . . , f4 : [0, 1] −→ R be continuous functions. Then
there are points 0 6 t1 6 · · · 6 t4 6 1 such that

2 fk(t1)+ 2 fk(t3)+ fk(1) = 2 fk(t2)+ 2 fk(t4)+ fk(0) for all k.

Proof. We use Theorem 2 with r = 2 and m = 4. This provides us with four
points 0 6 t1 6 · · · 6 t4 6 1 and a partition T1 t T2 of [5]. If T1 = {1, 3, 5}
and T2 = {2, 4} (or vice versa), then the conclusion of Theorem 2 is equivalent
to 2 fk(t1)+ 2 fk(t3)+ fk(1) = 2 fk(t2)+ 2 fk(t4)+ fk(0). For any other partition
of [5], at least one of the Ti has successive elements. Suppose j and j + 1 are in
T1 (say) and they are the largest successive pair of numbers in the same Ti . Swap
j + 1 into T2, j + 2 into T1, and so on up to j + ` = 5. Call the new partition
of [5] obtained in this way T ′1 t T ′2 . Forget the point t j and reindex to get new
points t ′i as follows: t ′1 = t1, . . . , t ′j−1 = t j−1, t ′j = t j+1, . . . , t ′3 = t4, and t ′4 = 1.
The equation

∑
j∈T1

fk(t j) − fk(t j−1) =
∑

j∈T2
fk(t j) − fk(t j−1) is equivalent to∑

j∈T ′1
fk(t ′j)− fk(t ′j−1) =

∑
j∈T ′2

fk(t ′j)− fk(t ′j−1). So we can successively reduce
to the case T1 = {1, 3, 5} and T2 = {2, 4}.

Key Idea III: Constraining inscribed parallelograms. We can now prove
Hadwiger’s conjecture that any simple loop in R3 inscribes a parallelogram. In
fact, any such loop inscribes many parallelograms: their vertex sets are dense
in the image of the loop. We consider four pairwise distinct points on a line to
be a parallelogram if they arise as the limit of a sequence of parallelograms, and
Hadwiger [15] explicitly allows this. However, we have to force parallelograms to
be nondegenerate in the sense that no vertex is repeated. We will accomplish this
by introducing an auxiliary function that only satisfies the balancing requirement
of Corollary 3 if the parallelogram is nondegenerate. This same idea will be used
to force an inscribed parallelogram in a planar loop to be a rectangle.

THEOREM 4. Any simple loop γ : [0, 1] −→ R3 inscribes sufficiently many
parallelograms that their vertex sets are dense in γ ([0, 1]).
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Proof. Apply Corollary 3 to the coordinate functions γ1, γ2, γ3, of γ , and to the
function

f (t) =


0 if t ∈ [0, x]

1
y−x (t − x) if t ∈ [x, y]
1 if t ∈ [y, 1]

for a given interval [x, y] ⊂ [0, 1]. Let 0 6 t1 6 · · · 6 t4 6 1 be the points whose
existence is guaranteed by Corollary 3.

Since γ is a loop, we have that γ (0) = γ (1) and, thus, γ (t1)+ γ (t3) = γ (t2)+

γ (t4). So the points γ (t1), . . . , γ (t4) form a (possibly degenerate) parallelogram
inscribed into γ . Moreover, we know that 2 f (t1)+ 2 f (t3)+ 1 = 2 f (t2)+ 2 f (t4).
This does not have a solution where all f (ti) are integers. Thus, at least one ti is
in the interval (x, y). Since this is true for any open interval (x, y) ⊂ [0, 1], we
conclude that the set of vertices of inscribed parallelograms is dense in γ ([0, 1]).

Finally, we check that f prevents the parallelogram from being degenerate. If
t1 = t2, then γ (t1) + γ (t3) = γ (t2) + γ (t4) implies that t3 = t4 since γ is an
embedding, but this directly contradicts 2 f (t1) + 2 f (t3) + 1 = 2 f (t2) + 2 f (t4).
The case t2 = t3 is similar.

To prove results about inscribed rectangles in planar loops, we need a lemma
that distinguishes rectangles among parallelograms. The British flag theorem
states that if ABC D are the vertices of a rectangle in a plane (in cyclic order)
and P ∈ R2 is any point, then |P A|2 + |PC |2 = |P B|2 + |P D|2. We will need
the converse of the British flag theorem.

LEMMA 5. Let A, B,C, D ∈ R2 be the vertices of a parallelogram in
counterclockwise order. If there is a point P ∈ R2 such that |P A|2 + |PC |2 =
|P B|2 + |P D|2, then ABC D is a rectangle.

Proof. Choose coordinates with the intersection of the diagonals of
the parallelogram at the origin. Thus, A = −C and B = −D, and
|P + A|2 + |P − A|2 = |P + B|2 + |P − B|2. This is equivalent to
2|P|2 + 2|A|2 = 2|P|2 + 2|B|2 and, thus, |A|2 = |B|2 = |C |2 = |D|2; so
ABC D is a rectangle.

We can now prove the existence of many inscribed rectangles in planar loops.
Recently and independently, Schwartz [29] proved a trichotomy for inscribed
rectangles in planar loops showing that all but at most four points are the vertices
of inscribed rectangles.

THEOREM 6. Let γ : [0, 1] −→ R2 be a simple loop. Then γ inscribes sufficiently
many nondegenerate rectangles that the set of vertices is dense in γ ([0, 1]).
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Proof. Apply Corollary 3 to the following functions: γ1, γ2, the function f from
the proof of Theorem 4, and g(t) = |γ (t)|2. Then the functions γ1, γ2, and f
guarantee that we obtain a nondegenerate inscribed parallelogram with at least
one vertex in γ ((x, y)) for some arbitrary interval (x, y) ⊂ [0, 1]. The function g
ensures that the parallelogram is actually a rectangle by Lemma 5.

EXAMPLE 7. In general, we cannot prescribe a vertex of an inscribed rectangle
precisely. Consider a curve γ that traces a triangle. Then we cannot prescribe a
vertex of an inscribed rectangle to be a vertex of the triangle at an acute angle.

3. Splitting rectifiable loops

We started Section 2 by showing that the Hobby–Rice theorem implies that
any planar C1 loop inscribes a parallelogram with one vertex at γ (0). We used
Equation (2.1) to ensure that the parallelogram is nondegenerate. This equation
more generally asserts that the length of γ over the intervals [0, a] and [b, c] is
equal to the length over the intervals [a, b] and [c, 1]. Thus, γ is cut into four
pieces γ |[0,a], γ |[a,b], γ |[b,c], and γ |[c,1] such that the pieces can be translated to
form two loops of equal length. In this section, we extend this result to higher
dimensions and split into more than two loops of equal length.

For the notion of length to be well defined, the loop γ needs to be rectifiable. A
curve γ : [0, 1] −→ Rd is called rectifiable if there is a constant C > 0 such that

n−1∑
j=1

|γ (x j+1)− γ (x j)| < C

for any n and any set of points x1 < x2 < · · · < xn in [0, 1]. In particular, the
length of a rectifiable curve is well defined. A rectifiable curve γ : [0, 1] −→ Rd

can be parametrized by arc length.

THEOREM 8. Let γ : [0, 1] −→ Rd be a rectifiable loop. For an integer r > 2, let
n = (r − 1)(d + 1). Then there exists a partition of [0, 1] into n + 1 intervals I1,

. . . , In+1 by n cuts and a partition of the index set [n + 1] into subsets T1, . . . , Tr

such that the restrictions γ |I j , j ∈ Tk , can be rearranged by translations to form
a loop for each k ∈ {1, . . . , r}, and these r loops all have the same length.

Proof. Parametrize γ by arc length and apply Theorem 2 to the d coordinate
functions γ1, . . . , γd and the function f (t) = t . Then∑

j∈T1

γ (t j)− γ (t j−1) =
∑
j∈T2

γ (t j)− γ (t j−1) = · · · =
∑
j∈Tr

γ (t j)− γ (t j−1)
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implies that
∑

j∈Ti
γ (t j) − γ (t j−1) = 0 for all i ∈ [r ]. Thus, the pieces γ |[t j−1,t j ],

j ∈ Ti , of γ can be rearranged by translations to form a loop for each i ∈ [r ].
Moreover,

∑
j∈T1

t j − t j−1 =
∑

j∈T2
t j − t j−1 = · · · =

∑
j∈Tr

t j − t j−1 implies that
these r loops have the same length since γ is parametrized by arc length.

In particular, for r = 2 and d = 3, Theorem 8 implies that any simple loop γ
in R3 inscribes a parallelogram whose vertices cut γ into four pieces γ (1), γ (2),
γ (3), γ (4) in cyclic order such that γ (1) and γ (3) have the same total length as γ (2)

and γ (4).
Theorem 6 asserts that any simple planar loop inscribes many rectangles. While

we have been unable to use this to derive Toeplitz’s conjecture that one of these
rectangles is a square, we can use similar reasoning to that used in the proof of
Theorem 8 to ensure that the length of the loop over pairs of opposite sides of the
rectangle is the same. That is, instead of the sides of the rectangle itself having the
same length, we can only ensure this for the pieces of the loop over those sides.

THEOREM 9. Let γ : [0, 1] −→ R2 be a simple rectifiable loop. The loop γ
inscribes a nondegenerate rectangle cutting it into four pieces γ (1), γ (2), γ (3), γ (4)

in cyclic order such that γ (1) and γ (3) have the same total length as γ (2) and γ (4).

Proof. Parametrize γ by arc length. Use Corollary 3 for γ1, γ2, g(t) = |γ (t)|2,
and f (t) = t . The first three functions ensure a (possibly degenerate) inscribed
rectangle, while f guarantees that the total length of γ (1) and γ (3) is equal to that
of γ (2) and γ (4).

4. Necklace splittings with additional constraints

In this section, we prove a proper strengthening of Alon’s necklace splitting
result for r a prime; in fact, we will prove them in the strengthened formulation of
Theorem 2 as a fair division result for continuous functions. This, in turn, yields
a strengthened loop splitting result, provided that the number of resulting loops r
is a prime. We find it noteworthy that for these results, the usual induction on the
number of prime divisors seems to fail entirely. We are unable to derive similar
results for nonprimes r . In fact, a result of Blagojević, Matschke, and Ziegler [6]
implies that the topological method used in the proof fails outside the case that
r is a prime. In light of the recent counterexamples to the topological Tverberg
conjecture for parameters that are not prime powers [5, 12, 19], this opens the
interesting question as to whether the primality of r is perhaps not an artifact of
our proof method but actually an essential prerequisite of our result.

Generalizations of Alon’s necklace splitting result of various kinds have
recently received much attention; see, for example, de Longueville and
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Živaljević [9], Karasev, Roldán-Pensado, and Soberón [18], Alishahi and
Meunier [2], Asada et al. [4], and Blagojević and Soberón [7]. Here we show the
following.

THEOREM 10. Let f1, . . . , fm : [0, 1] −→ R be continuous functions. For a
prime r > 2, let n = (r − 1)m. Let C1, . . . ,C` be a partition of [n + 1] with
|Ci | 6 r − 1. Then there are points 0 = t0 6 t1 6 · · · 6 tn+1 = 1 and a partition
of the index set [n+1] into subsets T1, . . . , Tr with |Ci ∩T j | 6 1 for every i and j
such that for k = 1, . . . ,m,∑

j∈T1

fk(t j)− fk(t j−1) =
∑
j∈T2

fk(t j)− fk(t j−1) = · · · =
∑
j∈Tr

fk(t j)− fk(t j−1).

In the usual interpretation of Alon’s result, where [0, 1] is thought of as an
unclasped necklace with m types of beads whose density along the necklace
is given by µ1, . . . , µm and the sets Ti are thieves who would like to split the
necklace fairly, the result above guarantees that there are blocks of size at most
r − 1 pieces of the necklace such that no thief receives two pieces of the necklace
within such a block.

Compare Theorem 10 with the following optimal colored Tverberg theorem of
Blagojević, Matschke, and Ziegler.

THEOREM 11 (Blagojević, Matschke, and Ziegler [6]). Let r > 2 be a prime and
d > 1 be an integer. Let n = (r−1)(d+1), and let C1, . . . ,C` be a partition of the
vertex set of the n-simplex∆n with |Ci | 6 r − 1 for all i . Then for any continuous
map f : ∆n −→ Rd , there are r pairwise disjoint faces σ1, . . . , σr of∆n such that
each σi has at most one vertex in each C j and with f (σ1) ∩ · · · ∩ f (σr ) 6= ∅.

To prove Theorem 10, we combine the central topological result of [6] with our
proof of Theorem 2 (which follows Matoušek’s proof of the necklace splitting
result) and a combinatorial reduction to a special case; see Lemma 13. The
complex [n]∗m∆ denoted ∆n,m is called the chessboard complex. Here [n] denotes
the zero-dimensional simplicial complex on vertex set [n]. The symmetric group
Sn naturally acts on [n], and the subgroup Z/n acts by shifts. Thus, these groups
act diagonally on joins and deleted joins of these complexes, in particular, on
chessboard complexes ∆n,m .

More generally, any Tverberg-type result whose proof uses the configuration
space test map scheme, that is, whose proof relies on establishing the nonexistence
of an Sr -equivariant map from a certain symmetric subcomplex of the r -fold
deleted join (∆N )

∗r
∆ to a representation sphere of Sr of dimension N − 1, yields

a fair division result for real-valued functions. The restrictions on the set of faces
that still admit an r -fold intersection directly translate into the same restrictions
for the partition sets of a fair division.
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We can now state the central topological lemma needed for the proof of
Theorem 10.

LEMMA 12 (Blagojević, Matschke, and Ziegler [6]). Let r > 2 be a prime, m > 1
and integer, and n = (r−1)m. Then any Z/r-equivariant map (∆r,r−1)

∗m
∗[r ] −→

W⊕m
r must have a zero.

The following lemma is analogous to a reduction in [6] for Tverberg-type
results.

LEMMA 13. It is sufficient to prove Theorem 10 in the case that ` = m + 1,
|Ci | = r − 1 for i < ` and |C`| = 1.

Proof. We are given continuous functions f1, . . . , fm : [0, 1] −→ R, a prime r >
2, and n = (r − 1)m. Let C1, . . . ,C` be a partition of [n + 1] with |Ci | 6 r − 1.
Certainly, ` is larger than m. We define N to be the integer (r − 1)`, and we
enlarge the sets Ci and add the new set C ′`+1 = {N+1} to be a partition of [N+1].
More precisely, obtain C ′i from Ci by adding r−1−|Ci | elements in [N ]\[n+1];
this can be done in such a way that C ′1, . . . ,C ′`+1 is a partition of [N + 1].

Define the functions h1, . . . , hm : [0, 1] −→ R by hi(x) = fi(2x) for x 6 1
2

and hi(x) = fi(1) for x > 1
2 . Let [a1, b1], . . . , [a`−m, b`−m] be pairwise disjoint

intervals in [ 12 , 1]. Define ` − m new functions hm+1, . . . , h` : [0, 1] −→ R by
hi(x) = 0 for x < ai−m , hi(x) = 1 for x > bi−m and interpolate linearly in
between, that is, hi(x) = 1

bi−m−ai−m
(x − ai−m) for x ∈ [am−i , bm−i ]. When we

assume that Theorem 10 has been shown for |C ′i | = r−1 for i 6 ` and |C ′`+1| = 1,
then we can find points 0 = t0 6 t1 6 · · · 6 tN+1 = 1 and a partition T1, . . . , Tr

of [N + 1] such that for k = 1, . . . ,m,∑
j∈T1

hk(t j)− hk(t j−1) =
∑
j∈T2

hk(t j)− hk(t j−1) = · · · =
∑
j∈Tr

hk(t j)− hk(t j−1),

and |C ′i ∩ T j | 6 1 for each i and j .
Of the points ti , at least r − 1 points need to be in each interval [ai , bi ], which

requires (r − 1)(` − m) points in total. Thus, at most (r − 1)m points ti are
contained in the interval [0, 1

2 ]. But then for k = 1, . . . ,m,∑
j∈T1

fk(2t j)− fk(2t j−1) =
∑
j∈T2

fk(2t j)− fk(2t j−1) = · · ·

=

∑
j∈Tr

fk(2t j)− fk(2t j−1),

for those points ti , proving the general case of Theorem 10.
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Proof of Theorem 10. By the reduction of Lemma 13, we only need to consider
the case that ` = m+ 1 with |C1| = · · · = |C`−1| = r − 1 and |C`| = 1, which we
will do from here on. We construct the Sr -equivariant map F : (∆n)

∗r
∆ −→ (Rm)r

as in the proof of Theorem 2. Since we identified the vertex set of∆n with [n+1]
each set Ci is a subset of the vertex set of the n-simplex, and, thus, (C1∗· · ·∗C`)

∗r
∆

is an Sr -invariant subcomplex of (∆n)
∗r
∆ . A point x ∈ (C1 ∗ · · · ∗ C`)

∗r
∆ precisely

corresponds to points 0 = t0 6 t1 6 · · · 6 tn+1 = 1 and a partition T1, . . . , Tr of
[n + 1] as in the statement of the theorem. Observe that if the theorem was false,
then the image of F restricted to (C1 ∗ · · · ∗C`)

∗r
∆ would not intersect the diagonal

D = {(y1, . . . , yr ) ∈ (Rm)r | y1 = · · · = yr }. Orthogonally projecting along the
diagonal gives an equivariant map F̂ : (C1 ∗ · · · ∗ C`)

∗r
∆ −→ W⊕m

r that does not
map to zero.

Now since |C1| = · · · = |C`−1| = r−1 and |C`| = 1 and since joins and deleted
joins commute the complex (C1 ∗ · · · ∗ C`)

∗r
∆ is isomorphic to ([r − 1]∗r∆ )

∗(`−1)
∗

[1]∗r∆ ∼= (∆r,r−1)
∗(`−1)

∗ [r ]. Thus, F̂ contradicts Lemma 12.

We would like to thank a referee for pointing out the following remark.

REMARK 14. The reduction of Theorem 10 given in Lemma 13 can be omitted
if, instead of Lemma 12, we use the stronger result of Blagojević and Ziegler [8,
Corollary 6.10] for the cohomological index of joins of chessboard complexes
∆k1,r ∗ · · · ∗∆kn ,r for positive integers ki 6 r − 1 and r a prime. This obstructs the
existence of equivariant maps avoiding zero as in [8, Theorem 6.11]. Beyond the
case of r a prime, the index of chessboard complexes is unknown.

In the same way that Theorem 8 follows from Theorem 2, we can derive the
following corollary from Theorem 10.

COROLLARY 15. Let γ : [0, 1] −→ Rd be a rectifiable loop. For a prime r > 2,
let n = (r − 1)(d + 1). Let C1, . . . ,Cm be a partition of [n+ 1] with |Ci | 6 r − 1.
Then there exists a partition of [0, 1] into n + 1 intervals I1, . . . , In+1 by n cuts
and a partition of the index set [n + 1] into subsets T1, . . . , Tr with |Ci ∩ Tk | 6 1
such that the restrictions γ |I j , j ∈ Tk , can be rearranged by translations to form
a loop for each k ∈ {1, . . . , r}, and these r loops all have the same length.

The topological machinery used in the proof of Theorem 10 fails for nonprimes
r ; see Blagojević, Matschke, and Ziegler [6]. This does not imply that Theorem 10
or Corollary 15 is false for nonprimes r ; we thus ask the following.
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QUESTION 16. Is the condition that r is a prime actually required in Theorem 10
and Corollary 15?
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[9] M. de Longueville and R. Živaljević, ‘Splitting multidimensional necklaces’, Adv. Math.
218(3) (2008), 926–939.

[10] A. Dold, ‘Simple proofs of some Borsuk–Ulam results’, Contemp. Math. 19 (1983), 65–69.
[11] A. Emch, ‘On some properties of the medians of closed continuous curves formed by analytic

arcs’, Amer. J. Math. 38(1) (1916), 6–18.
[12] F. Frick, ‘Counterexamples to the topological Tverberg conjecture’, Oberwolfach Rep. 12(1)

(2015), 318–321.
[13] H. Guggenheimer, ‘Finite sets on curves and surfaces’, Israel J. Math. 3(2) (1965), 104–112.
[14] H. Guggenheimer, ‘Proof of a conjecture of H. Hadwiger’, Elem. Math. 29 (1974), 35–36.

https://doi.org/10.1017/fms.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.51


J. Aslam et al. 16
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