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SUM THE MULTIPLICATIVE ODDS
TO ONE AND STOP

MITSUSHI TAMAKI,∗ Aichi University

Abstract

We consider the optimal stopping problem of maximizing the probability of stopping on
any of the last m successes of a sequence of independent Bernoulli trials of length n,
where m and n are predetermined integers such that 1 ≤ m < n. The optimal stopping
rule of this problem has a nice interpretation, that is, it stops on the first success for
which the sum of the m-fold multiplicative odds of success for the future trials is less
than or equal to 1. This result can be viewed as a generalization of Bruss’ (2000) odds
theorem. Application will be made to the secretary problem. For more generality, we
extend the problem in several directions in the same manner that Ferguson (2008) used to
extend the odds theorem. We apply this extended result to the full-information analogue
of the secretary problem, and derive the optimal stopping rule and the probability of
win explicitly. The asymptotic results, as n tends to ∞, are also obtained via the planar
Poisson process approach.
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1. Introduction

Let n be a given positive integer, and suppose that n independent Bernoulli trials are
performed one at a time, each of which results in a success or a failure. That is, if we let Xj

equal 1 if the j th trial is a success and 0 if it is a failure, then X1, X2, . . . , Xn are independent
Bernoulli random variables that are observed sequentially. When we seek an optimal stopping
rule of this sequential observation problem with the objective of maximizing the probability
of stopping on the last success, Bruss (2000) gave an elegant solution, given below, where
pj = P{Xj = 1}, qj = 1 − pj , and rj = pj/qj represents the odds of success on the j th trial
(if pj = 1 and rj is taken to be ∞).

Theorem 1.1. (Bruss’ sum-the-odds theorem.) For the above stopping problem, the optimal
rule stops on the first success Xk = 1 with k ≥ s, if any, where

s = min

{
k ≥ 1 :

n∑
j=k+1

rj ≤ 1

}
. (1.1)

Moreover, the maximal win (i.e. achieving the objective) probability is

v =
( n∏

j=s

qj

)( n∑
j=s

rj

)
.
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The optimal rule (1.1) has a nice interpretation, i.e. it stops on the first success for which
the sum of the odds of success for the future trials is less than or equal to 1 (we are indifferent
between stopping and continuing if the sum of the odds is equal to 1). We refer to this result as
the sum-the-odds theorem (called simply STOT) according to Ferguson (2008). Bruss (2003)
later showed that the best possible lower bound on the maximal probability is e−1 under some
condition, more precisely, v > e−1 if

∑n
j=1 rj ≥ 1. See also Hill and Krengel (1992) and

Hsiau and Yang (2000) for related works.
Bruss (2000) started his argument by raising the question of correctly guessing the last

‘6’ when a fair die is tossed a fixed number, n, of times. The STOT answers this question
immediately. But what about the question of correctly guessing any one of the last two ‘6’,
i.e. guessing either the last ‘6’ or the second to last ‘6’. This question seems a natural extension
of the Bruss question, but the STOT cannot answer this question because the optimality criterion
is different. In this paper we attempt to answer problems of this kind. The criterion we adopt
here is more generally described as maximizing the probability of stopping on any of the last m

successes for a predetermined m (we assume that n > m unless otherwise specified, because,
for n ≤ m, the optimal rule evidently stops on the first success). The optimal rule of this
problem also has a nice interpretation. That is, it can be shown that the optimal rule stops on
the first success for which the sum of the m-fold multiplicative odds of success for the future
trials is less than or equal to 1, if we define the sum of the j -fold multiplicative odds of successes
on the kth trial by

Rk,j =
∑

k≤i1<i2<···<ij ≤n

ri1ri2 · · · rij

for 1 ≤ j ≤ n − k + 1 (if maxk≤i≤n pi = 1, Rk,j is taken to be ∞) and Rk,j = 0 for
j > n − k + 1. More explicitly, we have the following result.

Theorem 1.2. (Sum-the-multiplicative-odds theorem (STMOT).) For the stopping problem of
maximizing the probability of stopping on any of the last m successes in n independent Bernoulli
trials, the optimal rule stops on the first success Xk = 1 with k ≥ sm, if any, where

sm = min{k ≥ 1 : Rk+1,m ≤ 1}. (1.2)

Moreover, the maximal win probability is

vm =
( n∏

j=sm

qj

)( m∑
j=1

Rsm,j

)
. (1.3)

Since Rk+1,m = 0 for k ≥ n − (m − 1), we find that sm ≤ n − (m − 1) from (1.2), which
implies that, as is intuitively clear, the optimal rule stops on the success if the remaining number
of trials is less than m. Obviously, the optimal rule may be described as

N∗
m = min{k ≥ sm : Xk = 1}. (1.4)

The proof of Theorem 1.2 (the STMOT) will be given in more generality in Section 2. The
STMOT with m = 1 is just the STOT. Recall the question of correctly guessing any of the
last two ‘6’ in the dice game. This problem occurs if m = 2 and qj = q = 5

6 , rj = r = 1
5

for each j in the STMOT, and it is easy to see that s2 = n − 7 if n ≥ 8 from (1.2), because
Rk+1,2 = (

n−k
2

)
r2 ≤ 1 is equivalent to n − k ≤ 7. In other words, it is optimal to announce
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the first ‘6’, if any, in the last eight tosses as being either one of the last two ‘6’. Moreover, the
probability of a correct guess is

q8
[(

8

1

)
r +

(
8

2

)
r2

]
≈ 0.6326

from (1.3).
The STOT has been extended into other directions in Ferguson (2008). We show in Section 2

that Ferguson’s extension can be also made to the STMOT. In Section 3 we apply the STMOT
to the celebrated secretary problem which corresponds to the special case pi = 1/i, 1 ≤ i ≤ n,
and examine the asymptotic behavior as n → ∞. In Section 4 we consider the full-information
analogue of the secretary problem, and derive the optimal rule and the corresponding probability
of win explicitly. We also obtain the asymptotic results using the planar Poisson process model.
See Bruss and Paindaveine (2000), Bruss and Louchard (2009), and Hsiau and Yang (2002) for
other generalizations of the STOT.

2. The general model

In the STMOT, Bernoulli random variables X1, X2, . . . , Xn are assumed to be independent
for a finite n and the payoff for not stopping is assumed to be 0. In this section we attempt to
extend the STMOT into the following directions. First, an infinite number of Bernoulli trials
is allowed. Second, the payoff for not stopping is ω, which may be different from 0. Third,
the Bernoulli random variables are allowed to be dependent. Fourth, at stage i, in addition to
observing Xi , other dependent random variables are allowed to be observed that may influence
the assessment of the probability of success at future stages. The method we use here is to
modify the original problem into a monotone stopping problem by not allowing stopping on a
failure, and then apply a simple result that gives conditions for the one-stage look-ahead rule
(the 1-sla rule) to be optimal in a monotone problem (see, e.g. Ferguson (2006, Chapter 5) or
Chow et al. (1971)). This method is exactly the same as that which Ferguson (2008, Section 2)
used to extend the STOT, so we mimic his argument throughout this section.

Since stopping on a failure is forbidden, the notion of a ‘stage’must be changed accordingly,
that is, a stage is defined to contain all the observations up to and including the next success if
any. Let Zi, i = 1, 2, . . . , denote the set of random variables observed after success i −1 up to
and including success i. If there are less than i successes, we let Zi = 0, where ‘0’ represents
a special absorbing state. Thus, we treat the following general model. Let Z1, Z2, . . . be
a stochastic process on an arbitrary space with an absorbing state called 0. We make the
assumption that, with probability 1, the process will eventually be absorbed at 0. We observe
the process sequentially and must predict within m stages in advance when the state 0 will first
be hit. If we predict correctly, we win 1, if we predict incorrectly, we win nothing, and if the
process hits 0 before we predict, we win ω (it is assumed here that ω < 1, because, if ω ≥ 1,
it is clearly optimal never to stop). This is a stopping rule problem in which stopping at stage
k yields the payoff

Yk = ω 1(Zk = 0) + 1(Zk �= 0) P{Zk+m = 0 | Gk}, k = 1, 2, . . . ,

Y∞ = ω, (2.1)

where Gk = σ(Z1, . . . , Zk) is the σ -field generated by Z1, . . . , Zk and 1(E) represents the
indicator function of an event E. The assignment Y∞ = ω means that if we never stop, we
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win ω. From (2.1) we evaluate

E[Yk+1 | Gk] = ω P{Zk+1 = 0 | Gk} + P{Zk+1 �= 0, Zk+m+1 = 0 | Gk}.
The 1-sla rule calls for stopping at stage k if Yk ≥ E[Yk+1 | Gk]. On the set {Zk = 0}, this
reduces to ω ≥ ω, which is always true. On the set {Zk �= 0}, this reduces to

P{Zk+m = 0 | Gk} ≥ ω P{Zk+1 = 0 | Gk} + P{Zk+1 �= 0, Zk+m+1 = 0 | Gk}. (2.2)

However, an absorbing state 0 implies that {Zj = 0} ⊂ {Zj+1 = 0} for each j , so we easily
see that

P{Zk+m = 0 | Gk} = P{Zk+1 = 0 | Gk} + P{Zk+1 �= 0, Zk+m = 0 | Gk}
and

P{Zk+1 �= 0, Zk+m+1 = 0 | Gk} = P{Zk+1 �= 0, Zk+m = 0 | Gk}
+ P{Zk+m �= 0, Zk+m+1 = 0 | Gk}.

Applying these two expressions to (2.2) yields

(1 − ω) P{Zk+1 = 0 | Gk} ≥ P{Zk+m �= 0, Zk+m+1 = 0 | Gk}.
Therefore, the 1-sla rule is

Nm = min

{
k : Zk = 0 or

(
Zk �= 0 and

Wk

Vk

≤ 1 − ω

)}
, (2.3)

where
Vk = P{Zk+1 = 0 | Gk}, Wk = P{Zk+m �= 0, Zk+m+1 = 0 | Gk}.

If Vk = 0 on {Zk �= 0} then it is a mistake to stop at k since we can do at least as well by
continuing one more step. Therefore, in this and subsequent formulae, we take the ratio in (2.3)
to be +∞ when Vk = 0, even if the numerator is 0 as well.

The problem is said to be monotone if when the 1-sla rule calls for stopping at any stage, then
it will continue to call for stopping at all future stages no matter what the future observations
turn out to be. More specifically, the problem is monotone if

A1 ⊂ A2 ⊂ A3 ⊂ · · · almost surely (a.s.),

where Ak = {Yk ≥ E[Yk+1 | Gk]} for all k. From this we see that a sufficient condition for the
problem to be monotone is

Wk/Vk is a.s. nonincreasing in k. (2.4)

We have the following result.

Theorem 2.1. Suppose that the process Z1, Z2, . . . has an absorbing state 0 such that

P{Zk is absorbed at 0} = 1

and that the stopping problem with reward sequence (2.1) satisfies condition (2.4). Then the
1-sla rule (2.3) is optimal.

Proof. In the present context, it is obvious that |Yn| is bounded by 1 + |ω| and

lim
n→∞ Yn = Y∞ = ω.

These are sufficient conditions under which the 1-sla rule is optimal (see Theorem 1 of Ferguson
(2008)).
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2.1. Application to the STMOT

We return to the problem of stopping on any of the last m successes of a finite sequence of
possibly dependent Bernoulli trials, X1, X2, . . . , Xn. We model the information given to the
decision maker through an increasing sequence of σ -fields, F1, F2, . . . ,Fn, and allow him/her
to use a stopping rule adapted to this sequence. We assume that, for every j , the event {Xj = 1}
is in Fj . In the general model formulation, if the kth success occurs at stage j then Gk = Fj .
Assume that ω = 0. Then the following corollary is immediate from Theorem 2.1.

Corollary 2.1. Suppose that n Bernoulli random variables X1, X2, . . . , Xn are observed
sequentially. Let F1, F2, . . . ,Fn be an increasing sequence of σ -fields such that {Xj = 1} is
in Fj for all 1 ≤ j ≤ n. Let

Vk = P{Xk+1 + · · · + Xn = 0 | Fk}, (2.5)

Wk = P{Xk+1 + · · · + Xn = m | Fk}. (2.6)

Then the optimal rule is described as

Nm = min

{
k ≥ 1 : Xk = 1 and

Wk

Vk

≤ 1

}
, (2.7)

provided that the following condition is satisfied:

Wk/Vk is a.s. nonincreasing in k. (2.8)

This may be considered as a generalized STMOT in the sense that the ratio Wk/Vk in (2.7)
can be written as, from (2.5) and (2.6),

∑
k+1≤i1<i2<···<im≤n

( m∏
j=1

Pk(ij | i1, i2, . . . , ij−1)

1 − Pk(ij | i1, i2, . . . , ij−1)

)
, (2.9)

if we define

Pk(ij | i1, i2, . . . , ij−1) = P{Xij = 1 | Fk, K(i1, i2, . . . , ij )},
where K(i1, i2, . . . , ij ) represents, on the index set S = {k + 1, k + 2, . . . , n}, an information
pattern described as

K(i1, i2, . . . , ij ) = {Xi = 1 for i ∈ {i1, i2, . . . , ij−1}, Xi = 0 for i ∈ S − {i1, i2, . . . , ij }}.

It is easy to see that Corollary 2.1 implies the STMOT. In the STMOT, the Xj are independent
and Fj = σ(X1, . . . , Xj ). So the conditioning in the definition of Pk(ij | i1, i2, . . . , ij−1) may
be ignored, and Pk(ij | i1, i2, . . . , ij−1) = pij . Then from (2.9) we have

Wk

Vk

=
∑

k+1≤i1<i2<···<im≤n

( m∏
j=1

pij

qij

)
, (2.10)

so that in this case, Nm = N∗
m of (1.4). We see from this that the Wk/Vk are nonrandom

and nonincreasing in k because increasing k decreases the possible number of products on the
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right-hand side of (2.10), so that (2.8) is satisfied. Thus, the problem is monotone and the 1-sla
rule, N∗

m, is optimal. Since vm is expressed as

vm =
m∑

j=1

P

{∑
i∈S∗

Xi = j

}
, (2.11)

where S∗ = {sm, sm + 1, . . . , n} and the Xi are independent, we can write

P

{∑
i∈S∗

Xi = j

}
=

∑
sm≤i1<···<ij ≤n

( ∏
i∈{i1,...,ij }

P{Xi = 1}
∏

i∈S∗−{i1,...,ij }
P{Xi = 0}

)

=
(∏

i∈S∗
P{Xi = 0}

) ∑
sm≤i1<···<ij ≤n

( ∏
i∈{i1,...,ij }

P{Xi = 1}
P{Xi = 0}

)

=
( n∏

i=sm

qi

)
Rsm,j ,

which, combined with (2.11), proves (1.3) of the STMOT.

3. Application to the secretary problem

The secretary problem can be described as follows. A known number, n, of rankable
applicants (1 being the best and n the worst) appear one at a time in a random order, with all
n! permutations equally likely. That is, each of the successive ranks of n applicants constitutes
a random permutation. Suppose that all that can be observed are the relative ranks of the
applicants as they appear. If Yj denotes the relative rank of the j th applicant among the first
j applicants, the sequentially observed random variables are Y1, Y2, . . . , Yn. It is well known
that

(a) Y1, Y2, . . . , Yn are independent random variables;

(b) P{Yj = i} = 1/j, 1 ≤ i ≤ j, 1 ≤ j ≤ n.

The j th applicant is called a candidate if he/she is relatively best, i.e. Yj = 1. The problem
we consider here is to stop on any of the last m successes, that is, any of the last m candidates
(stopping is identified with selection of an applicant in the secretary problem). The independent
random variables of Section 1 are therefore X1, X2, . . . , Xn, where Xj = 1(Yj = 1) from (a).
Since pj = P{Xj = 1} = 1/j and so rj = 1/(j − 1) from (b), we immediately have the
following result from the STMOT.

Lemma 3.1. For the secretary problem, the optimal rule passes up the first sm − 1 applicants
and then selects the first candidate, if any, where

sm = min

{
k ≥ 1 :

∑
k+1≤i1<i2<···<im≤n

m∏
j=1

1

ij − 1
≤ 1

}
. (3.1)

The maximal win probability is

vm = sm − 1

n

m∑
k=1

( ∑
sm≤i1<i2<···<ik≤n

k∏
j=1

1

ij − 1

)
. (3.2)
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For small values of n, sm and vm can easily be computed from (3.1) and (3.2), respectively.
For example, we have, for m = 2,

s2 = 2 and v2 = 17
24 ≈ 0.708 for n = 5,

s2 = 3 and v2 = 1303
2016 ≈ 0.646 for n = 10.

Of interest are the approximate values of sm and vm for large n.

Lemma 3.2. Let n tend to ∞. Then, asymptotically,

(i) s∗
m = lim

n→∞
sm

n
= exp{−(m!)1/m},

(ii) v∗
m = lim

n→∞ vm = exp{−(m!)1/m}
m∑

j=1

(m!)j/m

j ! .

Proof. We give an intuitive proof. If we let n tend to ∞ and write s as the limit of k/n,
then, using tj for ij /n and dtj for 1/n, 1 ≤ j ≤ m, the sum in (3.1) becomes a Riemann
approximation to a multiple integral,

∑
k+1≤i1<i2<···<im≤n

(
1

i1 − 1

)(
1

i2 − 1

)
· · ·

(
1

im − 1

)

→
∫

s≤t1<t2<···<tm≤1

(
dt1

t1

)(
dt2

t2

)
· · ·

(
dtm

tm

)

=
∫ 1

s

dt1

t1

∫ 1

t1

dt2

t2
· · ·

∫ 1

tm−1

dtm

tm

= (−log s)m

m! .

Equating this to 1 yields s = s∗
m and proves (i) from (3.1). In a similar way, we have, from (3.2),

vm → v∗
m = (s∗

m)

m∑
j=1

∫ 1

s∗
m

dt1

t1

∫ 1

t1

dt2

t2
· · ·

∫ 1

tj−1

dtj

tj
= (s∗

m)

m∑
j=1

(−log s∗
m)j

j ! ,

which gives (ii) via (i).

Table 1 presents some numerical values of s∗
m and v∗

m for given m. The case in which m = 1
is the classical secretary problem studied in Lindley (1961), Dynkin (1963), and Gilbert and
Mosteller (1966). Our problem seems similar to that of choosing one of the m best considered
in Gusein-Zade (1966), Gilbert and Mosteller (1966), and Frank and Samuels (1980). However,
these two problems are different because the kth last candidate is not necessarily the kth best

Table 1: Values of s∗
m and v∗

m for several m.

m 1 2 3 4 5 10

s∗
m 0.3679 0.2431 0.1625 0.1093 0.0739 0.0108

v∗
m 0.3679 0.5869 0.7260 0.8167 0.8767 0.9822
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among all candidates for k ≥ 2, and the only information available at each stage in our problem
is record (candidate) information and not (relative) rank information. The reader is referred to
Ferguson (1989) and Samuels (1991) for reviews of the secretary problem.

We can easily obtain further asymptotic quantities of interest by using a nonhomogeneous
Poisson process (NPP) model. Presman and Sonin (1972, p. 772) found the NPP to be an
appropriate setting in which to define the infinite version of the secretary problem as the limit
of the corresponding finite problems. This model facilitates the derivation of the asymptotic
values. Suppose that n applicants appear at fractional times 1/n, 2/n, . . . , n/n instead of at
times 1, 2, . . . , n. As k/n → x with n → ∞, we can find from properties (a) and (b) that the
occurrence of candidates in the limiting problem constitutes an NPP with intensity function
λ(x) = 1/x, 0 < x ≤ 1. That is, if we denote by M(s, t) the number of candidates appearing
in the time interval (s, t), 0 < s < t ≤ 1, then

P{M(s, t) = k} = e−�(s,t) {�(s, t)}k
k! , k ≥ 0, (3.3)

where

�(s, t) =
∫ t

s

λ(x) dx = log

(
t

s

)
.

This can be seen as a refinement of Theorem 1 of Gilbert and Mosteller (1966). Let f (x) be
the win probability when we use a (limiting) threshold rule with value x, which stops on the
first candidate that appears after time x, if any. Then, from (3.3),

f (x) =
m∑

k=1

P{M(x, 1) = k} =
m∑

k=1

x(−log x)k

k! .

It is easy to see that f (x) is maximized at x = s∗
m and yields f (s∗

m) = v∗
m, as desired from

Lemma 3.2. Note that the value s∗
m represents not only the optimal threshold value but also the

probability of no choice (no stop), i.e. the probability that no candidate appears until the very
end, which follows from P{M(s∗

m, 1) = 0} = s∗
m. Since M(s∗

m, 1) is a Poisson random variable
with mean �(s∗

m, 1) = −log s∗
m = (m!)1/m, we have the following result.

Lemma 3.3. (i) The expected number of candidates that appear after s∗
m is a geometric mean

of m integers 1, 2, . . . , m, that is,

E[M(s∗
m, 1)] = (m!)1/m.

(ii) The probability of stopping on the kth last candidate conditional on the win being achieved
is

(m!)k/m

k!
/ m∑

j=1

(m!)j/m

j ! , 1 ≤ k ≤ m.

(iii) Let Km be the expected rank of the applicant chosen conditional on stopping. Then

Km = 1
2 [1 + exp{(m!)1/m}].

https://doi.org/10.1239/jap/1285335408 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335408


Sum the multiplicative odds to one and stop 769

Proof. Part (i) is immediate from E[M(s∗
m, 1)] = �(s∗

m, 1). Part (ii) follows because this
conditional probability is just

P{M(s∗
m, 1) = k}∑m

j=1 P{M(s∗
m, 1) = j} .

To prove part (iii), let Tm be the stopping time of the optimal rule, i.e. the arrival time of the
first candidate after s∗

m, if any. If no candidate appears, Tm is defined to be 1. Since Tm > t is
equivalent to M(s∗

m, t) = 0 for t < 1, the density of Tm is

fTm(t) = − d

dt
P{Tm > t} = − d

dt

(
s∗
m

t

)
= s∗

m

t2 .

Obviously, P{Tm = 1} = s∗
m. We only stop on a candidate, i.e. relatively best applicant, so the

expected rank of the applicant chosen at time t is 1/t (see, e.g. Mucci (1973)). Hence,

Km =
∫ 1

s∗
m

1

t

fTm(t)

1 − P{Tm = 1} dt,

which yields (iii).

For example, K1 = 1.859, K2 = 2.557, K3 = 3.577, K4 = 5.073, and K5 = 7.267. These
show that, for small m, the optimal rule chooses a pretty good applicant though it has probability
s∗
m of no choice as a risk. As for the rank minimization problem whose objective is to minimize

the expected rank of the applicant chosen with the severe condition that one applicant must be
chosen, Chow et al. (1964) showed that the minimal asymptotic expected rank is approximately
3.869. See also Krieger and Samuel-Cahn (2009). We can give the arrival time distribution of
the kth last candidate.

Lemma 3.4. Let Zk denote the arrival time of the kth last candidate. Then the density function
of Zk, k ≥ 1, is

fk(z) = (−log z)k−1

(k − 1)! , 0 < z < 1.

Proof. Observe that the event Zk ≤ z occurs if and only if M(z, 1) ≤ k − 1 for each k.
Hence,

fk(z) = d

dz
P{Zk ≤ z} = d

dz

(k−1∑
j=0

P{M(z, 1) = j}
)

= (−log z)k−1

(k − 1)! ,

which completes the proof.

For later use, we return to the finite problem and review the distribution of the number of
candidates. Define

Mn = X1 + X2 + · · · + Xn,

where Xj = 1(Yj = 1) is as defined at the beginning of this section. Then Mn denotes the
total number of candidates. It is well known (see, e.g. Equation (2.5.9) of Arnold et al. (1998)
or Sections 6.2, 6.3, and 9.5 of Blom et al. (1994)) that the probability mass function of Mn is
expressed as

pn(k) = P{Mn = k} = 1

n!
[
n

k

]
, 1 ≤ k ≤ n,
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where the notation
[
n
k

]
, 1 ≤ k ≤ n, 1 ≤ n, is a real number called the Stirling number of the

first kind (see Knuth (1992) for this notation). This number can be simply calculated from the
following recursive relation:[

n

k

]
=

[
n − 1

k − 1

]
+ (n − 1)

[
n − 1

k

]
, 1 ≤ k ≤ n, 2 ≤ n,

with
[1

1

] = 1 and
[
n
k

] = 0 for k = 0 or k > n. Therefore, pn(k) satisfies the recursion

pn(k) = 1

n
pn−1(k − 1) +

(
1 − 1

n

)
pn−1(k), 1 ≤ k ≤ n, 2 ≤ n, (3.4)

with p1(1) = 1 and pn(k) = 0 for k = 0 or k > n.

4. Full-information analogue

In contrast to the no-information problem considered in Section 3, the full-information ana-
logue is the problem in which the observations are the true values of n applicants Y1, Y2, . . . , Yn,
assumed to be independent and identically distributed random variables from a known contin-
uous distribution, taken without loss of generality to be the uniform distribution on the interval
[0, 1]. Let Lk = max{Y1, Y2, . . . , Yk} be the maximum of the first k observations and call the
kth observation or the kth applicant a record if Lk = Yk . It is desired to obtain a stopping rule
that maximizes the probability of stopping on any of the last m successes, that is, the last m

records. The case in which m = 1 is the full-information best-choice problem solved in Gilbert
and Mosteller (1966). For ease of description, let ak = P{Mk < m}, k ≥ 0, be the probability
that the number of candidates is less than m when the total number of applicants is k in the
secretary problem, namely, ak = ∑m−1

i=1 pk(i) for k ≥ m and ak = 1 for k < m (a0 = 1 for
convenience). The main results can be summarized as follows.

Theorem 4.1. (a) Optimal stopping rule: for a given positive integer m, there exists a nonde-
creasing sequence of the thresholds {bj (m), 1 ≤ j} defined as bj (m) = 0 for 1 ≤ j < m and
as a unique solution x ∈ (0, 1) to the equation

j∑
i=m

pi(m)

(
j

i

)(
1 − x

x

)i

= 1 (4.1)

for j ≥ m, such that the optimal rule is to choose the first record Yk(= Lk) that exceeds the
threshold bn−k(m). Henceforth, we simply write bj for bj (m) unless otherwise specified.

(b) Optimal probability: let P ∗
n,m denote the optimal win probability as a function of n and m;

then

P ∗
n,m =

n∑
r=1

P(r),

where

P(1) = 1

n

n−1∑
k=0

ak

(
n − 1

k

) n∑
j=k+1

(
n

j

)
(1 − bn−1)

j b
n−j
n−1 (4.2)

and, for 2 ≤ r ≤ n,

P(r) = 1

r − 1

n−r∑
k=0

ak

(
n − r

k

) r−1∑
i=1

[P1(i, k) + P2(i, k)], (4.3)
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with

P1(i, k) =
n∑

j=k+1

(
n
j

)
(
n
k

) (1 − bn−r )
j b

n−j
n−r − (1 − bn−i )

j b
n−j
n−i

n − k

and

P2(i, k) =
n−r+1∑
j=k+1

(
n−r+1

j

)
(
n−r+1

k

) (1 − bn−i )
j b

n−j
n−i

n − r − k + 1
.

(c) Asymptotics: let cm be the unique root t to the equation

∞∑
i=m

pi(m)
ti

i! = 1; (4.4)

then, as n → ∞,

P ∗
n,m → P ∗

m = e−cmJm(cm) + {Km(cm) − cmJm(cm)}I (cm), (4.5)

where

I (t) =
∫ ∞

1

e−tx

x
dx,

Jm(t) =
∞∑

j=0

aj

tj

j ! =
m−1∑
j=0

tj

j ! +
∞∑

j=m

aj

tj

j ! ,

Km(t) =
∞∑
i=1

min(i, m)
ti

i! +
∞∑

i=m+1

( i−1∑
j=m

aj

)
t i

i! .

Proof. (a) In Corollary 2.1, the Bernoulli random variables are X1, X2, . . . , Xn, where
Xk = 1(Yk = Lk), and the σ -field Fk is the σ -field generated by the variables Y1, Y2, . . . , Yk .
We easily see that

Vk = (Lk)
n−k.

On the other hand, we may compute Wk by conditioning on the number, J , of future observations
whose values are greater than Lk . Here J is a binomial random variable with parameters
(n − k, 1 − Lk), i.e.

P{J = j} =
(

n − k

j

)
(1 − Lk)

jL
n−k−j
k ,

and, moreover, given J = j , the probability that the number of future records (candidates) is
m is pj (m) by exchangeability. Thus,

Wk =
n−k∑
j=m

pj (m)

(
n − k

j

)
(1 − Lk)

jL
n−k−j
k ,

and, hence,

Wk

Vk

=
n−k∑
j=m

pj (m)

(
n − k

j

)(
1 − Lk

Lk

)j

(4.6)
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for k ≤ n − m and 0 otherwise. Since the nondecreasing nature of Lk implies that

1 − Lk

Lk

≥ 1 − Lk+1

Lk+1
a.s.,

we have, for k ≤ n − m − 1,

Wk

Vk

− Wk+1

Vk+1
≥

n−k−1∑
j=m

pj (m)

(
n − k − 1

j − 1

)(
1 − Lk

Lk

)j

≥ 0,

which shows that condition (2.8) is satisfied. Hence, the 1-sla rule, Nm of (2.7), is optimal and
written as, from (4.6) and the definition of the threshold, (4.1),

Nm = min{k ≥ 1 : Yk = Lk ≥ bn−k}.

(b) Let P(r) be the win probability when stopping on the rth observation. If we denote
by W the win event then, conditioning on the rth observation being a record with value x,
i.e. Lr = Yr = x, we can express

P(r) =
∫ 1

bn−r

P{W | Lr = Yr = x}1

r
fr(x) dx, (4.7)

where fr(x) = rxr−1 is a density of Lr . We first consider the case in which r ≥ 2. Note
that, since the threshold bj is nondecreasing, stopping on the rth observation leads to W if and
only if

(i) the previous maximum is less than the corresponding threshold, i.e. Lr−1 < bn−i if
Lr−1 = Yi, 1 ≤ i ≤ r − 1;

(ii) the number of future records is less than m.

Let A and B denote the events in (i) and (ii), respectively. Then it is easy to see that A and
B are conditionally independent given Lr = Yr = x, so

P{W | Lr = Yr = x} = P{A | Lr = Yr = x} P{B | Lr = Yr = x}.

Given Lr = Yr = x, Lr−1 can be viewed as the maximum of r − 1 independent random
variables each uniformly distributed on (0, x), and the arrival time of the previous maximum
is uniform on {1, 2, . . . , r − 1} independently of Lr−1. Hence,

P{A | Lr = Yr = x} = 1

r − 1

r−1∑
i=1

[
min(x, bn−i )

x

]r−1

. (4.8)

On the other hand, we have

P{B | Lr = Yr = x} =
n−r∑
k=0

ak

(
n − r

k

)
(1 − x)kxn−r−k, (4.9)
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using a similar reasoning to that used to derive Wk in (a). Therefore, we have, from (4.7)–(4.9),

P(r) = 1

r − 1

n−r∑
k=0

ak

(
n − r

k

)

×
r−1∑
i=1

{∫ bn−i

bn−r

xn−k−1(1 − x)k dx + br−1
n−i

∫ 1

bn−i

xn−k−r (1 − x)k dx

}
,

which gives (4.3) via the well-known formula

∫ 1

c

xm−1(1 − x)n−1 dx =
m+n−1∑

j=n

(
m+n−1

j

)
(
m+n−1

n−1

) (1 − c)j cm+n−1−j

m

for 0 < c ≤ 1 and positive integers m and n. The case in which r = 1 is special. Stopping
on the first observation leads to W if and only if the number of future records is less than m.
Hence, substituting

P{W | L1 = Y1 = x} =
n−1∑
k=0

ak

(
n − 1

k

)
(1 − x)kxn−1−k

into (4.7) yields (4.2).
(c) To derive the asymptotic result (4.5), we can use a planar Poisson process (PPP) model

which is known to facilitate the derivation of the asymptotic values for some full-information
problems (see, e.g. Gnedin (1996), (2004), Samuels (2004), Bruss and Swan (2009), and Tamaki
(2009)). According to Samuels (2004, Sections 9 and 10), we use a Poisson process with unit
rate on the semi-infinite strip [0, 1] × [0, ∞). This turns the problem upside down, making the
‘best’ become the ‘smallest’. The process is scanned from left to right by shifting a vertical
detector and the scanning can be stopped each time a point in the PPP, referred to as an atom
henceforth, is detected. A link to the finite problems can be established by suitably embedding
the finite independent and identically distributed sequences in the PPP in a similar manner
as given for the Gilbert and Mosteller full-information best-choice problem in Gnedin (1996,
Section 3).

Suppose that an atom is identified as a point (t, y) if the atom appears at time t as a record
(the relatively best atom as in the finite problem) having value y in the PPP. Let Qk(t, y)

denote the probability that k records appear in the future after skipping the point (t, y). Then
if we denote by PPoisson(j, µ) the Poisson probability of j events for a given mean µ, i.e.
PPoisson(j, µ) = e−µ(µ)j /j !, we have

Qk(t, y) =
∞∑

j=k

pj (k) PPoisson(j, y(1 − t)), k ≥ 0, (4.10)

because PPoisson(j, y(1 − t)) is the probability that there exist j atoms in the box domain
[t, 1] × [0, y] whose area is y(1 − t) and, conditional on there being j atoms, the probability
that k of them are records is pj (k) by exchangeability.

Let, in particular,

V (t, y) = Q0(t, y), W(t, y) = Qm(t, y).
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Solving for the locus of point (t, y) at which the win probability, if we stop immediately, is
equal to the win probability when stopping on the next record, if any, or, equivalently,

m−1∑
k=0

Qk(t, y) =
m∑

k=1

Qk(t, y),

yields W(t, y)/V (t, y) = 1, which implies that y(1 − t) = cm, where cm, is defined by (4.4)
(for simplicity, we write c for cm throughout the proof). Since W(t, y)/V (t, y) ≤ 1 implies
that W(t ′, y′)/V (t ′, y′) ≤ 1 for t ′ > t, y′ < y, we are in the monotone case of optimal stopping
(continuous analogue of Corollary 2.1) and we can conclude that the optimal rule stops with
the first record, if any, that lies below the threshold curve y = c/(1 − t). Let T be the arrival
time of the first (leftmost) atom that lies below the threshold curve y = c/(1 − t), and let S be
the time when the value of the best (lowest) atom above the threshold is equal to the threshold.
Then T and S are independent and their distributions are given by

P{T > t} = PPoisson

(
0,

∫ t

0
g(r) dr

)
, (4.11)

P{S > s} = PPoisson

(
0,

∫ s

0
(g(s) − g(r)) dr

)
, (4.12)

where g(r) = c/(1 − r), 0 < r < 1.
Considering that the win probability when we stop at point (t, y) is

u(t, y) =
m−1∑
k=0

Qk(t, y), (4.13)

we have, by exploiting the virtual stopping time min(S, T ) which makes the calculations
simpler,

P ∗
m =

∫ 1

0

∫ t

0
u

(
s,

c

1 − s

)
fS(s)fT (t) ds dt

+
∫ 1

0

∫ s

0

(
1 − t

c

∫ c/(1−t)

0
u(t, y) dy

)
fT (t)fS(s) dt ds, (4.14)

where fT (t) and fS(s) are the densities of T and S, respectively.
We have, from (4.13) and (4.10),

u

(
s,

c

1 − s

)
=

m−1∑
k=0

∞∑
j=k

pj (k) PPoisson(j, c)

=
m−1∑
j=0

( j∑
k=0

pj (k)

)
PPoisson(j, c)

+
∞∑

j=m

(m−1∑
k=0

pj (k)

)
PPoisson(j, c)

=
m−1∑
j=0

PPoisson(j, c) +
∞∑

j=m

aj PPoisson(j, c)

= e−cJm(c). (4.15)
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Similarly, ∫ c/(1−t)

0
u(t, y) dy =

m−1∑
k=0

∞∑
j=k

pj (k)

∫ c/(1−t)

0
e−y(1−t) [y(1 − t)]j

j ! dy

= (1 − t)−1
m−1∑
k=0

∞∑
j=k

pj (k)

∫ c

0
e−x xj

j ! dx

= (1 − t)−1
m−1∑
k=0

∞∑
j=k

pj (k)

( ∞∑
i=j+1

PPoisson(i, c)

)
, (4.16)

where the last equality follows from the well-known identity which states that, for any c > 0, the
event ‘there are more than j arrivals by time c’ is the same as the event ‘the waiting time for the
(j + 1)th arrival is less than c’. However, interchanging the order of summation successively,
we have

m−1∑
k=0

∞∑
j=k

pj (k)

( ∞∑
i=j+1

PPoisson(i, c)

)

=
m−1∑
k=0

∞∑
i=k+1

( i−1∑
j=k

pj (k)

)
PPoisson(i, c)

=
m∑

i=1

[ i−1∑
k=0

( i−1∑
j=k

pj (k)

)]
PPoisson(i, c) +

∞∑
i=m+1

[m−1∑
k=0

( i−1∑
j=k

pj (k)

)]
PPoisson(i, c)

=
m∑

i=1

[ i−1∑
j=0

( j∑
k=0

pj (k)

)]
PPoisson(i, c)

+
∞∑

i=m+1

[m−1∑
j=0

( j∑
k=0

pj (k)

)
+

i−1∑
j=m

(m−1∑
k=0

pj (k)

)]
PPoisson(i, c)

=
m∑

i=1

i PPoisson(i, c) +
∞∑

i=m+1

(
m +

i−1∑
j=m

aj

)
PPoisson(i, c)

= e−cKm(c). (4.17)

Substituting the three expressions (4.15)–(4.17) into (4.14), we obtain

P ∗
m = e−cJm(c) P{S ≤ T } + e−cc−1Km(c) P{S > T }

= e−cJm(c) + (Km(c) − cJm(c))e−cc−1 P{S > T }. (4.18)

Note that we have, from (4.11) and (4.12),

P{S > T } =
∫ 1

0
P{S > t}fT (t) dt

=
∫ 1

0
(1 − t)−ce−ct/(1−t)c(1 − t)c−1 dt

= cecI (c),

which, combined with (4.18), gives the desired result (4.5). Thus, the proof is complete.
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Table 2: Values of cm and P ∗
m for several m.

m 1 2 3 4 5 10

cm 0.8044 1.5151 2.3731 3.3573 4.4523 11.2433
P ∗

m 0.5802 0.8424 0.9465 0.9834 0.9953 0.9999

Table 2 presents some numerical values of cm and P ∗
m.

Remark 4.1. Since pn(n) = 1/n!, (4.1) for j = m can be written as

1

m!
(

1 − x

x

)m

= 1,

which yields

bm(m) = 1

1 + (m!)1/m
.

Similarly, considering that

pn(n − 1) = 1

2 · (n − 2)! , pn(n − 2) = 3n − 1

24 · (n − 3)! ,

which can be obtained from the recursive formula (3.4), we have, as another expression of (4.1)
for j = m + 1 and j = m + 2,

m + 1

m!
(

1 − x

x

)m

+ 1

2 · (m − 1)!
(

1 − x

x

)m+1

= 1 (4.19)

and

(m + 1)(m + 2)

2 · m!
(

1 − x

x

)m

+ m + 2

2 · (m − 1)!
(

1 − x

x

)m+1

+ 3m + 5

24 · (m − 1)!
(

1 − x

x

)m+2

= 1,

respectively. In particular, from (4.19), b2(1) = (1 + √
6)/5 and b3(2) = √

3/3.
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