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Abstract

Conditions are found for the existence of supplementary difference sets consisting of cosets of
e-th power residues modulo a prime p. For e = 4,6 and 8 all known pairs of sets are listed in the
summary.

Some 20 years ago there was a great deal of interest in difference sets from
various points of view and it was realized at that time that difference sets
composed of cosets of e-th power residues modulo a prime p = ef + I provided
the majority of known examples. Criteria for the existence of these residue sets
were established and a systematic survey of all possible residue sets for small
values of e was undertaken by various writers, see Hall (1956) and Baumert
(1971).

About five years ago George Szekeres (1971) introduced pairs and families
of supplementary difference sets SDS in which the differences are taken within
the sets, but not between the sets. Once again the known examples consisted of
combinations of cosets of e-th power residues. It seems appropriate at this time
to embark on a systematic development of existence criteria for SDS residue sets
in general and to apply them to an exhaustive study of small values of the
parameters.

In general we can consider a system Sm of m distinct sets So, S,, Su • • •, Sm-U

the n-th set Sn consisting of a union of t distinct cosets of e-th power residues of
a prime p = ef + 1, so that

(1) Sn = Gv>+£(»>+••• +G<-> (n = 0 , 1 , • • - , » ! - 1 ) .

Such a system Sm is usually denoted by m - {p, tf, A}, where
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(2) X = mt(tf-l)/e.

We can assume that both ; and m do not exceed e/2 and that 1m does not
include every coset in order to avoid some trivial cases. The extreme case
t = m = e/2 was recently considered by the writer (1974). The other extreme
case t = m = \ brings us back to ordinary difference sets Co. It is well known that
for such sets to exist e must be even and / odd.

The proof of this follows from the condition for the existence of a difference
set in terms of the cyclotomic numbers (/,;'), which enumerate the number of
times that an element of class C is followed by an element of class Q. This
condition is

(3) (0,0) = (1,0)=-- — (e -1 ,0 ) .

More generally, since the number of times that an element of class Ck is the
difference between elements of class Q minus Q is (z, - k, z, - k), where z, is in
C and Zj is in Ch it follows that if Ak is the number of times that element of Ck is
the difference between elements of the system Sm, then

The condition corresponding to (3) for Sm to be an SDS becomes

(5) An = Ai = • • • = A,.-,.

In order to find conditions for the existence of residue SDS and to find such
sets we will need to remember a few simple facts about the cyclotomic numbers
(i,/), namely:

I (j, i) if / is even

0' + E,i + E) if / is odd and e = 2£.

and fl (mod2) if 2GC,
y ' n 10(mod2) otherwise.

Armed with these facts we can prove the following:

THEOREM 1. If the SDS 2m contains a coset Cn an odd number of times and
does not contain every coset of p = ef + 1, then e is even and f is odd.

PROOF. Suppose, if possible, that / is even. From (4) we have

(8) A* =2 2 2 (z^>-fc,z<-)-/c)+E'S(^"')-fc,zr)-fc).
a i j o n i o
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Using (6) this gives

(9) Al Sn(0,2!"-k) (mod 2)
K=-0 i=O

Now let 2 belong to CT and let k = zn - T, where zn is any element of Cn.
Then the sum in (9) will contain the terms (0, T) an odd number of times and
hence by (7), \k will be odd. On the other hand for k = zu — T, where Cu is not in
Xm, (9) will not contain the term (0, T) and therefore Ak will be even. Hence
condition (5) is not satisfied and Sm is not an SDS for / even. Therefore / must
be odd and hence e must be even. This proves the theorem.

We note that for / odd and e = IE it follows from (4) and (6) that At = At+E

so that condition (5) becomes

(10) Ao= A, = ••• = AE_, if / is odd.

We also note that for m = 1 and 2 and any t as well as for t = 1 or 2 and any m
one coset must come in an odd number of times and the hypothesis of Theorem 1
satisfied, so that in these cases / is odd and e = 2E.

We will now consider in detail the case m = 2. In the first place if we have an
ordinary difference set with m = 1, usually normalised to contain G>, then it can
be multiplied by an element of d to give another difference set, thus giving a
system with m = 2. We shall call such a system derived, and ask if there exist
non-derived systems with m = 2.

We will start with m = 2, t = 1, So = Co, S, = C, then z{,0) = 0, and z^ = i
and (4) becomes in view of (6)

(11) A*=(fc,O)+(Jfc-i,O) (k = 0 , 1 , • • • , £ - 1 ) .

We note that by (6) if i = E, then

(12) At=2(/c,0) (k = 0 , 1 , • • • , £ - 1 ) .

Hence condition (10) is the same as (3) and we have:

THEOREM 2. There are no non-derived SDS with So = Co and S, = CE ofe-th
power residues.

We can now assume that i/ E. If i is prime to E and E is odd, then putting
k = iv in (11) and using (6) we find that (10) leads to (3).

THEOREM 3. There are no non-derived SDS ofe-th power residues ifE is odd
and i is prime to E of the type Co and Q.

COROLLARY. There are no non-derived SDS Co and Q ifE is an odd prime.

If E is even and i is prime to £, then condition (11) becomes
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(i,0) = (3i ,0)= ••• = ( ( £ - l ) i , O )
(13)

(0,0) = (2i ,0)= ••• = ( ( £ - 2 ) i , 0 )

For e = 4, condition (13) is trivially satisfied for i odd since (1 ,0 )= (3,0) and
(0,0) = (2,0) by (6). Hence we have:

THEOREM 4. The only non-derived SDS for e = 4, m = 2 and t = 1 are Co

and C, (or Co and C3) /or p = 8n + 5 giuen fry 2 - {p, f,(f- l)/2}.

For example p = 13, Co = 1,3,9 and G = 2,5,6, with A = 1.

By Theorem 3 there are no non-derived sets for e = 6 and e = 10. For e = 8
conditions (13) are

(1,0) =(3,0) and (0,0) = (2,0) if i is odd.

Consulting the expressions for the cyclotomic numbers Lehmer (1955) or Storer
(1967) in terms of p = a2 + 2b1 = x2 + 4y2 = 9 (mod 16) we find that (1,0) = (3,0)
if 2 is a quartic residue, but if 2 is not a quartic residue then (1,0) = (3,0) implies
b = 0 and hence that p is not a prime. In case 2 is a quartic residue the second
condition (0,0) = (2,0) implies a = 1, or p = l + 2b2.

If i is even than by (11) the condition is

(0,0)+ (2,0) = (1,0)+ (3,0)

and this implies 1 + x = - 2a. Hence we have:

THEOREM 5. Fore = 8, the only SDS with m = 2, t = 1 are 2 - {p, f, (f - l)/2}
with So = Co and S, = C, with i odd and 2 a quartic residue of p = 1 + 2b2 = 9
(mod 32); or with i oddly even and p = a2 + 2b2 = x2 + 4y2 = 9 (mod 32), and
1 + x = — 2a. These sets are not derived unless 2 is a quartic residue and a = 1,
x = -3, as in p = 73.

For m = 1, t = 2, the only known diflerence set was given by Hayashi (1965)
for e = 10, p = 31, So= Co + C\ (or Co + C9) based on the primitive root g = 11.
Hence we have a derived SDS So= C + d , S, = Co+ C9 for e = 10. We next
inquire into the possibility of non-derived sets So = Co + G, Si = Co + C,
OV/VO).

We first note that for m = t = 2, A = 4(2/ - l)/e, / odd and hence there are
no such sets if e is divisible by 8, and that A is odd if e is a multiple of 4 and even
if e is oddly even. From (4)

A* = 2(Jk,0) + (k, i)+ (k, j) + (k- i, 0) + (fe - y, 0) + (it - i, - i)

(14) +(k-/,-/) = 2(2/-l)/E.
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In particular

(15) Ao = 2(0,0) + (0, i) + (0, /) + ( - i, 0) + ( - /, 0) + (i, 0) + (j, 0).

(16) A. = 2(i, 0) + ( - i, 0) + (i, j) + (0,0) + (i - /, 0) + (0, - i) + (i - y, - /).

(17) A, = 20; o)+(/, i) + ( - /, o)+o" -', °)+(°' o) + (/' -«, - 0 + (o, - /).

If yV ' + E these give us two conditions from Ao = A* and Ao = A,,

(0,0) + (0, i) + (0,/) + ( - /,0) + (/, 0) = (i, 0) + (i,y) + (j - j , 0)

(18) + ( 0 , - 0 + ( « - / , - / )

and

(0,0) + (0, i) + (0,y) + ( - i, 0) + («, 0) = (j, 0) + (/, /) + 0' ~ »»°)

(19) + ( 0 , - / ) + ( i - / , - / ) .

If / = - / these simplify to read

(0,0) + (0, i) + ( - i, 0) = (/, - i) + (2i, 0) + (2«, i)
(20)

(0,0) + (0, - j) + (/,0) = ( - j , i) + ( - 2i,0) + (2i, i).

If y = i + £ then (15) and (16) become

2(0,0) + (0, i) + (0, i + £ ) + 2( - i, 0) + 2(i, 0) = Ao
(21)

2(i, 0) + 2( - i, 0) + (0, E - i) + 2(0,0) + (0, - i) = A,

Instead of (17) which is the same as (16) we can use

(22) A2j = 2(2i, 0) + (2i, i) + (2i, i + E) + 2(i, 0) + ( / , - / ) + ( - /, /)

to obtain conditions from Ao = A< and Ao = An as follows:

(23) (0, i) + (0, i + E) = (0, E-i) + (0, - i)

and
2(2i, 0) + (2i, i) + (2i, i + E) + (i, - i) + ( - «, i) = 2(0,0) + 2( - i, 0)

(24) +(0,£ + i) + (0,i).

If 2i = £ then condition (23) is trivially satisfied. Since for e = 4 this is the
sole condition we obtain once more the original Szekeres pair of sets Co + Ct and
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Cn+ C3. If 2iV E, then all the terms of (23) are even, for only one of them can be
odd by (7), hence Ao and therefore A must be even, but that implies that E is odd
and we have:

THEOREM 6. For m = t = 2 there is no SDS of e-th power residues of the type
Co+Q and Co+Ci+E with E even and zY E/2.

If / = E we have from (15), (16) and (17)

(25) Ao = 4(0,0) + (0, z) + (0, E) + ( - i, 0) + (z, 0)

(26) Af = 3(i,0) + ( - z, 0) + (0, i + E) + (0,0) + (0, - i) + (0, i)

Hence Ao = A, implies

(27) 3(0,0) + (0, E) = 2(i, 0) + (0, - i) + (0, i + E).

For e = 4 this becomes for z = 1, j = 2, p = x2 + Ay2,

3(0,0)+ (0,2) = 2(1,0)+ 2(0,3).

But 3(0,0)+(0,2) = (p -5 ) /4 , while 2(1,0)+ 2(0,3)= y + (p - l)/4. This implies
that y = - 1. If i = 3, we get y = 1. In either case p = x2 + 4.

These sets 2-{p,2f,2f- 1} consisting of Co+Ct and Co+C2 were dis-
covered by Wallis (1973).

For e = 6, £ = 3, A = 2(2/ - l)/3, p = 31 (mod 36). In case / = z + 3, condi-
tions (23) and (24) give for i = 1 or i = 2

(28) (0,1) + (0,4) = (0,2) + (0,5) = 3(1,2) + (2,1) - 2(0,0).

Since only one of (0, z) can be odd by (7) this implies that 2 must be a cubic
residue of p = L2 + 27M2. Looking up the cyclotomic numbers in terms of L and
M we find that (27) implies that L = - 2 and hence that p = 4 + 27M2.

THEOREM 7. T/ie fwo sefs of sextic residue cosets Co + d and Co + C4 (or
Co + C5) are SDS 2 - {p, 2/, 2(2/ - l)/3} if and only ifp=4 + 27M2 = 31 (mod 36).

For p =31 , So =1,2,3,4,6,8,12,16,17,24

S,= 1,2,4,7,8,14,16,19,25,28

and A = 6. These SDS appear to be new.
If / = - z, then conditions (20) become for e = 6

(0,0)+(0,1) = (1,2)+ (2,1) = (0,0)+(0,5) if z = 1 or 5
and

(0,0)+ (0,2) = 2(1,2) = (0,0)+ (0,4) if i = 2 or 4.

But both (0,1) = (0,5) and (0,2) = (0,4) lead to y = 0 in p = x2 + 3y2 and hence:
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THEOREM 8. There is no SDS of sextic residues of the type Co + C and
Co + C-i with i^ E and p a prime.

If i or / is E we can inquire about the pair of sets Co + G and Co + CE.
Using (27) this implies by (7) that 2 is not a cubic residue and is not in Ci+E or
C-i. Hence for e = 6 it is in G or in G-E. Noting that

(', })B = (i, /) + (i, / + £ ) + (i + £, /) + (i + E, / + E)

(27) can be written

(29) ( 0 , 0 ) E - ( 0 , « ) E = ( 0 , - i ) - ( 0 , i ) ,

while the condition Af = A2, becomes

(30) (0,0)E - (0,2i)E = (2i, 0) + (2i, i) + (i, - 0 - (0,0) - (0, i) - ( - i, 0).

For i = 1, this simplifies to

(0,0),-(0,1)3 = (0 ,5)-(0 ,1)

(0,0)3 - (0,2)3 = (1,2) + (2,1) - (0,0) - (0,1).

Substituting the appropriate expressions for (i,j) when 2 is in d in terms of x, y
in p = x2 + 3y2 we obtain 3x — 4y = 4 and x — 2y = 6 which implies x = — 8,
y = — 7, p = 211 and we have a SDS for Co+ Ct and Co+ C3 with parameters
2-{211,70,46} with 2 in C,. If 2 is in C2 the corresponding discussion leads to
x = 10, y = 7, but unfortunately jc2 + 3y2 = 247= 13.19 is not a prime, hence
there is no such set.

If i = 2 conditions (29) and (30) become

(0,0) , - (0 ,2) , = (0 ,4)- (0 ,2)

(0,0)3 - (0,1)3 = 2(1,2) - (0,0) - (0,2)

which exclude the case i = 2 by (7) as 2 cannot belong to any coset. Hence:

THEOREM 9. The only SDS of sextic residues of the type Co + G and Co + C3

is 2-{211,70,46} for i = l and 2E C, (or i=5 and 2e C5).

This disposes of all possible sets with m = t =2 and e = 6, except the cases
i = l, / ' = 2 and j =2, j = 4. Using (18) and (19) we have

(0,0) + (0,l) + (0,2) = (0,5) + 2(l,2) = (0,4) + (l,2) + (2,l) if i = l , / = 2

(0,0)+ (0,2)+ (0,4) = (0,4)+ 2(12) = (0,2)+ 2(1,2) if j = 2, j = 4.

Hence for i = 2 we have (0,2) = (0,4) which leads to y = 0 in p = x2 + 3y2,
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so there is no set for p a prime. For i = 1, however, parity conditions on the (0,;)
imply that 2 must be in class C3 or C4. If 2 is a cubic residue, then (0,4) = (0,5)
and (1,2) = (2,1) so that we have a single condition L + 1 = 9M in p =
4L2 + 27M2. For example there is an SDS for p = 283, namely, 2-{283,94,62}
composed of sextic cosets Co + C\ and Co + C2.

When 2 is in C4 relations (31) do not lead to a possible set. Thus we have:

THEOREM 10. The two sets of sextic residues Co + d and Co + C2i give an
SDS 2 - {p, 2/, 2(2/ - l)/3} if and only if, i = 1, p = 4L2 + 27M2 with L + 1 = 9M.

Thus all possible SDS made up of sextic cosets are given by Theorem 7, 9
and 10. (See Summary.)

For m = 2, t = 3, e = 6 we have discovered the sets 2-{19,9,8} of sextic
cosets as the only set of the type So = Co + Q + CE and Co + C-t + CE with i = 1
or i = 2. There are no SDS of this type for e = 8.

For m = 2, / = 4, e = 8, Szekeres (1971) gave the set Co + d + C2 + C3 and
Co + d + C6 + C7 for an even power of a prime, but no sets have been found for
p a prime, however an exhaustive search has not been undertaken.

For m = t = E there exist SDS for every p = 2Ef + 1 with / odd. These are
given in Lehmer (1974).

Summary of known SDS with m =2

t e So S, Form of p least p

1

2

3

4
8
8

4
4
6

6
6
6
6
6
6
6
6
6

6
6

Co
Co
Co

co+c,
co+c,
Co+C,

Co+C,
Co+C,

co+c,
co+c2
co+c,
co+c2

Co+C,
Co+C,
Co+C,

Co+C + G
Co+C+C,

c,
c,
c2

co+c2
Co+C,
Co+C,

•

Co+C,
C0+C4
Co+C,
Co+C,
Co + C4

Co+C,

co+c4
co+c5
Co+C,

Co+C,+ C5

C0+C+C4

p = 5 (mod 8)
p = l+2fc2=x2+16y2

p = a2 + 262 = x2 + 4y2

x = - (2a + l)
p = x2 + 4
p = 5 (mod 8)
p =4u 2 + 27u2

u = 9 u - l
p = 211 with 2 £ C ,
p = 4 + 27y2

No Solution
No Solution
No Solution

p = 4 + 27y2

No Solution
211 with 2 E C 5

p =4u 2 + 27t)2

u =9v - 1
p = 19
p = 19

13
13
41

13
13

283

211
31

31

211
283

19
19
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