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1. Introduction. Let R be a semiprime ring (possibly without 1). The symmetric
ring of quotients of R is defined as the set of equivalence classes of essentially defined
double centralizers (f, g) on R; see [1], [8]. So, by definition, / is a left /?-module
homomorphism from an essential ideal I of R into R, g is a right /^-module
homomorphism from an essential ideal J of R into R, and they satisfy the balanced
condition f(x)y=xg(y) for xel and ye J. This ring was used by Kharchenko in his
investigations on the Galois theory of semiprime rings [4] and it is also a useful tool for
the study of crossed products of prime rings [7]. We denote the symmetric ring of
quotients of a semiprime ring R by Q(R).

If A is a C*-algebra then we can consider the filter £F of closed essential ideals of A,
directed downwards by inclusion. We denote by Qb{A) the algebraic inductive limit of
(Af(/))/egjr, where M{1) denotes the C*-algebra of multipliers of /, and we call it the
symmetric normed algebra of quotients of A. Clearly Qb(A) is a pre-C*-algebra and its
completion, i.e. the C*-algebra inductive limit of (M(/))/e3f is Pedersen's algebra of
essential multipliers of A [3], [9]. However, we shall not consider this completion here.
We also note that a symmetric normed algebra of quotients has been introduced and
studied recently by Mathieu [5] in the setting of ultraprime Banach algebras.

It is shown in [1] that Qb(A) is the bounded subring of Q(A). The purpose of this
note is to use some recent results of N. C. Phillips [11] to prove a stronger relation
between Qb{A) and Q(A) (see Theorem 2.1 below). We use this theorem to obtain a
characterization of the C*-algebras A such that Qh(A) = Q(A). In particular, we see that
prime C*-algebras satisfy this condition.

2. The results. Let A be a C*-algebra. We view A as a subalgebra of Q{A) via the
regular representation a*-^[{Ra, La)\, where Ra (resp. La) denotes right (resp. left)
multiplication by a. The involution of A extends to a positive definite involution on Q(A)
by the formula [(f, g)]* = [(g*,f*)]; see [1]. By [1, Theorem 1.3], we can identify Qh(A)
with the *-subalgebra of Q(A) consisting of the elements of Q{A) which are bounded
with respect to the partial order on Q(A) obtained by taking as a positive cone the set

Let R be a ring with unity and let M be the set of elements in Z(R) which are not
zero-divisors in Z(R). If each element in M is not a zero-divisor in R, then we can form
the central localization of R, RM~\ The elements of RM~X are of the form ab~l where
a e R and b e M.

Let A be a C*-algebra and let x be an element in Z(Qb(A)) such that x is not a
zero-divisor in Z(Qb(A)). Since A <=. Qh{A), x belongs to the extended centroid of A,
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C(A), which is, by definition, the centre of Q(A) and coincides with the centralizer of A
in Q(A); (see [1], [6]). Now C(A) is a von Neumann regular ring [6, Theorem 3.3, (2)]
and, since C(A) has a proper involution, it is a "-regular ring in the sense of [2, p. 229].
By [2, Proposition 51.3], there exists y e C(A) such that x = x2y and e : = xy is a projection
in C(A). In particular e is bounded and consequently e e Z(Qb(A)). Since (1 — e)jc = 0 we
obtain e = 1 and so or is invertible in Q(A). In particular * is not a zero-divisor in Qb(A).

It follows that we can form the central localization of Qb(A) and it is a subalgebra of
Q{A).

THEOREM 2.1. If A is a C* -algebra then Q(A) is the central localization of Qb(A).

Proof. Let q = [(/, g)] be an element of Q{A), where (/, g) is an essentially defined
double centralizer on A. Obviously we can assume that/and g are defined on the same
essential ideal / of A. Let K, be the Pedersen's ideal of /, the norm closure of / in A.
Then Kt<=.I and, since K, = K2, we see that f(K,) <= K, and g(K,) cz K,. So (/, g) induces
an element of the algebra of multipliers of K,, and clearly K, is an essential ideal of A.

Let {/A}A.EA be a maximal family of nonzero pairwise orthogonal ideals of A such that
JK a K, and with the property that/j^ and g^ are bounded. We claim that / = 0 Jx is an

AeA

essential ideal of A. If / is not an essential ideal of A then there exists a nonzero closed
ideal L of A such that LJx = 0 for all A e A. Now choose a nonzero element a e (L D #/)+.
Then by [11, Theorem 2 and Proposition 3] we obtain a unique (T, S) e M(AaA) such
that T^=f\^A and 5 | ^ = g|^. It follows that (T, S) coincides with (/, g) on KtC\AaA
and so the restrictions of / and g to /C,n/IM are bounded, which contradicts the
maximality of the family {/I}A6A- _

Now set Ux = {t ePriirM \jx<^t} = {/ePrim/1 \jk<f:t}. Then (/A are pairwise dis-
joint open subsets of Prim/4, the primitive spectrum of A and U = {J Ux corresponds to
J = 0 Jx- We define a function q>:U—>C by

AeA

if / e Ux • Then <p is a continuous bounded function on U and so by the Dauns-Hofmann
Theorem [10, 4.4.8] there exists z e Z(M(J)) such that za +1 = <p(r)a +1 for all a e J and
re (/. It follows that qo:=zq is bounded on J. Since / is essential in A we obtain that
<7o€ 2fc(-^)- Clearly, 2 is not a zero-divisor in Z(2/,(^)) and so q = z~lqQ, which shows
that Q(A) is the central localization of Qh(A). •

PROPOSITION 2.2. Let A be a C* -algebra. The following conditions are equivalent:
(0 Q(A) = Qb(A),
(ii) Z(Q(A)) = Z(Qb(A)),

(iii) any family of pairwise disjoint open subsets of Primal is finite,
(iv) Z(Q(A)) is finite-dimensional,
(v) any double centralizer defined on an ideal of A is bounded.

Proof. Obviously (i)=>(ii) and, by Theorem 2.1, (ii)=>(i).
By [1], Z(Q(A)) s j im C(U) and Z(Qb(A))=\\m Cb(U), where 2 is the family of

t/e® lie®

dense open subsets of Primy4 and C(U) (resp. Cb(U)) denotes the algebra of continuous
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(resp. bounded continuous) complex-valued functions on U. From this the implications
(ii)O(iii)<=>(iv) follow easily.

It is obvious that (v) implies (i).
Assume now that (i) holds and let (/, g) be a double centralizer defined on an ideal /

of A. Let L be the left annihilator of / in A. Then L coincides with the right annihilator of
/, L is an ideal of A and / © L is an essential ideal of A. By using f(I)L = 0 and
Lg(I) = 0, we see that we can extend (/, g) to a double centralizer (f,g)onI(BL by
putting f(x +y) =f(x) and g(x+y) = g(x) for xel, yeL. Therefore we can assume
without loss of generality that / is an essential idea of A.

By (i) there exists an essential ideal J of A such that 7 c / with f\j and g|7 bounded. If
/ is not bounded then there exists a sequence {xn} a I such that ||jcn||<l and
Il/C^n)!!"*00- Now since J is essential in A we have H/OOll = ll^«|y|l = ll^n|y|| where Rn

(resp. Ln) denotes right (resp. left) multiplication by f(xn). It follows that there exist
zneJ with | |zn | |<l such that \\znf(xn)\\^><x>. Since znf(xn)=f(znxn) this leads to a
contradiction. So any double centralizer defined on an ideal of A is bounded and
consequently (v) holds. •

Finally we state two immediate consequences of Proposition 2.2.

COROLLARY 2.3. (i) If A is a prime C*-algebra then every double centralizer defined
on an ideal of A is automatically continuous.

(ii) / / Prim A is Hausdorff then Q(A) = Qb(A) if and only if Trim A is finite.
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