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Abstract

In this article, we review known results and present new ones concerning the power spectra
of large classes of signals and random fields driven by an underlying point process, such
as spatial shot noises (with random impulse response and arbitrary basic stationary point
processes described by their Bartlett spectra) and signals or fields sampled at random
times or points (where the sampling point process is again quite general). We also obtain
the Bartlett spectrum for the general linear Hawkes spatial branching point process (with
random fertility rate and general immigrant process described by its Bartlett spectrum).
We then obtain the Bochner spectra of general spatial linear birth and death processes.
Finally, we address the issues of random sampling and linear reconstruction of a signal
from its random samples, reviewing and extending former results.
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1. Introduction

1.1. Classes of signals related to point processes

This article is concerned with the second-order properties of ‘signals’ (stochastic processes)
related to random spike fields, that is, spatial point processes. More specifically, we shall
consider three types of signal:

(a) the random spike fields themselves;

(b) the filtered random spike fields;

(c) the modulated random spike fields.

These types of signal are depicted in Figure 1 in the one-dimensional case (spike fields are
then called spike trains or Dirac combs). Signals of the second category are also known as
shot noises, and the third category arises, in particular, in random sampling. Signals of the first
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Figure 1: Random spike train and related processes. (a) Random spike train (point process). (b) Filtered
spike train (shot noise). (c) Modulated spike train (randomly located samples).

category, point processes, form the basic element on which the other signals of interest in this
research/review article are constructed.

In this article, we give the power spectra (sometimes in a generalized sense) for the above
three categories of signal. This is done in quite general cases; in particular, concerning shot
noises, cluster point processes, jittered point processes, and Hawkes branching point processes,
we do not require the basic point process to be either a homogeneous Poisson process, a renewal
process, or a Cox process.

Shot noises have received much attention in the applied literature, both in physics and in
electrical engineering. They model thermionic noise in conductors [29] (also see the references
in [6]); queuing systems, for instance in the form of M/GI/∞ pure delay systems and traffic
flows in communications systems; and delayed claims in insurance risk analysis [17], [28]. The
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signals arising in neurophysiology are typically non-Poisson shot noises and the interference
field in a mobile communications system is aptly modeled as a spatial shot noise (see, for
instance, [3]). Shot noises also arise naturally in wavelet signal analysis when the analyzed
signal is a point process, since in this case the wavelet coefficients are samples of shot noises.
Wavelet statistical analysis has been proposed to detect and compute the Hurst parameter in
classical signals and the method applies equally well to random Dirac combs with long-range
dependence properties [1], [2]. For references on clustered point processes and jittered point
processes, the reader is referred to [14]. In the present article, they are considered as special
cases of shot noises (the impulse function being replaced by a point process measure).

A modulated Dirac comb is a Dirac comb with pulses of varying height. In random sampling,
the height of a pulse is equal to the value of the signal sampled at that time. Random sampling
has been extensively studied in view of spectral analysis, the object being to recover the power
spectrum of the signal from the modulated sample comb, or even from the sample sequence
(without timing information); a specific domain of application is laser velocimetry, where
the samples are collected only at the passage of a reflecting particle through the laser beam.
Early investigation of random sampling [30] was mostly motivated by the search for alias-free
sampling schemes, that is, sampling schemes leading to a one-to-one relation between the
spectrum of the sample comb and that of the sampled signal. The first detailed analyses of
randomly sampled signals were based on the modeling of the sample comb using the Dirac
(pseudo)process δ. In [4], [18], and [5], Beutler and Leneman obtained formulae for the
moments of the sample comb that led to the expression of the correlation of the sample comb
as a function of the correlation of the sampled signal. Leneman and Lewis [19] investigated
the reconstruction error for several interpolators of random samples. Such results depend on
the sampling scheme through statistics related to the intervals between successive points of the
sampler (i.e. the point process). Modulated random spike fields are studied in Section 5.

As for the spike fields themselves, we recall the basic theory of Bartlett spectra in Section 2.
The Hawkes branching point processes are studied in Section 4. Hawkes processes were
introduced, under the name of self-exciting point processes, in [15] and further studied in [16];
also see [14]. Such branching point processes are of interest in epidemics and in seismology
(see [31]), where they are known as epidemic-type aftershock models [24].

The generalized linear (not necessarily Markovian) birth–death processes are shot noises for
which the basic point process is a Hawkes process. Note that such a process can be viewed as
a shot noise on a Hawkes process, and the results of Section 3 do not apply since in this case
the ‘shots’ are not independent of the basic point process.

1.2. Reviewed results and novel results

The present paper can be considered partly as a review, sometimes with (mostly trivial)
extensions to the spatial case. For instance, the results on clustered point processes and jittered
point processes appear in [14] (in Example 8.2(d) and Exercise 8.2.6, respectively), and those
on modulated point processes appear in [14, Example 8.4(c)] and, previously, in the seminal
papers of [21] and [20]. However, this article is not an exhaustive review of the subject; rather,
we concentrate on the actual computation of the spectra of complex signals, the motivation for
this work being applications to ultrawide-band communications and multipath fading channels
(see the dissertation [25], as well as the articles [26] and [27]). For more exhaustive reviews,
the reader is referred to [11], [10], and [12], and, of course, to [14].

We present the results on shot noises, cluster point processes, and jittered point processes
in a unified manner, showing that they can be derived from a single formula (the fundamental
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isometry formula), which appears here for the first time. The conditions of validity of this
formula are most important, in that they allow a precise description of the test functions used
in the definition of the Bochner or Bartlett spectra of the processes considered.

Another new result concerns the Bartlett spectrum of Hawkes branching point processes with
random fertility rates and general ancestor point processes. Earlier results in this direction can
be found in [9]. (Note, however, that the method of [9] does not work.) Also see [8], where the
critical case, leading to long-range dependence, was considered. Note that although Hawkes
processes are a particular case of cluster point processes, their spectra cannot be obtained easily
from the general formula for cluster point processes recalled in Section 3. Our analysis is more
direct than that of [9], and it allows us to obtain more insight into the test functions used in the
definition of the Bartlett spectrum, as already mentioned.

Among the new results, we obtain the Cramér spectrum of the generalized spatial birth and
death processes under the same general conditions (i.e. with a general birth process and general
lifetimes) as for the Hawkes processes.

Concerning modulated point processes, our contribution does not go far beyond the original
results of [21] and [20] (and the presentation given in [14]). There, the spectrum of the sample
sequence was expressed as a function of the spectrum of the sampled signal and of the second-
order quantities of the point process, and then, by reformulating the concept of being alias free,
alias-free sampling schemes were proved that led to a consistent spectral estimator. This work
is closest in content to ours; our method of proof is the same as in [14], our contribution being to
give more details of the proof there (given in Example 8.4(c)). These details also turn out to be
useful in determining the class of test functions for which the defining formula of the spectrum
is true. The novel results in this article concerning modulated point processes are an expression
for the power spectra of modulated spike fields when the sampler is possibly dependent on the
signal, and, in the independent case, an expression for the error when the signal is approximated
by a filtered version of the samples; that is, the reconstruction error.

2. Covariance and spectral measure

2.1. The covariance measure

Let N be a simple and locally bounded point process on R
m. It is called a second-order

point process if, for all bounded Borel sets C ⊂ R
m,

E[N(C)2] < ∞.

The formula
ν(C) = E[N(C)]

defines a Radon (that is, locally finite) measure ν on R
m called the mean measure or intensity

measure of N . By Campbell’s theorem, for all measurable functions ϕ : R
m → R that are

nonnegative or belong to L1
C
(ν), the sum

∑
t∈N ϕ(t) = N(ϕ) is well defined and

E[N(ϕ)] = E[ν(ϕ)].
Moreover, the measure M2 on R

m × R
m defined by

M2(A× B) = E[N(A)N(B)]
is a Radon measure.
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Definition 1. By definition, L2
N(M2) is the collection of measurable functions ϕ : R

m → C

such that

E[N(|ϕ|)2] < ∞,

which implies that ϕ ∈ L1
C
(ν).

Clearly,L2
N(M2) is a vector space that contains all bounded functions with compact support,

and, if ϕ,ψ ∈ L2
N(M2), we have

E

[(∫
Rm
ϕ(t)N(dt)

)(∫
Rm
ψ(t)N(dt)

)∗]
=

∫
Rm

∫
Rm
ϕ(t)ψ∗(s)M2(dt × ds). (1)

We now assume that N is of second order and stationary, in which case

ν(C) = λ�m(C)

for some λ ∈ R+ called the intensity (where �m is the Lebesgue measure on R
m). By a previous

remark, it follows that

L2
N(M2) ⊆ L1

C
(Rm).

By stationarity again, for all Borel sets A,B ⊆ R
m and all t ∈ R

m, we have

M2((A+ t)× (B + t)) = M2(A× B).

It follows from [14, Lemma A2.7.II, p. 409] that, for all ϕ,ψ ∈ L2
N(M2),

∫
Rm

∫
Rm
ϕ(t)ψ∗(s)M2(dt × ds) =

∫
Rm

(∫
Rm
ϕ(t)ψ∗(s + t) dt

)
σ(ds) (2)

for some Radon measure σ , and from (1) and (2), for ϕ,ψ ∈ L2
N(M2) we have

cov

(∫
Rm
ϕ(t)N(dt),

∫
Rm
ψ(s)N(ds)

)
=

∫
Rm

(∫
Rm
ϕ(t)ψ∗(t + s) dt

)
�N(ds),

where the Radon measure

�N := σ − λ2�m

is called the covariance measure of the stationary second-order point process N .

2.2. The spectral measure

Definition 2. Let N be a simple, stationary second-order point process on R
m with intensity

λ. Let BN be a vector space of functions such that BN ⊆ L2
N(M2). A measure µN on R

m is
called the Bartlett spectral measure of N on the domain BN if, for all ϕ ∈ BN , the identity

var

(∫
Rm
ϕ(t)N(dt)

)
=

∫
Rm

|ϕ̂(ν)|2µN(dν) (3)

(where ϕ̂(ν) = ∫
Rm

e−2iπ〈ν,t〉 dt , 〈·, ·〉 being the scalar product) holds, the two terms of the
equality being finite. The space BN is also called a test function space for the point process N .
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By polarization of (3), for all ϕ,ψ ∈ BN we have

cov(N(ϕ),N(ψ)) =
∫

Rm
ϕ̂(ν)ψ̂∗(ν)µN(dν).

A suitable space BN of test functions will be determined in each situation. Ideally, we want
to determine the largest possible domain BN . We are looking for conditions of the form
ϕ ∈ L1

C
(Rm) ∩ L2

C
(Rm), for instance. Note that ϕ is necessarily contained in L1

C
(Rm) since,

as observed earlier, L2
N(M

2) ⊆ L1
C
(Rm). In particular, the Fourier transform of any ϕ ∈ BN

is well defined.
The existence and uniqueness of the Bartlett spectrum is the content of Theorem 1, which

can be found in [23]. The theorem also shows that it is always possible to take for BN the
space of functions that, together with their Fourier transforms, are O(1/|t |2) as |t | → ∞. We
introduce the notation ǔ(t) = u(−t) for functions.

Theorem 1. (Neveu [23].) Let N be a stationary second-order point process and let σ be the
corresponding Radon measure, as in (2). There exists a unique nonnegative Radon measure σ̂
on (Rm,B(Rm)) such that if f and its Fourier transform are O(1/|t |2) as |t | → ∞, then∫

Rm
f (ν)σ̂ (dν) =

∫
Rm
f̂ (t)σ (dt)

and, if g satisfies the same conditions as f ,

E[N(f )N(g)] = λ

∫
Rm
f̂ (ν) ˇ̂g(ν)σ̂ (dν).

Theorem 8.6.III of [14] contains a general condition on the test functions. However, it is not
explicit, since it is stated in terms of the spectral measure (f is required to be integrable with
respect to σ , with a Fourier transform that is integrable using the Bartlett spectral measure).
One of the purposes of the present article is to find explicit spaces of test function, and to show
how these are modified by the various transformations that we study.

Example 1. (Regular grid.) Consider the point process on R
2 whose points form a regular

(T1, T2)-grid on R
2 with random origin, that is,

N = {(n1T1 + U1, n2T1 + U2), (n1, n2) ∈ Z
2},

where T1 > 0, T2 > 0, andU1 andU2 are independent uniform random variables on [0, T1] and
[0, T2], respectively. The point process is obviously stationary and second order, with average
intensity λ = 1/(T1T2). Its Bartlett spectral measure is

µN = 1

T 2
1 T

2
2

∑
(n1,n2)
=(0,0)

ε(n1/T1,n2/T2), (4)

where εa is the Dirac measure at a, and we can take

BN =
{
ϕ : ϕ ∈ L1

C
(R2),

∑
n1,n2∈Z

∣∣∣∣ϕ̂
(
n1

T1
,
n2

T2

)∣∣∣∣ < ∞
}
. (5)
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Let us prove (4). Equation (5) guarantees that the weak Poisson formula holds. More
precisely (see, for instance, [7, Theorem A2.3, pp. 28]), the left-hand side of the equality

∑
n1,n2∈Z

ϕ(u1 +n1T1, u2 +n2T2) = 1

T1T2

∑
n1,n2∈Z

ϕ̂

(
n1

T1
,
n2

T2

)
exp

(
2iπ

(
n1

T1
u1 + n2

T2
u2

))
(6)

is well defined, and the equality holds for almost all (u1, u2) ∈ R
2 (with respect to the Lebesgue

measure). By (6),∫
R2
ϕ(t)N(dt) =

∑
n1,n2∈Z

ϕ(U1 + n1T1, U2 + n2T2)

= 1

T1T2

∑
n1,n2∈Z

ϕ̂

(
n1

T1
,
n2

T2

)
exp

(
2iπ

(
n1

T1
U1 + n2

T2
U2

))
.

The rest of the proof is straightforward, noting that the finiteness of the sum in (6) implies

∑
n1,n2∈Z

∣∣∣∣ϕ̂
(
n1

T1
u1,

n2

T2
u2

)∣∣∣∣
2

< ∞.

Example 2. (Cox process.) Let N be a Cox point process on R
m with stochastic intensity

{λ(t)}t∈Rm . By this we mean the following. First, {λ(t)}t∈Rm is a nonnegative, almost surely
locally integrable process and, second, conditionally on this process, N is a Poisson process
with intensity λ(t). We suppose that {λ(t)}t∈Rm is a wide-sense stationary process with mean
λ and Bochner spectral measure µλ. Then the Bartlett spectrum of N is

µN(dν) = µλ(dν)+ λ dν, (7)

with domain BN = L1
C
(Rm) ∩ L2

C
(Rm). Moreover, in this case this is the maximal domain,

since BN = L2
N(M2). We omit the proof of (7), the details of which can be found in [25].

3. Basic isometry formula

3.1. Filtered point process fields

Consider a marked point process on R
m with marks in the measurable space (K,K). Let

N be its basic point process on R
m, assumed locally finite and simple, and let {Z(t)}t∈Rm

be its mark process. Assume that the random variables Z(t) are independent and identically
distributed, with common probability distribution Q, and are independent of N . Also assume
that N is a stationary second-order point process with Bartlett spectral measure µN on the
domain BN .

Let Z be a random element with distribution Q. We introduce (or recall) the notation
L
p

C
(�×Q) for the set of functions ϕ : R

m ×K → C such that∫
Rm

E[|ϕ(t, Z)|p] dt < ∞.

In particular, ϕ(t, Z) ∈ Lp
C
(P), that is, E[|ϕ(t, Z)|p] < ∞, for almost all t ∈ R (with respect

to the Lebesgue measure).
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Let ϕ : R
m ×K → R be a measurable function such that

ϕ ∈ L1
C
(�×Q). (8)

For almost all t , we can define
ϕ̄(t) = E[ϕ(t, Z)].

It follows from (8) that ϕ̄ ∈ L1
C
(Rm) and, for Q-almost all z ∈ K , that ϕ(·, z) ∈ L1

C
(Rm).

Let the Fourier transforms of these two functions be denoted by ˆ̄ϕ and ϕ̂(·, z), respectively.
Moreover, suppose that

ϕ ∈ L2
C
(�×Q). (9)

Condition (9) implies that
∫
Rm

| E[ϕ(t, Z)]|2 dt < ∞, that is ϕ̄ ∈ L2
C
(Rm), and, for Q-almost

all z ∈ K , that ϕ(·, z) ∈ L2
C
(Rm). Observe that

ˆ̄ϕ(ν) = E[ϕ̂(ν, Z)] =: ϕ̂(ν).
Finally, suppose that

ϕ̄ ∈ BN. (10)

We can now state a fundamental isometry formula.

Theorem 2. Let N and {Z(t)}t∈Rm be as defined above, and let ϕ,ψ : R
m × K → R satisfy

(8), (9), and (10). Then

cov

(∑
t∈N

ϕ(t, Z(t)),
∑
t∈N

ψ(t, Z(t))

)

=
∫

Rm

ˆ̄ϕ(ν) ˆ̄ψ∗(ν)µN(dν)+ λ

∫
Rm

cov(ϕ̂(ν, Z), ψ̂∗(ν, Z)) dν, (11)

where Z is a K-valued random variable with distribution Q.

Proof. Formally,

E

[(∑
t∈N

ϕ(t, Z(t))

)(∑
t∈N

ψ(t, Z(t))

)]

= E

[ ∑
t,t ′∈N, t 
=t ′

ϕ(t, Z(t))ψ(t ′, Z(t ′))
]

+ E

[∑
t∈N

ϕ(t, Z(t))ψ∗(t, Z(t))
]

= E

[ ∑
t,t ′∈N, t 
=t ′

ϕ̄(t)ψ̄∗(t ′)
]

+ E

[∑
t∈N

ϕ(t, Z)ψ∗(t, Z)
]

= E

[(∑
t∈N

ϕ̄(t)

)(∑
t ′∈N

ψ̄∗(t ′)
)]

− E

[∑
t∈N

ϕ̄(t)ψ̄∗(t)
]

+ E

[∑
t∈N

ϕ(t, Z)ψ∗(t, Z)
]

=: a − b + c.

These computations are justified because the three terms a, b, and c are finite when ϕ and ψ
are replaced by their absolute values. This follows from Schwarz’s inequality and the facts
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that (for a and b) ϕ̄ and ψ̄ are in both L2
N(M2) and L2

C
(Rm) and (for c) (9) holds. Since

E[∑t∈N ϕ(t, Z(t))] = E[∑t∈N ϕ̄(t)], we have

cov

(∑
t∈N

ϕ(t, Z(t)),
∑
t∈N

ψ(t, Z(t))

)

= cov

(∑
t∈N

ϕ̄(t),
∑
t∈N

ψ̄(t)

)
− E

[∑
t∈N

ϕ̄(t)ψ̄∗(t)
]

+ E

[∑
t∈N

ϕ(t, Z)ψ∗(t, Z)
]

=: A− B + C.

By definition of the Bartlett spectrum and (10),

A =
∫

Rm

ˆ̄ϕ(ν) ˆ̄ψ∗(ν)µN(dν).

By definition of the intensity λ,

B = λ

∫
Rm
ϕ̄(t)ψ̄(t)∗ dt, C = λ

∫
Rm

E[ϕ(t, Z)ψ(t, Z)∗] dt.

By the Plancherel–Parseval identity,

B = λ

∫
Rm

ˆ̄ϕ(ν) ˆ̄ψ(ν)∗ dν = λ

∫
Rm
ϕ̂(ν)ψ̂(ν)∗ dν = λ

∫
Rm

E[ϕ̂(ν, Z)] E[ψ̂(ν, Z)∗] dν

and

C = λE

[∫
Rm
ϕ̂(ν, Z)ψ̂(ν, Z)∗ dν

]
,

and (11) follows.

We can now compute the power spectrum of a shot noise.

Corollary 1. Consider the above marked point process (with independent and identically
distributed marks) and let h : R

m × K → R satisfy (10) and (9). Define the shot noise
{X(t)}t∈Rm by

X(t) =
∑
s∈N

h(t − s, Z(t)).

Its Bochner spectral measure is given by the formula

µX(dν) = |E[ĥ(ν, Z)]|2µN(dν)+ λ var(ĥ(ν, Z)) dν.

Proof. It suffices to apply the fundamental isometry formula to ϕ(t, z) = h(u − t, z) and
ψ(t, z) = h(v − t, z), to obtain

cov(X(u),X(v)) =
∫

Rm
|ĥ(ν)|2 exp(−2iπ〈ν, u− v〉)µN(dν)

+ λ

∫
Rm

var(ĥ(ν, Z)) exp(−2iπ〈ν, u− v〉) dν.
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3.2. Jittered point processes

If the Bartlett spectrum µN of a wide-sense stationary point processN is known, what is the
Bartlett spectrum µ

Ñ
of the point process obtained by independent and identically distributed

displacements of the points of N? We have the following result.

Corollary 2. Consider the marked point process of Theorem 2, withK = R
m. A point process

Ñ is defined by
Ñ = {t + Z(t), t ∈ N}.

Then, if λ is the intensity of N and µ
Ñ

the Bartlett spectrum of Ñ , we have

µ
Ñ
(dν) = |ψZ(ν)|2µN(dν)+ λ(1 − |ψZ(ν)|2) dν, (12)

where
ψZ(ν) = E[e2iπ〈ν,Z〉]

is the characteristic function of the random displacements distributed according to Q. We can
take

B
Ñ

= {ϕ̃ : ϕ̃ ∈ L1
C
(Rm) ∩ L2

C
(Rm), E[ϕ̃(t + Z)] ∈ BN }.

Proof. Define ϕ(t, z) := ϕ̃(t + z). Conditions (8) and (9) for the function ϕ are respectively
equivalent to the conditions ϕ̃ ∈ L1

C
(Rm) and ϕ̃ ∈ L2

C
(Rm) since, for any p ≥ 0,

E

[∫
Rm

|ϕ(t, Z)|p dt

]
=

∫
Rm

|ϕ̃(t)|p dt.

Condition (10) for the function ϕ is satisfied by the ad hoc definition of B
Ñ

. We may therefore
apply Theorem 2. We have

ϕ̂(ν, z) = e2iπ〈ν,z〉 ˆ̃ϕ(ν),
ˆ̄ϕ(ν) = ϕ̂(ν) = ψZ(ν) ˆ̃ϕ(ν),

cov(ϕ̂(ν, Z), ϕ̂(ν, Z)∗) = (1 − |ψZ(ν)|2)| ˆ̃ϕ(ν)|2.
Also,

var

(∫
Rm
ϕ̃(t)Ñ(dt)

)
= var

(∑
t∈N

ϕ̃(t + Z(t))

)

and, therefore, by (11),

var

(∫
Rm
ϕ̃(t)Ñ(dt)

)
=

∫
Rm

| ˆ̃ϕ(ν)|2µ
Ñ
(dν),

where µ
Ñ

is given by (12).

Example 3. (Jittered regular grid.) Consider the case in which N is the grid process of
Example 1. We can take

B
Ñ

=
{
ϕ̃ : ϕ̃ ∈ L1

C
(R2) ∩ L2

C
(R2),

∑
n1,n2∈Z

∣∣∣∣ ˆ̃ϕ
(
n1

T1
,
n2

T2

)∣∣∣∣ < ∞
}
.

To see this, observe that
| E[ ˆ̃ϕ(· + Z)](ν)| = | ˆ̃ϕ(ν)|.
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Thus, the condition E[ϕ̃(t + Z)] ∈ BN is equivalent to

∑
n1,n2∈Z

∣∣∣∣ ˆ̃ϕ
(
n1

T1
,
n2

T2

)∣∣∣∣ < ∞.

Example 4. (Jittered Cox process.) Consider the case in which N is the Cox process of
Example 2. We can take

B
Ñ

= {ϕ̃ : ϕ̃ ∈ L1
C
(Rm) ∩ L2

C
(Rm)}.

Indeed, the condition E[ϕ̃(t + Z)] ∈ BN , that is, in this particular case,

E[ϕ̃(t + Z)] ∈ L1
C
(Rm) ∩ L2

C
(Rm),

is equivalent to ϕ̃ ∈ L1
C
(Rm) ∩ L2

C
(Rm).

3.3. Cluster point processes

Let N be a stationary point process on R
m with intensity λ > 0, Bartlett spectral measure

µN , and set of test functions BN . Let {Z(t)}t∈Rm be a collection of independent and identically
distributed point processes on R

m, independent of N . Write Z(t)(C) = Z(t, C) and let Z be
a point process on R

m with the same distribution as the common distribution of the Z(t)s.
Moreover, let

ψZ(ν) = E

[∫
Rm

e2iπ〈ν,t〉Z(dt)
]
.

The existence and finiteness of ψZ(ν) are guaranteed under the condition

E[Z(Rm)] < ∞.

In particular, Z is almost surely a finite point process.
We now define two point process on R

m, Ñ and N̂ , by

Ñ(C) = N(C)+
∑
t∈N

Z(t, C − t),

N̂(C) =
∑
t∈N

Z(t, C − t).

We would like to compute the Bartlett spectra of Ñ and N̂ . We start with Ñ . Formally,

var

(∑
t∈Ñ

ϕ(t)

)
= var

(∑
t∈N

{
ϕ(t)+

∫
Rm
ϕ(t + s)Z(t, ds)

})

= var

(∑
t∈N

ϕ(t, Z(t))

)
,

where, if z is a measure and Z is a random measure,

ϕ(t, Z) = ϕ(t)+
∫

Rm
ϕ(t + s)Z(ds),
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and

E[ϕ(t, Z)] = ϕ(t)+ E

[∫
Rm
ϕ(t + s)Z(ds)

]
,

ϕ̂(ν, z) = ϕ̂(ν)+
∫

Rm

(∫
Rm
ϕ(t + s)z(ds)

)
e−2iπ〈ν,t〉 dt

= ϕ̂(ν)+
∫

Rm

(∫
Rm
ϕ(t + s)e−2iπ〈ν,t〉 dt

)
z(ds)

= ϕ̂(ν)+
∫

Rm
ϕ̂(ν)e2iπ〈ν,s〉z(ds)

= ϕ̂(ν)

(
1 +

∫
Rm

e2iπ〈ν,s〉z(ds)
)
.

Note that exchanging the order of integration is not a problem if z is a finite point process, in
particular if z is replaced by its random version Z. Also note that ϕ ∈ B

Ñ
, where B

Ñ
is the

set of test functions for Ñ , is necessarily in L1
C
(Rm), since B

Ñ
⊆ L1

C
(Rm).

We also have
ˆ̄ϕ(ν) = ϕ̂(ν)(1 + ψZ(ν)).

By applying Theorem 2 formally, we obtain

var

(∑
t∈N

ϕ(t, Z(t))

)
=

∫
Rm

|ϕ̂(ν)|2|1 + ψZ(ν)|2µN(dν)

+ λ

∫
Rm

|ϕ̂(ν)|2 var

(
1 +

∫
Rm

e2iπ〈ν,s〉Z(ds)
)

dν.

Observe that

var

(
1 +

∫
Rm

e2iπ〈ν,s〉Z(ds)
)

= var

(∫
Rm

e2iπ〈ν,s〉Z(ds)
)

;

this implies that

var

(∑
t∈Ñ

ϕ(t)

)
=

∫
Rm

|ϕ̂(ν)|2µ
Ñ
(dν),

where

µ
Ñ
(dν) = |1 + ψZ(ν)|2µN(dν)+ λ var

(∫
Rm

e2iπ〈ν,s〉Z(ds)
)

dν

is the Bartlett spectrum of Ñ . Similar computations give

µ
N̂
(dν) = |ψZ(ν)|2µN(dν)+ λ var

(∫
Rm

e2iπ〈ν,s〉Z(ds)
)

dν

for the Bartlett spectrum of N̂ .
To obtain the corresponding domains B

Ñ
and B

N̂
, it suffices to require that the conditions

on ϕ(t, z) required in Theorem 2 are satisfied.
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4. Spatial Hawkes processes

4.1. Spatial branching point processes

The Hawkes point process N on R
m is a spatial branching point process. It is constructed

as follows. Let N0 be a simple, stationary second-order point process with Bartlett spectrum
µ0 and set of admissible functions BN0 . This point process is called the ‘ancestor process’.
Let {Zn(t)}n≥0, t∈Rm , be a family of independent and identically distributed random variables,
independent of N0, with values in the measurable space (K,K) and common distribution Q.
Let

N =
∑
n≥0

Nn,

where eachNn is the basic point process on R
m of a marked point process N̄n on R

m×K with
independent and identically distributed marks {Zn(t)}t∈Rm , that is,

N̄n(C × L) =
∑
t∈Nn

1C(t)1L(Zn(t)),

where C ⊆ R
m is a Borel set, L ∈ K , and 1A is the indicator function of the generic set

A. The sequence of point processes {Nn}n≥1 is constructed recursively as follows. First, let
h : R

m ×K → R be a nonnegative rate function such that the quantity

ρ :=
∫

Rm
E[h(t, Z)] dt

is finite, where Z is a K-valued random variable with distribution Q (the general mark
distribution). We denote by Fn the sigma-field recording all the events relative to N̄0, . . . , N̄n.
Then, conditionally on Fn−1, Nn is a Poisson process on R

m with intensity

λn(t) =
∫

Rm

∫
K

h(t − s, z)N̄n−1(ds × dz) =
∑

s∈Nn−1

h(t − s, Zn−1(s)). (13)

We refer to Nn as the nth generation point process, and give it the following interpretation.
Each point a ∈ Nn−1 of generation n− 1 creates descendants in the next generation according
to a Poisson process of intensity h(t − a, Zn−1(a)). For each ancestor (each point a ∈ N0), we
therefore have ρ direct descendants, on average. We write

N ′ =
∑
n≥1

Nn, N̄ ′ =
∑
n≥1

N̄n.

From (13) and Campbell’s theorem, we see that

λn = λn−1

∫
Rm

E[h(t, Z)] dt,

where λn = E[λn(t)], and, therefore, that the average intensity λ′ of N ′ obeys

λ′ = ρλ0 + ρλ′.

Thus, if λ0 > 0, in order for N ′ to have a finite intensity it is necessary that

ρ < 1. (14)
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In this case, each ancestor is the root of an eventually extinguished branching process, because
its average number of progeny is strictly less than 1. Condition (14) will be assumed to hold
throughout.

Lemma 1. For ϕ ∈ L1
C
(�×Q) ∩ L2

C
(�×Q), we have

var

(∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)

)
= λ′

∫
Rm

E[|ϕ(t, Z)|2] dt,

where
M̄ ′(dt × dz) = N̄ ′(dt × dz)− λ′(t) dtQ(dz),

λ′(t) =
∫

Rm

∫
K

h(t − s, z′)N̄0(dt × dz′)+
∫

Rm

∫
K

h(t − s, z′)N̄ ′(dt × dz′).

Proof. We shall use a simplified notation of the kind∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz) =
∫
ϕ dM̄ ′.

We then have ∫
ϕ dM̄ ′ =

∑
n≥1

∫
ϕ dM̄n,

where M̄n(dt × dz) = N̄n(dt × dz)− λn(t) dtQ(dz). Given Fn−1, N̄n is a Poisson process
with mean measure λn(t)Q(dz) dt and, therefore, by standard properties of Poisson processes,
we have

var

(∫
ϕ dM̄n

∣∣∣∣ Fn−1

)
=

∫
Rm

E[ϕ2(t, Z)]λn(t) dt,

and

E

[∫
ϕ dM̄n

∣∣∣∣ Fn−1

]
= 0.

Therefore, by the conditional variance formula,

var

(∫
ϕ dM̄n

)
= E

[
var

(∫
ϕ dM̄n

∣∣∣∣ Fn−1

)]
+ var

(
E

[∫
ϕ dM̄n

∣∣∣∣ Fn−1

])

= λn

∫
Rm

E[ϕ2(t, Z)] dt.

Also, for j, k ≥ 1,

E

[(∫
ϕ dM̄j

)(∫
ϕ dM̄j+k

)]
= E

[(∫
ϕ dM̄j

)
E

[∫
ϕ dM̄j+k

∣∣∣∣ Fj+k−1

]]
= 0.

Therefore,

var

(∫
ϕ dM̄ ′

)
=

∑
n≥1

var

(∫
ϕ dM̄n

)

=
(∑
n≥1

λn

) ∫
Rm

E[ϕ2(t, Z)] dt

= λ′
∫

Rm
E[ϕ2(t, Z)] dt.
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4.2. Spectrum of the Hawkes process

Lemma 2. (a) Suppose that

E

[(∫
Rm
h(t, Z) dt

)2]
< ∞. (15)

For any given F ∈ L1
C
(�×Q)∩L2

C
(�×Q), there exists a unique ϕ ∈ L1

C
(�×Q)∩L2

C
(�×Q)

such that

ϕ(t, z)−
∫

Rm
h(s − t, z)E[ϕ(s, Z)] ds = F(t, z). (16)

(b) For a given f ∈ L1
C
(Rm) ∩ L2

C
(Rm), there exists a unique ϕ ∈ L1

C
(�×Q) ∩ L2

C
(�×Q)

such that

ϕ(t, z)−
∫

Rm
h(s − t, z)E[ϕ(s, Z)] ds = f (t). (17)

Proof. (a) For a function v(t, z), denote E[v(t, Z)] by v̄(t) and v(−t, z) by v̌(t, z). Note
that F ∈ L1

C
(�×Q) ∩ L2

C
(�×Q) implies F̄ ∈ L1

C
(Rm) ∩ L2

C
(Rm). Let h and F be as in the

statement of the lemma, and consider the renewal equation

g = F̄ + ˇ̄h ∗ g.
Since F̄ ∈ L1

C
(Rm) ∩ L2

C
(Rm) and (14) holds, there exists a unique solution g ∈ L1

C
(Rm) ∩

L2
C
(Rm) given by

g =
∑
n≥0

F̄ ∗ ˇ̄h∗n.

(The convergence of this series in L1
C
(Rm) as well as in L2

C
(Rm) is guaranteed by the in-

equalities ‖a ∗ b‖L1 ≤ ‖a‖L1‖b‖L1 and ‖a ∗ b‖L2 ≤ ‖a‖L1‖b‖L2 ; uniqueness follows from
the equality g − g′ = ˇ̄h ∗ (g − g′), where g′ is another candidate solution, which implies that
‖g − g′‖L1 ≤ ‖h̄‖L1‖g − g′‖L1 and, hence, by (14), that necessarily ‖g − g′‖L1 = 0.) The
Fourier transform of g is

ĝ(ν) = E[F̂ (ν, Z)]
1 − E[ĥ(ν, Z)∗] . (18)

Now define ϕ(t, z) by

ϕ(t, z) =
∫

Rm
h(s − t, z)g(s) ds + F(t, z). (19)

We have

E

[∫
Rm

|ϕ(t, Z)| dt

]
≤ E

[∫
Rm

|F(t, Z)| dt

]
+ E

[∫
Rm

|h(t, Z)| dt

] ∫
Rm

|g(t)| dt < ∞,

because g ∈ L1
C
(Rm) and F, h ∈ L1

C
(�×Q). Therefore, ϕ ∈ L1

C
(�×Q). We now show that

ϕ ∈ L2
C
(�×Q). It suffices to show that ϕ̂(ν, z) ∈ L2

C
(�×Q) because then, by using the

Plancherel–Parseval identity, we have

E

[∫
Rm

|ϕ(t, Z)|2 dt

]
= E

[∫
Rm

|ϕ̂(ν, Z)|2 dν

]
< ∞.
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For this purpose, we take the Fourier transform of (19) for fixed z, i.e.

ϕ̂(ν, z) = ĥ(ν, z)∗ĝ(ν)+ F̂ (ν, z),

or (for future reference), in view of (18),

ϕ̂(ν, z) = F̂ (ν, z)+ ĥ(ν, z)∗ E[F̂ (ν, Z)]
1 − E[ĥ(ν, Z)∗] ·

We will show that ϕ̂(ν, z) ∈ L2
C
(�×Q). Since F(t, z) ∈ L2

C
(�×Q), it follows from the

Plancherel–Parseval identity that F̂ (ν, z) ∈ L2
C
(�×Q). It remains to show that

ĥ(ν, z)ĝ(ν) ∈ L2
C
(�×Q);

this follows from the facts that ĝ ∈ L2
C
(Rm) and

E[|ĥ(ν, Z)|2] = E

[∣∣∣∣
∫

Rm
h(t, Z)e2iπνt dt

∣∣∣∣
2]

≤ E

[∣∣∣∣
∫

Rm
h(t, Z) dt

∣∣∣∣
2]

is a finite constant (by (15)) independent of ν.

(b) This is clearly a particular case of (a). For future reference, we note that in this case the
following relation holds:

ϕ̂(ν, z) = f̂ (ν)

(
1 + ĥ∗(ν, z)

1 − E[ĥ∗(ν, Z)]
)

· (20)

Theorem 3. Leth(t, z) satisfy (14) and (15). The Bartlett spectrum of the Hawkes point process
N defined above is

µN(dν) = 1

|1 − E[ĥ(ν, Z)]|2 [µ0(dν)+ λ′ dν + λ var(ĥ(ν, Z) dν)], (21)

where λ = λ0/(1 − ρ). For BN , we can take the set of functions f ∈ L1
C
(Rm) ∩ L2

C
(Rm) such

that the solution to (17) satisfies E[ϕ(·, Z)] ∈ BN0 .

Proof. Let ϕ be the solution to (17). Then∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz) =
∫

Rm

∫
K

ϕ(t, z)(N̄ ′(dt × dz)− λ′(t)Q(dz) dt)

=
∫

Rm

∫
K

ϕ(t, z)N̄ ′(dt × dz)−
∫

Rm

∫
K

ϕ(t, z)λ′(t)Q(dz) dt

and∫
Rm

∫
K

ϕ(t, z)λ′(t)Q(dz) dt =
∫

Rm

∫
K

ϕ(t, z)

(∫
Rm

∫
K

h(t − s, z′)N̄(ds × dz′)
)
Q(dz) dt

=
∫

Rm×Rm×K
h(t − s, z′)E[ϕ(t, Z)] dtN̄(ds × dz′)

=
∫

Rm

∫
K

(ȟ(s − ·, z′) ∗ E[ϕ(·, Z)])(s)N̄(ds × dz′).
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Therefore, since N̄ = N̄ ′ + N̄0, we have∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz) =
∫

Rm

∫
K

(ϕ(t, z)− (ȟ(t − ·, z) ∗ E[ϕ(·, Z)])(t))N̄(dt × dz)

−
∫

Rm

∫
K

ϕ(t, z)N̄0(dt × dz). (22)

Take an f ∈ BN (in particular, an f ∈ L1
C
(Rm) ∩ L2

C
(Rm)). We then have∫

Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)+
∫

Rm

∫
K

ϕ(t, z)N̄0(dt × dz) =
∫

Rm
f (t)N(dt).

Also, by the isometry lemma,

var

(∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)

)
= λ′

∫
Rm

E[|ϕ(t, Z)|2] dt = λ′
∫

Rm
E[|ϕ̂(ν, Z)|2] dν.

Now,

E

[∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)
∫

Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

]

= E

[
E

[∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)

∣∣∣∣ F0

] ∫
Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

]
= 0

and, therefore,

var

(∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)+
∫

Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

)

= var

(∫
Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)

)
+ var

(∫
Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

)

= λ′
∫

Rm
E[|ϕ(t, Z)|2] dt + var

(∫
Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

)
.

Furthermore,

var

(∫
Rm

∫
K

ϕ(t, z)N̄0(dt × dz)

)
=

∫
Rm

|E[ϕ̂(ν, Z)]|2µ0(dν)+ λ0

∫
Rm

var(ϕ̂(ν, Z)) dν.

Combining the above, we have

var

(∫
Rm
f (t)N(dt)

)
= λ′

∫
Rm

E[|ϕ̂(ν, Z)|2] dν +
∫

Rm
|E[ϕ̂(ν, Z)]|2µ0(dν)

+ λ0

∫
Rm

var(ϕ̂(ν, Z)) dν

=: A+ B + C.

By (20),

A = λ′
∫

Rm
|f̂ (ν)|2 1 + var(ĥ(ν, Z))

|1 − E[ĥ(ν, Z)]|2 dν,

B =
∫

Rm
|f̂ (ν)|2 1

|1 − E[ĥ(ν, Z)]|2µ0(dν),

C =
∫

Rm
|f̂ (ν)|2λ0

var(ĥ(ν, Z))

|1 − E[ĥ(ν, Z)]|2 dν.
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Recalling that λ′ = ρλ0/(1 − ρ), we finally obtain

var

(∫
Rm
f (t)N(dt)

)

=
∫

Rm
|f̂ (ν)|2

(
1

|1 − E[ĥ(ν, Z)]|2
)
(µ0(dν)+ λ′ dν + λ var(ĥ(ν, Z)) dν)

for all f ∈ L1
C
(Rm) ∩ L2

C
(Rm), which allows us to identifyµN as the expression given in (21).

Example 5. (Coxian ancestor process.) In the particular case in which N0 is a Cox process as
in Example 2, we may take BN = L1

C
(Rm) ∩ L2

C
(Rm).

Example 6. (The original Hawkes process.) In the particular case in which

h(t, Z) = h(t),

we have ĥ(ν, Z) = ĥ(ν) and

µN(dν) = 1

|1 − ĥ(ν)|2 [µ0(dν)+ λ′ dν].

If, in addition, N0 is a Poisson process with average intensity α, since α + λ′ = λ we recover
the original formula of Hawkes:

µN(dν) = λ dν

|1 − ĥ(ν)|2 .

4.3. Spatial linear birth–death processes

We consider a shot noise, based on the Hawkes branching point process N of the previous
section, defined by

X(t) =
∑
s∈N

α(t − s, Z(s)). (23)

Note that its spectral characteristics cannot be derived from Theorem 2, since now the marks
Z(s) and the process N are not mutually independent.

Example 7. In the univariate case, i.e. R
m = R, we write

X(t) =
∑
n∈Z

α(t − Tn, Zn).

To further specialize this example, take

h(t, z) = β1[0,z](t), α(t, z) = 1[0,z](t).

Therefore, interpreting Tn as the birth time of individual n in the colony and Zn as its lifetime
gives

X(t) =
∑
n∈Z

1(−∞,t](Tn)1(t,∞)(Tn + Zn)

for the number of individuals in the colony. If, moreover, we assume that Zn is exponentially
distributed with parameter γ and that the process N0 of ancestors is Poisson with intensity λ0,
then the process {X(t)} is a Markov birth–death process with infinitesimal generatorQ = (qij )

given by qi,i+1 = λ0 + βi and qi,i−1 = γ i, all other terms being 0.
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Theorem 4. Consider the process {X(t)}defined by (23), whereα ∈ L1
C
(�×Q) ∩ L2

C
(�×Q),

and let N satisfy the conditions required in Theorem 3. Suppose, moreover, that the solution ϕ
to (16) with

F(s, z) =
∫

Rm
α(t − s, z)f (t) dt

is such that E[ϕ(·, Z)] ∈ BN0 for any f ∈ L1
C
(Rm). The Bochner spectral measure µX is then

given by the expression

|1 − E[ĥ(ν, Z)]|2µX(dν) = | E[α̂(ν, Z)]|2
(
µ0(dν)+ ρλ0

1 − ρ
dν

)

+ λ0

1 − ρ
var(α̂(ν, Z)(1 − E[ĥ(ν, Z)])+ ĥ(ν, Z)E[α̂(ν, Z)]) dν.

(24)

Proof. We seek a measure µX such that, for all f ∈ L1
C
(Rm),

var

(∫
Rm
f (t)X(t) dt

)
=

∫
Rm

|f̂ (ν)|2µX(dν). (25)

However, ∫
Rm
f (t)X(t) dt =

∫
Rm
f (t)

(∫
Rm

∫
K

α(t − s, z)N̄(ds × dz)

)
dt

=
∫

Rm

∫
K

F(s, z)N̄(ds × dz),

where

F(s, z) =
∫

Rm
α(t − s, z)f (t) dt = (α̌(·, z) ∗ f )(s)

is a function in
L1

C
(�×Q) ∩ L2

C
(�×Q)

(since α ∈ L1
C
(�×Q) ∩ L2

C
(�×Q) and f ∈ L1

C
(Rm)). We therefore seek a µX such that

var

(∫
Rm

∫
K

F(s, z)N̄(ds × dz)

)
=

∫
Rm

|f̂ (ν)|2µX(dν).

Following the same calculations as in the proof of Theorem 3, up to (22), and letting ϕ be the
unique solution to (16) in L1

C
(�×Q) ∩ L2

C
(�×Q), we have∫

Rm

∫
K

F(s, z)N̄(ds × dz) =
∫

Rm

∫
K

ϕ(t, z)M̄ ′(dt × dz)+
∫

Rm

∫
K

ϕ(t, z)N̄0(dt × dz).

Resuming the proof of Theorem 3 after the displayed equation following (22), we obtain

var

(∫
Rm
f (t)X(t) dt

)
= λ′

∫
Rm

E[|ϕ̂(ν, Z)|2] dν +
∫

Rm
| E[ϕ̂(ν, Z)]|2µ0(dν)

+ λ0

∫
Rm

var(ϕ̂(ν, Z)) dν

=: A+ B + C,
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where, using

ϕ̂(ν, z) = F̂ (ν, z)+ ĥ(ν, z)∗ E[F̂ (ν, Z)]
1 − E[ĥ(ν, Z)∗]

= f̂ (ν)

[
α̂(ν, z)∗ + ĥ(ν, z)∗ E[α̂(ν, Z)∗]

1 − E[ĥ(ν, Z)∗]
]
,

we find that

A = λ′
∫

Rm
|f̂ (ν)|2 E[|α̂(ν, Z)(1 − E[ĥ(ν, Z)])+ ĥ(ν, Z)E[α̂(ν, Z)]|2]

|1 − E[ĥ(ν, Z)]|2 dν,

B =
∫

Rm
|f̂ (ν)|2 | E[α̂(ν, Z)]|2

|1 − E[ĥ(ν, Z)]|2µ0(dν),

C = λ0

∫
Rm

|f̂ (ν)|2 var(α̂(ν, Z)(1 − E[ĥ(ν, Z)])+ ĥ(ν, Z)E[α̂(ν, Z)])
|1 − E[ĥ(ν, Z)]|2 dν.

Therefore, by using the expression λ′ = ρλ0/(1 − ρ), after some algebra we recover (25) with
µX(dν) given by (24).

Example 8. Consider the setup of the previous example, in which {X(t)} is a Markov birth–
death process with non-null transition rates qi,i+1 = λ0 + βi and qi,i−1 = γ i. We then have
the following identifications:

ρ = β

γ
, µ0(dν) = λ0 dν, α̂(ν, z) = 1 − e−2iπνz

2iπν
, ĥ(ν, z) = β

1 − e−2iπνz

2iπν
.

From this we obtain

E[α̂(ν, Z)] = 1

γ + 2iπν
,

α̂(ν, Z)(1 − E[ĥ(ν, Z)])+ ĥ(ν, Z)E[α̂(ν, Z)] = α̂(ν, Z),

var((1 − E[ĥ(ν, Z)])+ ĥ(ν, Z)E[α̂(ν, Z)]) = 1

γ 2 + 4π2ν2 ·

Combined with (24), these yield the following formula:

µX(dν) = 2λ0

(γ 2 + 4π2ν2)(1 − β/γ )
·

5. Modulated spike fields

5.1. Random sampling

Random sampling of a continuous-time random signal {X(t)}t∈R yields a sequence of
samples

{X(Tn)}n∈Z, (26)

where {Tn}n∈Z is the sequence of points (times of events) of a point process. At the extremities
of the spectrum of randomness, we find completely random sampling, or Poisson sampling,
where {Tn}n∈Z is a homogeneous Poisson process, and regular sampling, where Tn = nT with
T > 0.
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The signal {X(t)}t∈R is called the sampled signal, the point process {Tn}n∈Z the sampler,
the sequence (26) the sample sequence, and the process

Y (t) =
∑
n∈Z

X(Tn)δ(t − Tn),

where δ(t) is the Dirac pseudofunction, the sample comb.
The sampled signal and the sampler are assumed to be independent and stationary (or at least

wide-sense stationary for the sampled process). However, we shall also consider dependent
sampling. The average intensity λ of the sampler is, by definition, the average number of
samples per unit time, and the sampling frequency is then νs = λ. Two well-known results
concern regular sampling and Poisson sampling, the two extremal cases.

Example 9. In regular sampling, the Fourier spectrum of the sample comb is an aliased version
of that of the sampled signal. For instance, in the case of a power spectral density,

fY (ν) =
∑
n∈Z

fX

(
ν − n

T

)

(where fX and fY are the power spectral densities of {X(t)}t∈R and {Y (t)}t∈R, respectively)
and the sampled signal can be entirely recovered from the sample comb provided that the former
is band limited, with bandwidth 2B < νs = 1/T . It suffices to filter the sample comb with a
low-pass filter of cut-off frequency B.

Example 10. In Poisson sampling, the Bartlett spectrum of the sample comb is (in the density
case)

fY (ν) = λ2fX(ν)+ λσ 2
X,

where σ 2
X = var(X(t)) is the power of the sampled signal. Therefore, whatever the sampling

frequency νs = λ, there is no aliasing and the spectrum of the sampled signal can be recovered
from that of the sample comb. However, if we apply the sample comb to a low-pass filter of
cut-off frequency νs = λ, the output signal {Z(t)}t∈R is a worse reconstruction of the sampled
signal, which is assumed to be band limited with bandwidth 2B, in the sense that

E[|Z(t)−X(t)|2] = σ 2
X.

We will formulate random sampling in the general spatial case. Here, the sampled signal
is a wide-sense stationary process {X(t)}t∈Rm with meanmX, autocovariance function CX(τ),
power spectral measure µX, and Cramér–Khinchin decomposition {ZX(A)}A⊆B(Rm). Recall
that the latter is a complex-valued stochastic process with centered, orthogonal increments, and
that E[|ZX(C)|2] = µX(C). Also, we have the Cramér–Khinchin decomposition formula

X(t) =
∫

Rm
e2iπ〈ν,t〉ZX(dν)+mX, (27)

in which the integral is of Wiener type. Note that, for all functions g ∈ L2
C
(µX), the Wiener

integral
∫
Rm
g(ν)ZX(dν) is well defined and is in L2

C
(P ); moreover,

E

[∣∣∣∣
∫

Rm
g(ν)ZX(dν)

∣∣∣∣
2]

=
∫

Rm
|g(ν)|2µX(dν). (28)
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The sample ‘brush’
Y (t) =

∑
s∈N

X(s)δ(t − s)

is identified with the measure ∑
s∈N

X(s)εs(·).

We define the generalized Bochner spectrum of the sample brush to be a Radon measureµY (dν)
such that, for any ϕ(t) ∈ BY ,

var

(∫
Rm
ϕ(t)X(t)N(dt)

)
=

∫
Rm

|ϕ̂(ν)|2µY (dν), (29)

where BY is a sufficiently large vector space of functions, here also called the ‘test functions’.
By ‘sufficiently large’, we mean that there cannot be two different Radon measuresµY satisfying
(29) for all ϕ ∈ BY . Formally, since∫

Rm
ϕ(t)Y (t) dt =

∫
Rm
ϕ(t)

(∑
s∈N

X(s)δ(t − s)

)
dt

=
∑
s∈N

ϕ(s)X(s)

=
∫

Rm
ϕ(t)X(t)N(dt),

(29) becomes

var

(∫
Rm
ϕ(t)Y (t) dt

)
=

∫
Rm

|ϕ̂(ν)|2µY (dν).
Our next result concerns the case in which the sampler is independent of the signal. LetN be

a simple, wide-sense stationary point process on R
m with intensity λ < ∞, Bartlett spectrum

µN , and vector space of test functions BN .

Theorem 5. Suppose that the sampled signal {X(t)} and the point processN are independent.
Then the generalized process

Y (t) =
∑
s∈N

X(s)δ(t − s)

admits the extended Bochner power spectral measure

µY = µN ∗ µX + λ2µX + |mX|2µN. (30)

If BN is stable with respect to multiplications by complex exponential functions, we can take
BY = BN .

Proof. By using (27), we have∫
Rm
ϕ(t)X(t)N(dt) =

∫
Rm
ϕ(t)

(∫
Rm

e2iπ〈ν,t〉ZX(dν)+mX

)
N(dt)

=
∫

Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν)+mX

∫
Rm
ϕ(t)N(dt),
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where we have formally exchanged the order of integration. Since the integrals with respect to
N(dt) and ZX(dν) are of different natures (one being an infinite sum, as usual, and the other a
Wiener integral), this exchange must be formally justified, which we will do after completing
the proof. By using the conditional variance formula, and defining F N∞ to be the sigma-field
generated by N , we have

var

(∫
Rm
ϕ(t)X(t)N(dt)

)

= E

[
var

(∫
Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν)+mX

∫
Rm
ϕ(t)N(dt)

∣∣∣∣ F N∞
)]

+ var

(
E

[∫
Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν)+mX

∫
Rm
ϕ(t)N(dt)

∣∣∣∣ F N∞
])

=: α + β.

Observe that, since ϕ ∈ L2(M2),

∣∣∣∣
∫

Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

∣∣∣∣
2

≤
∣∣∣∣
∫

Rm
|ϕ(t)|N(dt)

∣∣∣∣
2

< ∞ almost surely. (31)

Using the fact that when N is fixed, mX
∫
Rm
ϕ(t)N(dt) is deterministic, we obtain

α = E

[
var

(∫
Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν)

∣∣∣∣ F N∞
)]

= E

[∫
Rm

∣∣∣∣
∫

Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

∣∣∣∣
2

µX(dν)

]
(by (28) and (31))

=
∫

Rm
E

[∣∣∣∣
∫

Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

∣∣∣∣
2]
µX(dν)

=
∫

Rm

(
var

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
+

∣∣∣∣E
[∫

Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

]∣∣∣∣
2)
µX(dν)

=
∫

Rm

(∫
Rm

|ϕ̂(x − ν)|2µN(dx)+
∣∣∣∣
∫

Rm
ϕ(t)e2iπ〈ν,t〉λ dt

∣∣∣∣
2)
µX(dν)

(by the hypothesis about BN)

=
∫

Rm

(∫
Rm

|ϕ̂(x − ν)|2µN(dx)
)
µX(dν)+ λ2

∫
Rm

|ϕ̂(−ν)|2µX(dν)

=
∫

Rm

(∫
Rm

|ϕ̂(x + ν)|2µN(dx)
)
µX(dν)+ λ2

∫
Rm

|ϕ̂(ν)|2µX(dν)

=
∫

Rm
|ϕ̂(ν)|2(µN ∗ µX)(dν)+ λ2

∫
Rm

|ϕ̂(ν)|2µX(dν)

and, since

E

[∫
Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν)

∣∣∣∣ F N∞
]

= 0,
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we have

β = var

(
mX

∫
Rm
ϕ(t)N(dt)

)

= |mX|2
∫

Rm
|ϕ̂(ν)|2µN(dν) (since ϕ ∈ BN).

Finally,

var

(∫
Rm
ϕ(t)Y (t) dt

)
=

∫
Rm

|ϕ̂(ν)|2(µN ∗ µX + λ2µX + |mX|2µN)(dν),

that is, {Y (t)}t∈Rm admits the extended Bochner spectral measure given by (30).

It now remains to validate the exchange of integrals made at the start of the proof.

Lemma 3. Let N be a simple, locally bounded stationary point process defined on R
m and

admitting a Bartlett spectrum µN . Let M2 be its second moment measure and let {X(t)}t∈Rm

be a wide-sense stationary random field with Cramér–Khinchin decomposition ZX and power
spectral measure µX. Then, for all ϕ ∈ L2(M2),∫

Rm
ϕ(t)X(t)N(dt) =

∫
Rm

(∫
Rm
ϕ(t)e2iπ〈ν,t〉N(dt)

)
ZX(dν). (32)

Proof. We provide the proof in the univariate case. The multivariate case follows along the
same lines, with more notation. The left-hand side of (32) is

A :=
∑
n∈Z

ϕ(Tn)X(Tn) = lim
c↑∞

∑
n∈Z

ϕ(Tn)X(Tn)1[−c,c](Tn) = lim
c↑∞A(c),

where the limit is in L1(P ). Indeed

E[|A− A(c)|] ≤ E

[∫
[−c,c]

|ϕ(t)X(t)|N(dt)
]

=
∫

[−c,c]
|ϕ(t)| E[|X(t)|]λ dt

≤ λK

∫
[−c,c]

|ϕ(t)| dt,

where
K = sup

t
E[|X(t)|] < ∞

(by Schwarz’s inequality, E[|X(t)|] ≤ E[|X(t)|2]1/2 = E[|X(0)|2]1/2). Therefore, since ϕ ∈
L1, we have

lim
c↑∞ E[|A− A(c)|] = 0.

The right-hand side of (32) is

B := lim
c↑∞

∫
R

(∫
[−c,c]

ϕ(t)e2iπ〈ν,t〉N(dt)
)
ZX(dν) = lim

c↑∞B(c),
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where the limit is in quadratic mean. Indeed,

E[|B − B(c)|2] = E

[∣∣∣∣
∫

R

(∫
[−c,c]

ϕ(t)e2iπνtN(dt)

)
ZX(dν)

∣∣∣∣
2]

= E

[
E

[∣∣∣∣
∫

R

(∫
[−c,c]

ϕ(t)e2iπνtN(dt)

)
ZX(dν)

∣∣∣∣
2 ∣∣∣∣ F N∞

]]

= E

[∫
R

∣∣∣∣
∫

[−c,c]
ϕ(t)e2iπνtN(dt)

∣∣∣∣
2

µX(dν)

]
.

Let ϕc(t) = ϕ(t)1[−c,c](t). Then

E

[∫
R

∣∣∣∣
∫

R

ϕc(t)e
2iπνtN(dt)

∣∣∣∣
2

µX(dν)

]
=

∫
R

E

[∣∣∣∣
∫

R

ϕc(t)e
2iπνtN(dt)

∣∣∣∣
2]
µX(dν).

However,

E

[∣∣∣∣
∫

R

ϕc(t)e
2iπνtN(dt)

∣∣∣∣
2]

≤ E

[(∫
R

|ϕc(t)|N(dt)
)2]

=
∫

R×R

|ϕc(t)| |ϕc(s)|M2(dt × ds),

a quantity that tends to 0 as c ↑ ∞, by dominated convergence. Dominated convergence
applied to the finite measure µX then yields the desired L2-convergence. Furthermore,

A(c) =
∑
n∈Z

ϕ(Tn)X(Tn)1[−c,c]

=
∑
n∈Z

ϕ(Tn)

(∫
R

e2iπνTnZX(dν)

)
1[−c,c](Tn)

=
∫

R

(∑
n∈Z

ϕ(Tn)e
2iπνTn1[−c,c](Tn)

)
ZX(dν)

= B(c),

where we have used the fact that the sums involved are finite. Thus,

lim
c↑∞A(c) =

{
A in L1

C
(P),

B in L2
C
(P),

from which it follows that A = B almost surely. (To see this, we use the fact that if a sequence
of random variables converges to some random variable in L1 or L2, then we can extract a
subsequence that converges almost surely to the same random variable.)

Example 11. Let N be a Cox process with a wide-sense stationary intensity {λ(t)}t∈Rm with
Bochner spectrum µλ. Then

µY = µλ ∗ µX + λ2µX + |mX|2µλ + λE[|X(0)|2]�m,
where, recall, �m is the Lebesgue measure. In particular, when the spike field is a homogeneous
Poisson process,

µY = λ2µX + λE[|X(0)|2]�m. (33)
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5.2. Reconstruction of the signal from its sampled version

We now consider the problem of approximatingX(t) by a filtered version of {Y (t)}, namely∫
Rm
ϕ(t − s)Y (s) ds,

where ϕ ∈ L1 ∩ L2.
Moore and Thompson [22] gives motivation to this kind of problem in geophysics.
The difference between X(t) and its approximation, that is, the reconstruction error, is

measured by

ε = E

[∣∣∣∣
∫

Rm
ϕ(t − u)Y (u) du−X(t)

∣∣∣∣
2]
.

The following theorem gives another expression for the reconstruction error.

Theorem 6. Reconstruction of the signal {X(t)}t∈R by filtering the sample comb {Y (t)}t∈R

with a filter ϕ ∈ L1 ∩ L2 gives the following error:

ε =
∫

Rm
|ϕ̂(ν)|2µY (dν)+

∫
Rm
µX(dν)− λ

∫
Rm
(ϕ̂(ν)+ ϕ̂∗(ν))µX(dν)+ |mX|2|1 − λϕ̂(0)|2.

Proof. We have

ε = E

[∣∣∣∣
∫

Rm
ϕ(t − u)X(u)N(du)−X(t)

∣∣∣∣
2]

= E

[∣∣∣∣
∫

Rm
ϕ(t − u)X(u)N(du)

∣∣∣∣
2]

− 2 Re

{
E

[∫
R

ϕ(t − u)X(t)X(u)N(du)

]}
+ E[|X(t)|2]

=: A− 2 Re{B} + C.

In this expression,

A =
∫

Rm
|ϕ̂(ν)|2µY (dν)+ λ2|mX|2

∣∣∣∣
∫

Rm
ϕ(t) dt

∣∣∣∣
2

=
∫

Rm
|ϕ̂(ν)|2µY (dν)+ λ2|mX|2|ϕ̂(0)|2,

B = E

[∫
Rm
ϕ(t − u)X(t)X(u)N(du)

]

= λ

∫
Rm
ϕ(t − u)RX(t − u) du

= λ

∫
Rm
ϕ(t)RX(t) dt

= λ

∫
Rm
ϕ(t)CX(t) dt + λ|mX|2

∫
Rm
ϕ(t) dt

= λ

∫
Rm
ϕ̂(ν)µX(dν)+ λ|mX|2ϕ̂(0),

C =
∫

Rm
µX(dν)+ |mX|2.
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Therefore,

E

[∣∣∣∣
∫

Rm
ϕ(t − u)X(u)N(du)−X(t)

∣∣∣∣
2]

=
∫

Rm
|ϕ̂(ν)|2µY (dν)− λ

∫
Rm
(ϕ̂(ν)+ ϕ̂(ν)∗)µX(dν)

+ |mX|2(1 − λ(ϕ̂(0)+ ϕ̂(0)∗)+ λ2|ϕ̂(0)|2)+
∫

Rm
µX(dν).

In particular, in the case mX = 0 the error is

ε =
∫

Rm
|ϕ̂(ν)|2µY (dν)− 2λRe

{∫
Rm
ϕ̂(ν)µX(dν)

}
+ µX(R

m). (34)

We now give some examples of reconstruction error for different sampling schemes. For
ease of notation, we assume that the signal is centered, that is, mX = 0. Moreover, some
parts of the examples are developed in the univariate case. We perform the computations in the
‘classical’ situation of a band-limited signal X(t) filtered with a band-limited (low-pass) filter
ϕ(ν). More precisely, let S be the support of µX, with length 2B = �(S). We then set

ϕ̂(ν) =
{

1/λ on S,

0 otherwise,

where λ is the intensity of the spike comb.

Example 12. WhenN is a homogeneous Poisson process with intensity λ, µY is given by (33)
and the error is

ε =
∫

Rm
|λϕ̂(ν)− 1|2µX(dν)+ λCX(0)

∫
Rm

|ϕ̂(ν)|2(dν).

In the ‘classical’ band-limited case described above, we have

ε = λCX(0)
∫

R

|ϕ̂(ν)|2(dν) = λCX(0)
∫

R

1

λ2 1S(ν) dν

or, equivalently,

ε = CX(0)
2B

λ
·

Therefore, sampling at the Nyquist rate λ = 2B gives very poor performance, no better than
the estimate based on no observations at all.

This does not mean, however, that below the rate λ = 2B the samples contain no information
(or, as the result suggests, ‘negative information’) about the process itself. A better choice of
filter would give a linear estimate with error less than σ 2 = CX(0). For instance, if we let ϕ̂ be
real, we find that

ε =
∫

R

[(λϕ̂(ν)− 1)2fX(ν)+ λσ 2ϕ̂(ν)2] dν,

where it is assumed that {X(t)}t∈R has the power spectral density fX(ν). The minimum error
occurs for

ϕ̂(ν) = λfX(ν)

λ2fX(ν)+ λσ 2 ,
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and is

ε = σ 2
(

1 −
∫

R

λf̃X(ν)

1 + λf̃X(ν)
f̃X(ν) dν

)
,

where f̃X(ν) is the normalized power spectral density of X(t):

f̃X(ν) = fX(ν)∫
R
fX(ν′) dν′ = fX(ν)

σ 2 ·

Therefore, ε = σ 2(1 − ρ), where

ρ =
∫

R

λf̃X(ν)

1 + λf̃X(ν)
f̃X(ν) dν,

can be interpreted as the correlation coefficient between X(t) and N , for fixed t .

Example 13. When the sampled comb is derived by T -uniform sampling, the reconstruction
error (34) reads

ε = 1

T 2

∫
R

|ϕ̂(ν)|2µX(dν)− 2

T
Re

{∫
R

ϕ̂(ν)µX(dν)

}
+

∫
R

µX(dν) (35)

=
∫

R

∣∣∣∣ 1

T
ϕ̂(ν)− 1

∣∣∣∣
2

µX(dν).

In the band-limited case, if we take T = 1/(2B), that is, λ = 2B, (35) gives an error equal
to 0. Therefore, the signal is perfectly reconstructed by

X(t) =
∫

R

ϕ(t − s)X(s)N(ds) =
∑
n∈Z

X(Tn)sinc(t − Tn),

where, here,
sinc(t) = sin(2πBt)/(2πBt),

which is the usual reconstruction formula (from the Shannon–Nyquist theorem).

Example 14. Given uniform samples in the presence of jitter, the reconstruction error is
obtained by substituting the extended Bochner spectrumµY , withµN corresponding to a jittered
uniform grid (see Example 1 and Corollary 2), into the error formula (34). The previous example
showed that within the ‘classical’sampling framework the signal may be perfectly reconstructed.
In the presence of jitter, this is not possible and the reconstruction error is given by

ε = 1

2B

(∫ B

−B
σ 2(1 − (|ψZ|2 ∗ f̃X)(ν)) dν

)
.

5.3. Signal-dependent rate of sampling

We now consider the case in which the sampling rate depends on the process. The model
for the sampler is now a Cox process [13] on R

m with an intensity of the form

λ(t) = λ(t, X)
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that is conditional on X. For instance, in the univariate case,

λ(t) = |X(t)|2 and λ(t) = |Ẋ(t)|2,
where Ẋ is the time derivative of X(t), are possible intensities. More complicated functionals
can be considered.

Theorem 7. Assume that
E[X(t)2λ(t, X)2] < ∞

for all t ∈ R
m, and that {λ(t)}t∈Rm is a locally integrable process. Let µZ be the power

spectrum of the stationary process

Z(t) = X(t)λ(t).

Then
µY (dν) = µZ(dν)+X2λ dν (36)

where X2λ = E[X(t)2λ(t)] (independent of t).

Proof. As in the independent case, in order to compute the Bartlett spectrum of Y (t) we
must evaluate the variance of∫

Rm
ϕ(t)Y (t) dt =

∫
Rm
ϕ(t)X(t)N(dt)

for all ϕ ∈ L1 ∩ L2. We have

var

(∫
Rm
ϕ(t)X(t)N(dt)

)

= E

[
var

(∫
Rm
ϕ(t)X(t)N(dt)

∣∣∣∣ X
)]

+ var

(
E

[∫
Rm
ϕ(t)X(t)N(dt)

∣∣∣∣ X
])

= E

[∫
Rm

|ϕ(t)|2|X(t)|2λ(t, X) dt

]
+ var

(∫
Rm
ϕ(t)X(t)λ(t, X) dt

)

and, by definition of µZ ,

var

(∫
Rm
ϕ(u)X(u)λ(u) du

)
=

∫
Rm

|ϕ̂(ν)|2µZ(dν).

Therefore, recalling that E[X(t)2λ(t)] = X2λ (independent of t), we have

var

(∫
Rm
ϕ(t)X(t)N(dt)

)
= var

(∫
Rm
ϕ(u)X(u)λ(u) du

)
+X2λ

∫
Rm

|ϕ(t)|2 dt

=
∫

Rm
|ϕ̂(ν)|2µZ(dν)+X2λ

∫
Rm

|ϕ̂(ν)|2 dν

=
∫

Rm
ϕ̂(ν)(µZ(dν)+X2λ dν),

and (36) follows.
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As particular cases of the above result, for X(t) ≡ 1 we recover the formula

µN(dν) = µλ(dν)+ λ dν

for the Bartlett spectrum of the Cox process, and for X(t) = λ(t) we have

µY (dν) = µλ2(dν)+ E[λ3(0)] dν.
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