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We consider patterns formed in a two-dimensional thin film on a planar substrate with a Derjaguin
disjoining pressure and periodic wettability stripes. We rigorously clarify some of the results obtained
numerically by Honisch et al. [Langmuir 31: 10618–10631, 2015] and embed them in the general
theory of thin-film equations. For the case of constant wettability, we elucidate the change in the
global structure of branches of steady-state solutions as the average film thickness and the surface
tension are varied. Specifically we find, by using methods of local bifurcation theory and the con-
tinuation software package AUTO, both nucleation and metastable regimes. We discuss admissible
forms of spatially non-homogeneous disjoining pressure, arguing for a form that differs from the
one used by Honisch et al., and study the dependence of the steady-state solutions on the wettability
contrast in that case.
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1 Introduction

Thin liquid films on solid substrates occur in many natural situations. For example, they appear
in tear films in the eye which protect the cornea [6] or in streams of lava from a volcanic eruption
[19]. Moreover, thin liquid films occur in many technological applications such as coatings [22]
and lubricants (e.g. oil films which lubricate the piston in a car engine [41], drying paint layers
[18] and in the manufacture of microelectronic devices [21]). For extensive reviews of thin-film
flow see, for example, Oron et al. [28] and Craster and Matar [10].

As these liquid films are thin, the Navier–Stokes equation governing their flow can be reduced
to a single degenerate fourth-order quasi-linear parabolic partial differential equation (PDE) usu-
ally known as a thin-film equation. In many applications a choice of a disjoining pressure, which
we denote by �, must be made. Such a term describes the action of surface forces on the film [37].
In different situations, different forms of disjoining pressure are appropriate; these may incorpo-
rate long-range van der Waals forces and/or various types of short-range interaction terms such
as Born repulsion; inclusion of a particular type of interaction can have significant effects on the
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wettability of the surface and the evolution of the thin film, sometimes leading to dewetting phe-
nomena, i.e. the rupture of the film and the appearance of dry spots. (Here and subsequently by
‘wettability’ of the surface, we mean the tendency for a liquid to spread over or to adhere to it.)

Witelski and Bernoff [43] were one of the first authors to analyse mathematically the rupture
of three-dimensional thin films. In particular, considering a disjoining pressure of the form � =
−1/(3h3) (we use the sign convention adopted in Honisch et al. [17]), they analysed planar and
axisymmetric equilibrium solutions on a finite domain. They showed that a disjoining pressure
of this form leads to finite-time rupture singularities, that is, the film thickness approaches zero
in finite time at a point (or a line or a ring) in the domain. In a related more recent paper, Ji
and Witelski [20] considered a different choice of disjoining pressure and investigated the finite-
time rupture solutions in a model of thin film of liquid with evaporative effects. They observed
different types of finite-time singularities due to the non-conservative terms in the model. In
particular, they showed that the inclusion of non-conservative terms can prevent the disjoining
pressure from causing finite-time rupture.

A pioneering theoretical study of a thin-film equation with a disjoining pressure term given
by a combination of negative powers of the thin-film thickness is that by Bertozzi et al. [4], who
studied the formation of dewetting patterns and the rupture of thin liquid films due to long-range
attractive and short-range Born repulsive forces, and determined the structure of the bifurcation
diagram for steady-state solutions, both with and without the repulsive term.

Aiming to quantify the temporal coarsening in a thin film, Glasner and Witelski [15] examined
two coarsening mechanisms that arise in dewetting films: mass exchange that influences the
breakdown of individual droplets and spatial motion that results in droplet rupture as well as
merging events. They provided a simple model with a disjoining pressure which combines the
effects of both short- and long-range forces acting on the film. Kitavtsev et al. [23] analysed the
long-time dynamics of dewetting in a thin-film equation by using a disjoining pressure similar
to that used by Bertozzi et al. [4]. They applied centre manifold theory to derive and analyse an
ordinary differential equation model for the dynamics of dewetting.

The recent article by Witelski [42] presents a review of the various stages of dewetting for a
film of liquid spreading on a hydrophobic substrate. Different types of behaviour of the film are
observed depending on the form of the disjoining pressure: finite-time singularities, self-similar
solutions and coarsening. In particular, he divides the evolution of dewetting processes into three
phases: an initial linear instability that leads to finite-time rupture (short time dynamics), which
is followed by the propagation of dewetting rims and instabilities of liquid ridges (intermediate
time dynamics), and the eventual formation of quasi-steady droplets (long-time dynamics).

Most of the previous studies of thin liquid films focussed on films on homogeneous substrates.
However, thin liquid films on non-homogeneous chemically patterned substrates are also of inter-
est. These have many practical applications, such as in the construction of microfluidic devices
and creating soft materials with a particular pattern [30]. Chemically patterned substrates are
an efficient way to obtain microstructures of different shapes by using different types of sub-
strate patterning [34]. Chemical modification of substrates can also be used to avoid spontaneous
breakup of thin films, which is often highly undesirable, as, for example, in printing technology
[1,5].

Due to their many applications briefly described above, films on non-homogeneous substrates
have been the object of a number of previous theoretical studies which motivate the present work.
For example, Konnur et al. [24] found that in the case of an isolated circular patch with wetting
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properties different from that of the rest of the substrate that chemical non-homogeneity of the
substrate can greatly accelerate the growth of surface instabilities. Sharma et al. [35] studied
instabilities of a liquid film on a substrate containing a single heterogeneous patch and a substrate
with stripes of alternating less and more wettable regions. The main concern of that paper was
to investigate how substrate patterns are reproduced in the liquid film, and to determine the best
conditions for templating.

Thiele et al. [39] performed a bifurcation analysis using the continuation software pack-
age AUTO [11] to study dewetting on a chemically patterned substrate by solving a thin-film
equation with a disjoining pressure, using the wettability contrast as a control parameter. The
wettability contrast measures the degree of heterogeneity of the substrate; it is introduced and
defined rigorously in (5.1) in Section 5. Honisch et al. [17] modelled an experiment in which
organic molecules were deposited on a chemically non-homogeneous silicon oxide substrates
with gold stripes and discuss the redistribution of the liquid following deposition.

In a recent paper, Liu and Witelski [27] studied thin films on chemically heterogeneous
substrates. They claim that in some applications such as digital microfluidics, substrates with
alternate hydrophilic and hydrophobic rectangular areas are better described by a piecewise con-
stant function than by a sinusoidal one. Therefore, in contrast to other studies, including the
present one, they study substrates with wettability characteristics described by such a function.
Based on the structure of the bifurcation diagram, they divide the steady-state solutions into six
distinct but connected branches and show that the only unstable branch corresponds to confined
droplets, while the rest of the branches are stable.

In the present work, we build on the work of Thiele et al. [39] and Honisch et al. [17]. Part
of our motivation is to clarify and explain rigorously some of the numerical results reported in
these papers. In the sinusoidally striped non-homogeneous substrate case, we offer a justification
for using a form of the disjoining pressure that differs from the one used in these two papers. A
detailed plan of the paper is given in the last paragraph of Section 2.

2 Problem statement

Denoting the thickness of the thin liquid film by z = h(x, y, t), where (x, y, z) are the usual
Cartesian coordinates and t is time, Honisch et al. [17] considered the thin-film equation

ht = ∇ · {Q(h)∇P(h, x, y)} , t > 0, (x, y) ∈R
2, (2.1)

where Q(h) = h3/(3η) is the mobility coefficient with η being the dynamic viscosity. The
generalised pressure P(h, x, y) is given by

P(h, x, y) = −γ�h − �(h, x, y), (2.2)

where γ is the coefficient of surface tension and we follow [17] in taking the Derjaguin disjoining
pressure �(h, x, y) in the spatially homogeneous case to be of the form

�(h, x, y) = − A

h3
+ B

h6
, (2.3)

suggested, for example, by Pismen [29]. Here A and B are positive parameters that measure the
relative contributions of the long-range forces (the 1/h3 term) and the short-range ones (the 1/h6

term). However, we will see that both of these constants can be scaled out of the mathematical
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problem. Equation (2.3) uses the exponent −3 for the long-range forces and −6 for the short-
range forces as in Honisch et al. [17]. Other choices include the pairs of long- and short-range
exponents (−2, −3), (−3, −4) and (−3, −9) discussed by [4,33,36]. In terms of the classification
of Bertozzi et al. [4, Definition 1], the choice (−3, −6) is admissible (as are all the other pairs
above), and falls in their region II; we expect that choosing other admissible exponent pairs will
give qualitatively the same results as those obtained here.

In what follows, we study thin films on both homogeneous and non-homogeneous substrates.
In the non-homogeneous case, we will modify (2.3) by assuming that the Derjaguin pressure
term � changes periodically in the x-direction with period L. The appropriate forms of � in the
non-homogeneous case are discussed in Section 5.

Hence, in order better to understand solutions of (2.1), we study its one-dimensional
version,

ht = (Q(h)P(h, x)x)x, 0 < x < L. (2.4)

We start by characterising steady-state solutions of (2.4) subject to periodic boundary condi-
tions at x = 0 and x = L. In other words, we seek steady-state solutions h(x) of (2.4) satisfying
the non-local boundary value problem

γ hxx + B

h6
− A

h3
− 1

L

∫ L

0

[
B

h6
− A

h3

]
dx = 0, 0 < x < L, (2.5)

subject to the constraint

1

L

∫ L

0
h(x) dx = h∗, (2.6)

where the constant h∗ (> 0) denotes the (scaled) average film thickness, and the periodic
boundary conditions

h(0) = h(L), hx(0) = hx(L). (2.7)

Now we non-dimensionalise. Setting

H =
(

B

A

)1/3

, h = Hh̃ and x = Lx̃, (2.8)

in (2.5) and removing the tildes, we obtain

ε2hxx + f (h) −
∫ 1

0
f (h) dx = 0, 0 < x < 1, (2.9)

where

f (h) = 1

h6
− 1

h3
, (2.10)

and

ε2 = γ B4/3

L2A7/3
, (2.11)

subject to the periodic boundary conditions

h(0) = h(1), hx(0) = hx(1), (2.12)
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and the volume constraint ∫ 1

0
h(x) dx = h̄, (2.13)

where

h̄ = h∗A1/3

B1/3
. (2.14)

Note that the problem (2.9)–(2.14) is very similar to the corresponding steady-state prob-
lem for the Cahn–Hilliard equation considered as a bifurcation problem in the parameters h̄
and ε by Eilbeck et al. [12]. The boundary conditions considered in that work were the physi-
cally natural double Neumann conditions. The periodic boundary conditions (2.12) in the present
problem slightly change the analysis, but our general approach in characterising different bifur-
cation regimes still follows that of Eilbeck et al. [12], though the correct interpretation of the
limit as ε → 0+ is that now we let the surface tension γ go to zero. In particular, we perform
a Liapunov–Schmidt reduction to determine the local behaviour close to bifurcation points and
then use AUTO (in the present work, we use the AUTO-07p version [11]) to explore the global
structure of branches of steady-state solutions both for the spatially homogeneous case and for
the spatially non-homogeneous case in the case of an x-periodically patterned substrate.

We first investigate the homogeneous case, and having elucidated the structure of the bifur-
cations of non-trivial solutions from the constant solution h = h̄ in that case in Sections 3 and 4,
we study forced rotational (O(2)) symmetry breaking in the non-homogeneous case in Section 5.
In Appendix A, we present a general result about O(2) symmetry breaking in the spatially non-
homogeneous case. It shows that in the spatially non-homogeneous case, only two steady-state
solutions remain from the orbit of solutions of (2.9)–(2.14) induced by its O(2) invariance. We
concentrate on the simplest steady-state solutions of (2.9)–(2.14), as by a result of Laugesen and
Pugh [25, Theorem 1] only such solutions, that is, constant solutions and those having only one
extremum point, are linearly stable in the homogeneous case. For information about dynamics of
one-dimensional thin-film equations the reader should also consult Zhang [46].

In what follows, we use ‖ · ‖2 to denote L2([0, 1]) norms.

3 Liapunov–Schmidt reduction in the spatially homogeneous case

We start by performing an analysis of the dependence of the global structure of branches of
steady-state solutions of the problem in the spatially homogeneous case given by (2.9)–(2.14) on
the parameters h̄ and ε.

In what follows, we do not indicate explicitly the dependence of the operators on the param-
eters h̄ and ε, and all of the calculations are performed for a fixed value of h̄ and close to a
bifurcation point ε = εk for k = 1, 2, 3, . . . defined below.

We set v = h − h̄, so that v = v(x) has zero mean, and rewrite (2.9) as

G(v) = 0, (3.1)

where

G(v) = ε2vxx + f (v + h̄) −
∫ 1

0
f (v(x) + h̄) dx. (3.2)
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If we set

H =
{

w ∈ C(0, 1) :
∫ 1

0
w(x) dx = 0

}
, (3.3)

where G is an operator from D(G) ⊂ H → H , then D(G) is given by

D(G) =
{
v ∈ C2(0, 1) : v(0) = v(1), vx(0) = vx(1),

∫ 1

0
v(x) dx = 0

}
. (3.4)

The linearisation of G at v applied to w is defined by

dG(v)w = lim
τ→0

G(v + τw) − G(v)

τ
. (3.5)

We denote dG(0) by S, so that S applied to w is given by

Sw = ε2wxx + f ′(h̄)w. (3.6)

To locate the bifurcation points, we have to find the non-trivial solutions of the equation Sw = 0
subject to

w(0) = w(1), wx(0) = wx(1). (3.7)

The kernel of S is non-empty and two-dimensional when

ε = εk =
√

f ′(h̄)

2kπ
for k = 1, 2, 3, . . . , (3.8)

and is spanned by cos(2kπx) and sin(2kπx). That these values of ε correspond to bifurcation
points follows from two theorems of Vanderbauwhede [40, Theorems 2 and 3].

In a neighbourhood of a bifurcation point (εk , 0) in (ε, v) space, solutions of G(v) = 0 on H
are in one-to-one correspondence with solutions of the reduced system of equations on R

2,

g1(x, y, ε) = 0, g2(x, y, ε) = 0, (3.9)

for some functions g1 and g2 to be obtained through the Liapunov–Schmidt reduction [16].
To set up the Liapunov–Schmidt reduction, we decompose D(G) and H as follows:

D(G) = ker S ⊕ M , (3.10)

and

H = N ⊕ range S. (3.11)

Since S is self-adjoint with respect to the L2-inner product denoted by 〈·, ·〉, we can choose

M = N = span {cos(2kx), sin(2kx)} , (3.12)

and denote the above basis for M by {w1, w2} and for N by
{
w∗

1, w∗
2

}
. We also denote the

projection of H onto range S by E.
Since the present problem is invariant with respect to the group O(2), the functions g1 and g2

must have the form

g1(x, y, ε) = xp(x2 + y2, ε), g2(x, y, ε) = yp(x2 + y2, ε), (3.13)
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for some function p(·, ·) [9], which means that in order to determine the bifurcation structure, the
only terms that need to be computed are g1,xε and g1,xxx, as these immediately give g2,yε and g2,yyy

and all of the other second and third partial derivatives of g1 and g2 are identically zero.
Following Golubitsky and Schaeffer [16], we have

g1,xε = 〈w∗
1, dGε(w1) − d2G(w1, S−1EGε(0))〉, (3.14)

g1,xxx = 〈w∗
1, d3G(w1, w1, w1) − 3d2G(w1, S−1E[d2G(w1, w1)])〉, (3.15)

where

drG(z1, . . . , zr) = ∂r

∂t1 . . . ∂tr
G(t1z1 + . . . + trzr)

∣∣∣∣
t1=. . .=tr=0

for r = 1, 2, 3, . . . , (3.16)

and we choose

w1 = w∗
1 = cos(2kπx), (3.17)

where w1 ∈ ker S and w∗
1 ∈ (range S)⊥. In particular, from (3.16) we have

d2G(z1, z2) = ∂2

∂t1∂t2
G(t1z1 + t2z2)

∣∣∣∣
t1=t2=0

= ∂2

∂t1∂t2

[
εk(t1z1,xx + t2z2,xx) + f (t1z1 + t2z2 + h̄)

−
∫ 1

0
f (t1z1 + t2z2 + h̄) dx

]∣∣∣∣
t1=t2=0

= f ′′(h̄)z1z2 −
∫ 1

0
f ′′(h̄)z1z2 dx, (3.18)

and so

d2G(cos(2kπx), cos(2kπx)) = f ′′(h̄) cos2(2kπx) −
∫ 1

0
f ′′(h̄) cos2(2kπx) dx

= f ′′(h̄) cos2(2kπx) − 1

2
f ′′(h̄). (3.19)

To obtain S−1E[d2G(w1, w1)], which we denote by R(x), so that SR = E[d2G(w1, w1)], we
use the definition of εk given in (3.8) and solve the second-order ordinary differential equation
satisfied by R(x),

Rxx + 4k2π2R = 4k2π2 f ′′(h̄)

f ′(h̄)
cos2(2kπx) − 2k2π2 f ′′(h̄)

f ′(h̄)
, (3.20)

subject to

R(0) = R(1) and Rx(0) = Rx(1), (3.21)

in ker S. We obtain

R(x) = S−1E[d2G(w1, w1)] = −1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx), (3.22)
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and hence

d2G(w1, S−1E[d2G(w1, w1)]) = d2G

(
cos(2kπx), −1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)

= f ′′(h̄) cos(2kπx)

(
−1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)

−
∫ 1

0
f ′′(h̄) cos(2kπx)

(
−1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)
dx

= −1

6

[f ′′(h̄)]2

f ′(h̄)
cos(2kπx) cos(4kπx). (3.23)

In addition, from (3.16) we have

d3G(z1, z2, z3) = ∂3

∂t1∂t2∂t3
G(t1z1 + t2z2 + t3z3)

∣∣∣∣
t1=t2=t3=0

= f ′′′(h̄)z1z2z3 −
∫ 1

0
f ′′′(h̄)z1z2z3 dx, (3.24)

and therefore

d3G(cos(2kπx), cos(2kπx), cos(2kπx)) = f ′′′(h̄) cos3(2kπx) −
∫ 1

0
f ′′′(h̄) cos3(2kπx) dx

= f ′′′(h̄) cos3(2kπx). (3.25)

Putting all of the information in (3.23) and (3.25) into (3.15) we obtain

g1,xxx = 〈w∗
1, d3G(w1, w1, w1) − 3d2G(w1, S−1E[d2G(w1, w1)])〉

=
∫ 1

0
cos(2kπx)

[
f ′′′(h̄) cos3(2kπx) − 3

(
−1

6

[f ′′(h̄)]2

f ′(h̄)
cos(2kπx) cos(4kπx)

)]
dx

= 3

8
f ′′′(h̄) + 1

8

[f ′′(h̄)]2

f ′(h̄)
. (3.26)

In addition, Gε(v) = vxx, so that Gε(0) = 0 at v = 0, and hence we have

d2G(wk , S−1EGε(0)) = 0. (3.27)

Furthermore, since dGε(w) = wxx, from (3.14) we obtain

g1,xε = 〈w∗
1, dGε(w1) − d2G(w1, S−1EGε(0))〉

=
∫ 1

0
cos(2kπx)

(−4π2k2 cos(2kπx)
)

dx

= −2k2π2. (3.28)

Referring to (3.13) and the argument following that equation, the above analysis shows that as
long as f ′(h̄) > 0 at ε = εk a circle of equilibria bifurcates from the constant solution h ≡ h̄. The
direction of bifurcation is locally determined by the sign of g1,xxx given by (3.26). Hence, using
1/ε as the bifurcation parameter, the bifurcation of non-trivial equilibria is supercritical if g1,xxx

is negative and subcritical if it is positive.
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By finding the values of h̄ where g1,xxx given by (3.26) with f (h) given by (2.10) is zero, we
finally obtain the following proposition:

Proposition 1 Bifurcations of non-trivial solutions from the constant solution h = h̄ of the prob-
lem (2.9)–(2.14) are supercritical if 1.289 < h̄ < 1.747 and subcritical if 1.259 < h̄ < 1.289 or if
h̄ > 1.747.

Proof. The constant solution h ≡ h̄ will lose stability as ε is decreased only if f ′(h̄) > 0. i.e. if
−6/h̄7 + 3/h̄4 > 0, for h̄ > 21/3 ≈ 1.259. From (3.26) we have that

g1,xxx = 57h̄6 − 426h̄3 + 651

2h̄9(h̄3 − 2)
, (3.29)

so that g1,xxx < 0 if h̄ ∈ (1.289, 1.747) giving the result.
For h̄ � 21/3 there are no bifurcations from the constant solution h = h̄. Furthermore, we have

the following proposition:

Proposition 2 The problem (2.9)–(2.14) has no non-trivial solutions when h̄ ≤ 1.

Proof. Assume that such a non-trivial solution exists. Then, since h̄ ≤ 1, its global minimum,
achieved at some point x0 ∈ (0, 1), must be less than 1. (We may take the point x0 to be an interior
point by translation invariance.) But then

ε2hxx(x0) =
∫ 1

0
f (h) dx − f (h(x0)) < 0, (3.30)

so the point x0 cannot be a minimum.

4 Two-parameter continuation of solutions in the spatially homogeneous case

To describe the change in the global structure of branches of steady-state solutions of the problem
(2.9)–(2.14) as h̄ and ε are varied, we use AUTO [11] and our results are summarised in Figure 1.

Figure 1 shows a curve of saddle-node (SN) bifurcations which originates from h̄ ≈ 1.289 at
1/ε ≈ 23.432 satisfies h̄ → 1+ as 1/ε → ∞, while a curve of SN bifurcations which originates
from h̄ ≈ 1.747, 1/ε ≈ 13.998 satisfies h̄ → ∞ as 1/ε → ∞.

Figure 1 identifies three different bifurcation regimes, denoted by I, II and III, with differing
bifurcation behaviour occurring in the different regimes, namely (using the terminology of [12]
in the context of the Cahn–Hilliard equation):

• a ‘nucleation’ regime for 1 < h̄ < 21/3 ≈ 1.259 (Regime I),

• a ‘metastable’ regime for 21/3 < h̄ < 1.289 and h̄ > 1.747 (Regime II), and

• an ‘unstable’ regime for 1.289 < h̄ < 1.747 (Regime III).

In Regime I, the constant solution h(x) ≡ h̄ is linearly stable which follows from analysing the
spectrum of the operator S for f ′(h̄) < 0 in (3.6) and (3.7), but under sufficiently large perturba-
tions, the system will evolve to a non-constant steady-state solution. See [25] for an extensive
discussion of the stability analysis of steady-state solutions to thin-film equations.
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FIGURE 1. The global structure of branches of steady-state solutions with a unique maximum, including
both saddle-node (SN) (shown with dash-dotted curves) and pitchfork (PF) bifurcation branches (shown
with solid curves). The nucleation regime 1 < h̄ < 21/3 ≈ 1.259 (Regime I), the metastable regime 21/3 <

h̄ < 1.289 and h̄ > 1.747 (Regime II), and the unstable regime 1.289 < h̄ < 1.747 (Regime III) are also
indicated.

In Regime II, as ε is decreased the constant solution h(x) ≡ h̄ loses stability through a
subcritical bifurcation.

In Regime III, as ε is decreased, the constant solution h(x) ≡ h̄ loses stability through a
supercritical bifurcation.

5 The spatially non-homogeneous case

Honisch et al. [17] chose the Derjaguin disjoining pressure �(h, x, y) to be of the form

�(h, x, y) =
(

1

h6
− 1

h3

)
(1 + ρ G(x, y)), (5.1)

where the function G(x, y) models the non-homogeneity of the substrate and the parameter ρ,
which can be either positive or negative, is called the ‘wettability contrast’. Following Honisch
et al. [17], in the remainder of the present work we consider the specific case

G(x, y) = sin (2πx) := G(x), (5.2)

corresponding to an x-periodically patterned (i.e. striped) substrate.
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(a) (b)

(c)

FIGURE 2. Bifurcation diagrams of solutions with a unique maximum, showing ‖h − h̄‖2 plotted as a
function of 1/ε when the disjoining pressure is �LR for ρ = 0 (dashed curves), ρ = 0.005 (dotted curves)
and ρ = 0.05 (solid curves) for (a) h̄ = 1.24, (b) h̄ = 1.3 and (c) h̄ = 2, corresponding to Regimes I, III and
II, respectively.

There are, however, some difficulties in accepting (5.1) as a physically realistic form of the
disjoining pressure for a non-homogeneous substrate. The problems arise because the two terms
in (5.1) represent rather different physical effects. Specifically, since the 1/h6 term models the
short-range interaction amongst the molecules of the liquid and the 1/h3 term models the long-
range interaction, assuming that both terms reflect the patterning in the substrate in exactly the
same way through their dependence on the same function G(x,y) does not seem very plau-
sible. Moreover, there are other studies which assume that the wettability of the substrate is
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FIGURE 3. Bifurcation diagram for steady-state solutions with a unique maximum showing ‖h − h̄‖2 plot-
ted as a function of ρ when the disjoining pressure is �LR, for h̄ = 3 and 1/ε = 50. The leading-order
dependence of ‖h − h̄‖2 on ρ as ρ → 0, given by (5.8), is shown with dashed lines.

incorporated in either the short-range interaction term (see, e.g. Thiele and Knobloch [38] and
Bertozzi et al. [4]) or the long-range interaction term (see, e.g. Ajaev et al. [2] and Sharma et
al. [35]), but not both simultaneously. Hence in what follows we will consider the two cases
�(h, x) = �LR(h, x) and �(h, x) = �SR(h, x), where LR stands for ‘long range’ and SR stands
for ‘short range’, where

�LR(h, x) = 1

h6
− 1

h3
(1 + ρG(x)), (5.3)

and

�SR(h, x) = 1

h6
(1 + ρG(x)) − 1

h3
, (5.4)

in both of which G(x) is given by (5.2) and ρ is the wettability contrast.
For small wettability contrast, |ρ| � 1, we do not expect there to be significant differences

between the influence of �LR or �SR on the bifurcation diagrams, as these results depend only
on the nature of the bifurcation in the homogeneous case ρ = 0 and on the symmetry groups
under which the equations are invariant. To see this, consider the spatially non-homogeneous
version of (2.9), that is, the boundary value problem

ε2hxx + f (h, x) −
∫ 1

0
f (h, x) dx = 0, 0 < x < 1, (5.5)

where now

f (h, x) = �LR(h, x) or f (h, x) = �SR(h, x). (5.6)
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FIGURE 4. Bifurcation diagram showing ‖h − h̄‖2 plotted as a function of ρ when the disjoining pressure
is �SR, for h̄ = 3 and 1/ε = 50. The leading-order dependence of ‖h − h̄‖2 on ρ as ρ → 0, given by (5.9),
is shown with dashed lines. Note that the upper branches of solutions cannot be extended beyond |ρ| = 1
(indicated by filled circles).

FIGURE 5. Solutions h(x) when the disjoining pressure is �SR for h̄ = 2 and 1/ε = 30 for ρ = 0, 0.97, 0.98,
0.99 and 1, denoted by ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’, respectively, showing convergence of strictly positive
solutions to a non-strictly positive one as ρ → 1−.
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FIGURE 6. Detail near x = 3/4 of the solution h(x) shown with solid line when the disjoining pressure is
�SR and ρ = 1, and the two-term asymptotic solution given by (5.10) shown with dashed lines for h̄ = 2
and ε = 1/30.

subject to the periodic boundary conditions and the volume constraint,

h(0) = h(1), hx(0) = hx(1), and
∫ 1

0
h(x) dx = h̄. (5.7)

Seeking an asymptotic solution to (5.5)–(5.7) in the form h(x) = h̄ + ρh1(x) + O(ρ2) in the
limit ρ → 0, by substituting this anzatz into (5.5) we find that in the case of �LR(h, x) we have

h1(x) = − h̄4 sin (2πx)

4π2h̄7ε2 − 3h̄3 + 6
, (5.8)

while in the case of �SR(h, x) the corresponding result is

h1(x) = h̄ sin (2πx)

4π2h̄7ε2 − 3h̄3 + 6
. (5.9)

For non-zero values of ρ, in both the �LR and �SR cases, the changes in the bifurcation
diagrams obtained in the homogeneous case (ρ = 0) are an example of forced symmetry breaking
(see, e.g. Chillingworth [8]), which we discuss further in Appendix A. More precisely, we show
there that when ρ �= 0, out of the entire O(2) orbit only two equilibria are left after symmetry
breaking.

Figure 2 shows how for small wettability contrast |ρ| � 1, the resulting spatial non-
homogeneity introduces imperfections [16] in the bifurcation diagrams of the homogeneous case
ρ = 0 discussed in Section 4. It presents bifurcation diagrams in Regimes I, II and III when the
disjoining pressure �LR is given by (5.3) for a range of small values of ρ together with the
corresponding diagrams in the case ρ = 0. The corresponding bifurcation diagrams when the
disjoining pressure �SR is given by (5.4) are very similar and hence are not shown here.
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(a) (b)

(c)

FIGURE 7. Multiplicity of strictly positive solutions with a unique maximum in the (1/ε, ρ)-plane when
the disjoining pressure is �LR for (a) h̄ = 1.24 (Regime I), (b) h̄ = 1.3 (Regime III) and (c) h̄ = 2
(Regime II).

For large wettability contrast, specifically for |ρ| ≥ 1, significant differences between the two
forms of the disjoining pressure are to be expected. When using �LR, one expects global exis-
tence of positive solutions for all values of |ρ|; see, for example, Wu and Zheng [44]. On the
other hand, when using �SR, there is the possibility of rupture of the liquid film for |ρ| ≥ 1; see,
for example, [4,44], which means in this case we do not expect positive solutions for sufficiently
large values of |ρ|.

In Figure 3 we plot the branches of the positive solutions of (5.5)–(5.7) with a unique max-
imum when the disjoining pressure is �LR for h̄ = 3 and 1/ε = 50, so that when ρ = 0 we are
in Regime II above the curve of pitchfork (PF) bifurcations from the constant solution shown
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(a) (b)

(c)

FIGURE 8. Multiplicity of strictly positive solutions with a unique maximum in the (1/ε, ρ)-plane when
the disjoining pressure is �SR for (a) h̄ = 1.24 (Regime I), (b) h̄ = 1.3 (Regime III) and (c) h̄ = 2
(Regime II).

in Figure 1. The work of Bertozzi et al. [4] and of Wu and Zheng [44], shows that strictly pos-
itive solutions exist for all values of |ρ|, i.e. beyond the range ρ ∈ [−2, 2] for which we have
performed the numerical calculations.

Figure 4 shows that the situation is different when the disjoining pressure is �SR (with the
same values of h̄ and ε). At |ρ| = 1, the upper branches of solutions disappear due to rupture
of the film, so that at some point x0 ∈ [0, 1] we have h(x0) = 0 and a strictly positive solu-
tion no longer exists, while the other two branches coalesce at a saddle-node bifurcation at
|ρ| ≈ 5.8.

https://doi.org/10.1017/S0956792521000267 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000267


910 A. S. Alshaikhi et al.

FIGURE 9. Bifurcation diagram of steady-state solutions with h̄ = 2 (Regime II) for ρ = 0 (dashed curves)
and ρ = 0.005 (solid curves) indicating the different branches of steady-state solutions.

FIGURE 10. Steady-state solutions on the five branches of solutions indicated in Figure 9 by (i)–(v).

Note that in Figures 3 and 4, the non-trivial ‘solution’ on the axis ρ = 0 is, in fact, a whole
O(2)-symmetric orbit of solutions predicted by the analysis leading to Figure 1.

Note that when the disjoining pressure is �SR, given by (5.4), we were unable to use AUTO
to continue branches of solutions beyond the rupture of the film at |ρ| = 1.
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FIGURE 11. A sketch of the bifurcation diagram plotted in Figure 3 with the different solution branches
labelled.

FIGURE 12. Sketch of the global attractor for ρ = 0. The circle represents the O(2) orbit of steady-state
solutions and O represents the constant solution h(x) = h̄.

FIGURE 13. Sketch of the global attractor for small non-zero values of |ρ|. The points A, B, C correspond
to the steady-state solutions labelled in Figure 11.
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Figure 5 shows the film approaching rupture as ρ → 1− at the point where the coefficient of
the short-range term disappears when ρ = 1, i.e. when 1 + sin(2πx) = 0 and hence at x = 3/4.
These numerical results are consistent with the theoretical arguments of Bertozzi et al. [4].

Investigation of the possible leading-order balance in (2.9) when the disjoining pressure is
�SR and ρ = 1 in the limit x → 3/4 reveals that h(x) = O

(
(x − 3/4)2/3

)
; continuing the analysis

to higher order yields

h = (2π2)
1
3

(
x − 3

4

) 2
3 − 4

(
4π10

) 1
3 ε2

27

(
x − 3

4

) 4
3 + O

((
x − 3

4

)2
)

. (5.10)

Figure 6 shows the detail of the excellent agreement between the solution h(x) when ρ = 1 and
the two-term asymptotic solution given by (5.10) close to x = 3/4.

Figures 7 and 8 show the multiplicity of solutions with a unique maximum for the disjoin-
ing pressures �LR and �SR, respectively, in the (1/ε, ρ)-plane in the three regimes shown in
Figure 1.

In Figure 8, the horizontal dashed line at ρ = 1 indicates rupture of the film and loss of a
smooth strictly positive solution, showing that there are regions in parameter space where no
such solutions exist.

Let us explain in detail the interpretation of Figure 7(c); all of the other parts of Figure 7 and
Figure 8 are interpreted in a similar way.

Each curve in Figure 7(c) is a curve of saddle-node bifurcations. Similar to Figure 2(c),
Figure 9 shows the bifurcation diagram of steady-state solutions with h̄ = 2 (Regime II) for ρ = 0
and ρ = 0.005. As 1/ε is increased, we pass successively through saddle-node bifurcations with
the multiplicity of the steady-state solutions changing from 1 to 3 to 5 and then back to 3 again.
In Figure 10, we plot the five steady-state solutions with a unique maximum indicated in Figure 9
by (i)–(v).

6 Conclusions

In the present work, we have investigated the steady-state solutions of the thin-film evolution
equation (2.1) both in the spatially homogeneous case (2.9)–(2.12) and in the spatially non-
homogeneous case for two choices of spatially non-homogeneous Derjaguin disjoining pressure
given by (5.3) and (5.4). We have given a physical motivation for our choices of the disjoining
pressure. For reasons explained in the last paragraph of Section 2, we concentrated on branches
of solutions with a unique maximum.

In the spatially homogeneous case (2.9)–(2.14), we used the Liapunov–Schmidt reduction of
an equation invariant under the action of the O(2) symmetry group to obtain local bifurcation
results and to determine the dependence of the direction and nature of bifurcation in bifurcation
parameter 1/ε on the average film thickness h̄; our results on the existence of three different bifur-
cation regimes, (namely, nucleation, metastable and unstable) are summarised in Propositions 1
and 2 and in Figure 1 obtained using AUTO.

In the spatially non-homogeneous case (5.5)–(5.7), we clarified the O(2) symmetry breaking
phenomenon (see Appendix A) and presented imperfect bifurcation diagrams in Figure 2 and
global bifurcation diagrams using the wettability contrast ρ as a bifurcation parameter for fixed
ε and h̄ in Figures 3 and 4.
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Let us discuss Figure 3 in more detail; for convenience, it is reproduced in Figure 11 with
labelling added to the different branches of strictly positive steady-state solutions with a unique
maximum. Below we explain what these different labels mean.

Our results can be described using the language of global compact attractors. For more
information on attractors in dissipative infinite-dimensional dynamical systems, please see the
monograph of Hale [14] and Wu and Zheng [44] for applications in the thin-film context. In
systems such as (2.4), the global compact attractor of the PDE is the union of equilibria and their
unstable manifolds. In Figures 12 and 13 we sketch the global attractor of (2.4) for ε = 1/50
and h̄ = 3, the values used to plot Figure 3. For these values of the parameters the attractor is
two-dimensional and we sketch its projection onto a plane.

When ρ = 0, for 1/ε = 50, the attractor is two-dimensional; the constant solution h ≡ h̄
denoted by O has a two-dimensional unstable manifold and X corresponds to a whole O(2)
orbit of steady-state solutions. A sketch of the attractor in this case is shown in Figure 12.

When |ρ| takes small positive values, only two steady-state solutions, denoted by A and C
remain from the entire O(2) orbit, as discussed in Appendix A, while the constant solution
continues to B without change of stability. The resulting attractor is sketched in Figure 13.

Increasing |ρ| causes the steady-state solutions A and B to coalesce in a saddle-node bifurca-
tion, so that the attractor degenerates to a single asymptotically stable steady-state solution. It
would be interesting to understand why this collision of steady-state solution branches occurs.

We have also explored the geometry of film rupture which occurs as ρ → 1− when the
disjoining pressure is given by �SR; this phenomenon is shown in detail in Figures 5 and 6.

Finally, in Figures 7 and 8, we showed the results of a two-parameter continuation study in
the (1/ε, ρ) plane, showing how the multiplicity of positive steady-state solutions changes as
parameters are varied, and in particular, indicating in the case of disjoining pressure �SR shown
in Figure 8 regimes in parameter space where no such solutions exist. We conjecture that in these
regimes the solution of the unsteady problem for any positive initial condition converges to a
weak non-negative stationary solution of the thin-film equation having regions in which h(x) = 0,
i.e. a stationary solution with film rupture. For a discussion of such non-classical solutions of
thin-film equations in the homogeneous case the reader is referred to the work of Laugesen and
Pugh [26].

In the case of disjoining pressure �SR, we could not use the AUTO-07p version of AUTO to
continue branches of solutions beyond rupture, that is, we could not use AUTO to compute weak
non-negative stationary solutions discussed in the previous paragraph. It would be an interesting
project to develop such a capability for this powerful and versatile piece of software.

Figure 8(b) and 8(c) provides numerical evidence for the existence of a curve of saddle-node
bifurcations converging to the point (0,1) in the (1/ε, ρ) plane; an explanation for this feature of
the global bifurcation diagrams requires further study.

To summarise: our study was primarily motivated by the work of Honisch et al. [17]. While
we have clarified the mathematical properties of (2.9)–(2.12) and (5.5)–(5.7), so that the structure
of bifurcations in Figure 3(a) of that paper for non-zero values of ρ is now understood, many of
their other numerical findings are still to be explored mathematically. For example, the stability
of ridge solutions, as shown in Figure 5 in the context of the full two-dimensional problem
of a substrate with periodic wettability stripes. There is clearly much work still to be done on
heterogeneous substrates with more complex wettability geometry.
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A final remark that might be of interest to the reader is that the solutions of equations (5.5)–
(5.7), the steady-state solutions of (2.4), a degenerate quasi-linear fourth-order PDE, can also
be thought of as the steady-state solutions of a much simpler (Rubinstein-Sternberg type [31])
second-order semi-linear non-local equation,

ht = γ hxx + �(h, x) − 1

L

∫ L

0
�(h, x) dx, 0 < x < L. (6.1)

It would be interesting to compare the dynamics of (2.4) and (6.1), for example, using the spectral
comparison principles of Bates and Fife [3]. For other work on non-local reaction–diffusion
equations such as (6.1), please see Budd et al. [7] and the review of Freitas [13].
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Appendix A O(2) symmetry breaking by spatial non-homogeneity

In this appendix, we present an argument that shows that when the wettability contrast is present,
i.e. when ρ �= 0, the breaking of the O(2) symmetry which equation (5.5) with the periodic
boundary conditions (5.7) has for ρ = 0, leaves only two steady-state solutions.

This is, in principle, a known result (see, e.g. Chillingworth [8]), but, since we are not aware
of an easily accessible reference, we give the details here. As before, we set G(x) = sin(2πx). We
provide the proof for �SR given by (5.4), the proof for �LR given by (5.3) is similar.

For the case of �SR, let us rewrite the boundary value problem (5.5) in the form

ε2hxx + f1(h) + ρf2(h)G(x) −
∫ 1

0

[
f1(h) + ρf2(h)G(x)

]
dx = 0, 0 < x < 1, (A1)

where

f1(h) = 1

h6
− 1

h3
, (A2)

and

f2(h) = 1

h6
, (A3)

i.e. we separate the spatially homogeneous and spatially non-homogeneous components of the
disjoining pressure. Equation (A1) is subject to the periodic boundary conditions (5.7).

Suppose that when ρ = 0 there is an orbit of steady-state solutions, i.e. a continuous closed
curve of solutions h0,s(x), parameterised by s ∈R/[0, 1], such that h0,s(x) := h0(x + s), for some
function h0(x), i.e. all these solutions are related by translation. We aim to understand what
remains of this orbit for small non-zero ρ.

Fix s ∈R/[0, 1]. We write

h(x) = h0,s(x) + ρh1(x) + O(ρ2). (A4)
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Substituting this expansion into (A1) and collecting the O(ρ) terms, we have

ε2h1,xx + (f 1
′(h0,s) + f 2

′(h0,s))h1 −
∫ 1

0

[
f 1

′(h0,s) + f 2
′(h0,s)

]
h1 dx

= −f2(h0,s)G +
∫ 1

0
f2(h0,s)G dx, (A5)

where, just like h0,s(x), h1(x) also satisfies the periodic boundary conditions (5.7).
Now set

Ku := ε2u1,xx + (f 1
′(h0,s) + f 2

′(h0,s))u −
∫ 1

0
[f 1

′(h0,s) + f 2
′(h0,s)]u dx, (A6)

and let D(K), the domain of K, be

D(K) = {
f ∈ C2 ([0, 1]) | f (0) = f (1), f ′(0) = f ′(1)

}
. (A7)

The operator K is self-adjoint with respect to the L2([0, 1]) inner product. Invoking the Fredholm
Alternative [32, Theorem 7.26], we conclude that (A5) has 1-periodic solutions if and only if the
right-hand side of (A5) is orthogonal in L2([0, 1]) to the solutions of Ku = 0.

Next, we show that u := h0,s
′ solves Ku = 0. Indeed, by differentiating (A1) with ρ = 0 with

respect to x, we find that u solves the equation

ε2uxx + (f 1
′(h0,s) + f 2

′(h0,s))u = 0. (A8)

Integrating this equation over the interval [0,1], we have that∫ 1

0
(f 1

′(h0,s) + f 2
′(h0,s))u dx = 0. (A9)

Hence

0 = ε2uxx + (f 1
′(h0,s) + f 2

′(h0,s))u

= ε2uxx + (f 1
′(h0,s) + f 2

′(h0,s))u +
∫ 1

0
(f 1

′(h0,s) + f 2
′(h0,s))u dx (A10)

= Ku.

Also note that as h0,s(x) satisfies periodic boundary conditions,

∫ 1

0
h0,s

′ (x) dx = 0. (A11)

Hence the solvability condition for (A5) is∫ 1

0
h0,s

′ (r)

[
−f2(h0,s)G +

∫ 1

0
f2(h0,s)G dx

]
dr = 0. (A12)

By (A11), this condition reduces to ∫ 1

0
f2(h0,s)h0,s

′ G dx = 0. (A13)
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Now recall that h0,s(x) = h0(x + s), so if we write F(x + s) = f2(h0(x + s))h0
′ (x + s), the

function F(·) is 1-periodic in x with zero mean. Hence

F(z) =
∞∑

k=1

αk sin(2kπz) + βk cos(2kπz). (A14)

Therefore for G(x) = sin(2πx), the solvability condition for (A5) becomes

α1 sin(2kπs) − β1 cos(2πs) = 0, (A15)

which has two solutions s ∈R/[0, 1], from which we conclude there is a solution h1(x) only for
two choices of s ∈R/[0, 1], that is, that only two solutions to (A1) remain from the entire O(2)
orbit that exists for ρ = 0.
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