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Non-tangential Maximal Function
Characterizations of Hardy Spaces
Associated with Degenerate Elliptic
Operators

Junqiang Zhang, Jun Cao, Renjin Jiang, and Dachun Yang

Abstract. Let w be either in theMuckenhoupt class of A2(Rn
) weights or in the class of QC(Rn

)

weights, and let Lw ∶= −w−1 div(A∇) be the degenerate elliptic operator on the Euclidean spaceRn ,
n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of
theHardy spaceHp

Lw (R
n
) associatedwith Lw for p ∈ (0, 1], andwhen p ∈ (

n
n+1 , 1] andw ∈ Aq0(Rn

)

with q0 ∈ [1, p(n+1)
n ), the authors prove that the associatedRiesz transform∇L−1/2

w is bounded from
Hp

Lw (R
n
) to the weighted classical Hardy space Hp

w(Rn
).

1 Introduction

Letw be a nonnegativeweight function such thatw is either in theMuckenhoupt class
of A2(Rn) weights or in the class of QC(Rn) weights with n ≥ 2. Let H1

0(w ,Rn) be
the Sobolev space, which is deûned to be the closure of C∞c (Rn) with respect to the
norm

∥ f ∥H1
0(w ,Rn) ∶= {∫

Rn
[ ∣ f (x)∣2 + ∣∇ f (x)∣2]w(x) dx}

1/2
.

For all f , g ∈ H1
0(w ,Rn), the sesquilinear form a is deûned by setting

(1.1) a( f , g) ∶= ∫
Rn

(A(x)∇ f (x)) ⋅ ∇g(x) dx ,

where A ∶= (A i j(x))n
i , j=1 is amatrix of complex-valuedmeasurable functions on Rn

satisfying the degenerate elliptic condition; namely, there exist constants 0 < λ ≤ Λ <

∞ such that for all ξ and η ∈ Cn ,

(1.2) ∣⟨Aξ, η⟩∣ ≤ Λw(x)∣ξ∣∣η∣
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and

(1.3) R⟨Aξ, ξ⟩ ≥ λw(x)∣ξ∣2 ,

here and herea�er, Rz for any z ∈ C denotes the real part of z. _en the associated
degenerate elliptic operator Lw is deûned by setting

(1.4) Lw f ∶= −
1
w
div(A∇ f ),

for all f ∈ H1
0(w ,Rn). _is is interpreted in the usual weak sense via the sesquilinear

form; namely, for all f , g ∈ H1
0(w ,Rn),

(1.5) a( f , g) = (Lw f , g)L2(w ,Rn) ∶= ∫
Rn

Lw f (x)g(x)w(x) dx .

From its form, it is easy to see that the degenerate elliptic operator Lw , with the de-
generacy controlled by theweightw, is a generalization of the usual uniformly elliptic
operator. Onemotivation to study the degenerate elliptic operator Lw comes from the
fact that, for some quasi-conformal mapping f and nonnegative harmonic function
u deûned in the range of f , u ○ f satisûes aweighted degenerate elliptic equationwith
the weight w ∶= ∣ f ′∣1− 2

n , where ∣ f ′∣ denotes the absolute value of the determinant of
the Jacobian matrix f ′ of f (see [21] for more details on this fact).

In recent years, the study of the degenerate elliptic operators and their associated
equations has attracted considerable attention (see, for example, [8–10, 21, 29] and,
especially, some recent articles by Cruz–Uribe and Rios [12–14]). We point out that
in the study of degenerate elliptic operators it is natural to assume that the weights w
are in theMuckenhoupt class of A2(Rn) weights or in the class of QC(Rn) weights,
since the weighted Sobolev embedding theorems and the Poincaré inequalities hold
true in these cases.

Let Lw be a degenerate elliptic operator as in (1.4) with w either in the Mucken-
houpt class of A2(Rn) weights or in the class of QC(Rn) weights (see Subsection
2.1 for their exact deûnitions). _e main purpose of this article is to complete the
real-variable theory of the weightedHardy space associated with Lw .

It is well known that the theory of classical real Hardy spaces Hp(Rn), introduced
by Stein andWeiss [37] in the early 1960s and systematically developed by Feòerman
and Stein [22], is a suitable substitute of the Lebesgue space Lp(Rn), for p ∈ (0, 1], and
plays important roles in various ûelds of analysis and partial diòerential equations.
Notice that Hp(Rn) is essentially associated with the Laplace operator ∆ ∶= ∑n

j=1
∂2

∂x2
j
;

see, for instance, [20,25,28].
_emotivation to study the Hardy spaces associated with diòerent operators (for

example, divergence form elliptic operators −div(A∇) and Schrödinger operators
−∆ + V ) comes from characterizing the boundedness of the associated Riesz trans-
forms and the regularity of solutions of the associated equations; see, for example,
[2,6, 17–20,25,27,28,31,38].

To state the main results of this article, we ûrst introduce some deûnitions and
notation. Let w ∈ A2(Rn) ∪ QC(Rn), Lw be as in (1.4) and f ∈ L2(w ,Rn), where
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L2(w ,Rn) denotes the weighted Lebesgue space with the norm

∥ f ∥L2(w ,Rn) ∶= {∫
Rn

∣ f (x)∣2w(x) dx}
1
2
.

It iswell known that ifw ∈ A2(Rn)∪QC(Rn), then L2(w ,Rn) is a space of homoge-
nous type in the sense of Coifman andWeiss, since w(x) dx is a doubling measure.
In what follows, let Rn+1

+ ∶= Rn × (0,∞). For any f ∈ L2(w ,Rn) and x ∈ Rn , the
square function SLw ( f ) associated with Lw is deûned by setting

(1.6) SLw ( f )(x) ∶= [∬
Γ(x)

∣ t2Lw e−t2Lw ( f )(y)∣ 2w(y) dy
w(B(x , t))

dt
t
]

1/2

,

where, for all x ∈ Rn , t ∈ (0,∞), α ∈ (0,∞) and balls B(x , t),

w(B(x , t)) ∶= ∫
B(x ,t)

w(y) dy,

and

Γα(x) ∶= {(y, t) ∈ Rn+1
+ ∶ ∣x − y∣ < αt}(1.7)

denotes the cone of aperture α with vertex x. In particular, if α = 1, we write Γ(x)
instead of Γα(x).

Deûnition 1.1 Let p ∈ (0, 1], w ∈ A2(Rn) ∪ QC(Rn) and let Lw be the degenerate
elliptic operator as in (1.4) with thematrix A satisfying the degenerate elliptic condi-
tions (1.2) and (1.3). _e Hardy space Hp

Lw
(Rn), associated with Lw , is deûned as the

completion of the space

{ f ∈ L2
(w ,Rn

) ∶ ∥SLw ( f )∥Lp(w ,Rn) <∞}

with respect to the quasi-norm

(1.8) ∥ f ∥Hp
Lw

(Rn) ∶= ∥SLw ( f )∥Lp(w ,Rn) .

Remark 1.2 (i) _e deûnition of the aboveHardy spaceHp
Lw

(Rn) uses the strat-
egy that we ûrst restrict the work space to L2(w ,Rn) and then extend the work space
via the quasi-norm (1.8) deûned by the square function. _is strategy was ûrst intro-
duced byP.Auscher,X.T.Duong, andA.McIntosh in an unpublishedmanuscript (see
also [2]) and has proved to be a very useful method in the study on the real-variable
theory of function spaces associated with operators.

(ii) It is easy to see that in Deûnition 1.1 if w ≡ 1, then Hp
Lw

(Rn) is the Hardy
space associated with the second order divergence form elliptic operator studied in
[27,28,31], and,moreover, if Lw ≡ −∆, then Hp

Lw
(Rn) is just the classical Hardy space

Hp(Rn) of Feòerman and Stein [22].
(iii) In [12, 13], Cruz–Uribe and Rios proved that Lw is a sectorial operator in

L2(w ,Rn) satisfying the so-called bounded H∞ functional calculus and the weighted
Davies–Gaòney estimates in L2(w ,Rn). Namely, there exist positive constants c and
C such that for all closed subsets E , F ⊂ Rn and f ∈ L2(w ,Rn) with supp f ⊂ E,

(1.9) ∥e−tLw ( f )∥L2(w ,F) ≤ Ce−c
[d(E ,F)]2

t ∥ f ∥L2(w ,E) .
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Here andherea�er, for anymeasurable function g, deûne ∥g∥L2(w ,E) ∶= ∥g χE∥L2(w ,Rn).
_ese results, together with Remark 2.10, show that Lw is a special case of the opera-
tors thatwere considered in [4],where a part of the real-variable theory ofHardy-type
spaces associatedwith some abstract operatorswas established. _us, by [4,_eorem
4.8],we know that Hp

Lw
(Rn) has amolecular characterization (see Section 3 for more

details on this characterization). However, thenon-tangentialmaximal function char-
acterization of Hp

Lw
(Rn) is still missing and we will show that this non-tangential

maximal function characterization strongly depends on the special structure of the
operator Lw .

Now, motivated by Hofmann and Mayboroda [27], for any f ∈ L2(w ,Rn), we
deûne thenon-tangentialmaximal functionNh( f ) associatedwith theheat semigroup
generated by Lw via setting

(1.10) Nh( f )(x) ∶= sup
(y ,t)∈Γ(x)

[
1

w(B(y, t)) ∫B(y ,t)
∣e−t2Lw ( f )(z)∣2w(z) dz]

1/2

,

for all x ∈ Rn . _en theHardy space Hp
Lw ,Nh

(Rn), associatedwith Lw , is deûned as in
Deûnition 1.1 with SLw replaced by the non-tangential maximal function Nh .

_e following theorem establishes the non-tangential maximal function charac-
terization of Hp

Lw
(Rn).

_eorem 1.3 Let p ∈ (0, 1], w ∈ A2(Rn) ∪ QC(Rn) and let Lw be the degenerate
elliptic operator as in (1.4) satisfying the degenerate elliptic conditions (1.2) and (1.3).
_en the weighted Hardy spaces Hp

Lw
(Rn) and Hp

Lw ,Nh
(Rn) coincide with equivalent

quasi-norms.

We prove_eorem 1.3 borrowing some ideas fromHofmann andMayboroda [27],
where the authors considered the case whenw ≡ 1 and p = 1. More precisely, to prove
the inclusion

Hp
Lw ,Nh

(Rn
) ⊂ Hp

Lw
(Rn

),

we show that, for all f ∈ L2(w ,Rn) ∩Hp
Lw ,Nh

(Rn) and p ∈ (0, 1],

∥SLw ( f )∥Lp(w ,Rn) ≲ ∥S̃Lw ( f )∥Lp(w ,Rn) ≲ ∥Nh( f )∥Lp(w ,Rn) ,

(see _eorems 3.5 and 3.6), where SLw ( f ), S̃Lw ( f ) and Nh( f ) are deûned, respec-
tively, as in (1.6), (3.1), and (1.10).

To prove the inclusion

Hp
Lw

(Rn
) ⊂ Hp

Lw ,Nh
(Rn

),

we use the weighted molecular characterization of Hp
Lw

(Rn) (see _eorem 3.4 be-
low) to prove that, for each weighted molecule m, Nh(m) is uniformly bounded in
Lp(w ,Rn) (see _eorem 3.7). _e proof of _eorem 3.7 rests on the weighted oò-
diagonal estimates on balls of the heat semigroup generated by −Lw (see Proposi-
tion 1.5).
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We ûrst recall from [1] the following notion of weighted oò-diagonal estimates on
balls. In what follows, for p ∈ [1,∞), the space Lp

loc(w ,R
n) denotes the set of all

locally p-integrable functions on themeasure w(x) dx of Rn .

Deûnition 1.4 ([1]) Let p, q ∈ [1,∞] with p ≤ q, w ∈ A∞(Rn) and let {Tt}t>0 be
a family of sublinear operators. _e family {Tt}t>0 is said to satisfy weighted Lp-Lq

oò-diagonal estimates on balls, denoted by Tt ∈ Ow(Lp-Lq), if there exist constants
θ1 , θ2 ∈ [0,∞), and C , c ∈ (0,∞) such that, for all t ∈ (0,∞) and all balls B ∶=

B(xB , rB) ⊂ Rn with xB ∈ Rn and rB ∈ (0,∞), and f ∈ Lp
loc(w ,R

n),

(1.11) {
1

w(B) ∫B
∣Tt(χB f )(x)∣qw(x) dx}

1/q

≤ C[Υ(
rB
t1/2

)]
θ2
{

1
w(B) ∫B

∣ f (x)∣pw(x) dx}
1/p
,

and, for all j ∈ N with j ≥ 3,

(1.12) {
1

w(2 jB) ∫U j(B)
∣Tt(χB f )(x)∣qw(x) dx}

1/q

≤ C2 jθ 1[Υ(
2 jrB
t1/2

)]
θ2
e−c

(2 j rB)
2

t {
1

w(B) ∫B
∣ f (x)∣pw(x) dx}

1/p

and

(1.13) {
1

w(B) ∫B
∣Tt(χU j(B) f )(x)∣

qw(x) dx}
1/q

≤ C2 jθ 1[Υ(
2 jrB
t1/2

)]
θ2
e−c

(2 j rB)
2

t {
1

w(2 jB) ∫U j(B)
∣ f (x)∣pw(x) dx}

1/p
,

where U j(B) is as in (1.15), and for all s ∈ (0,∞),

(1.14) Υ(s) ∶= max{ s, 1
s
} .

_e following weighted oò-diagonal estimates on balls play a key role in proving
_eorem 3.7. In what follows, for any p ∈ [1,∞], we denote by p′ its conjugate expo-
nent, namely, 1/p + 1/p′ = 1.

Proposition 1.5 Let l ∈ Z+, w ∈ A2(Rn) ∪ QC(Rn) and let Lw be the degenerate
elliptic operator satisfying the degenerate elliptic conditions (1.2) and (1.3). _en there
exists a number k0 ∈ (1,∞) such that, for all (2k0)′ ≤ p ≤ q ≤ 2k0 and t ∈ (0,∞), the
family (tLw)

l e−tLw ∈ Ow(Lp-Lq). Moreover, when w ∈ A2(Rn), k0 = n
n−1 .

Recall that, in [12,_eorem 1.6], Cruz–Uribe and Rios established some weighted
Davies–Gaòney estimates for Lw , which are equivalent to (tLw)

k e−tLw ∈ Ow(L2-L2)

(see also [1]). _us, Proposition 1.5 extends the corresponding result of Cruz-Uribe
and Rios [12]. Moreover, the proof of Proposition 1.5 is totally diòerent from that
of [12, _eorem 1.6]. _e proof of [12, _eorem 1.6] reduced the desired weighted
Davies–Gaòney estimates into the corresponding estimates of the resolvent,while the
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proof of Proposition 1.5 strongly depends on the local weighted Sobolev embedding
theorems in [21], for both A2(Rn) and QC(Rn) weights, and the weighted Davies–
Gaòney estimates for {

√
t∇e−tLw}t>0 (see Proposition 2.6), whose proof depends on

the exponential perturbation method from [15].
Finally, as an application of Hp

Lw
(Rn), we establish the following boundedness of

the associated Riesz transforms ∇L−1/2
w .

_eorem 1.6 Let p ∈ ( n
n+1 , 1], w ∈ Aq0(Rn) with q0 ∈ [1, p(n+1)

n ) and Lw be the
degenerate elliptic operator as in (1.4) satisfying the degenerate elliptic conditions (1.2)
and (1.3). _en the Riesz transform ∇L−1/2

w is bounded from Hp
Lw

(Rn) to Hp
w(Rn).

Recall that the boundedness of operated-adapted Riesz transforms on the associ-
ated Hardy spaces was ûrst established by Hofmann et al. [25] in the case p = 1. To
prove _eorem 1.6, we borrow some ideas from [3, 4, 18, 25, 28, 31, 32]. In particular,
we need some oò-diagonal estimates of the following families of operators

{∇L−1/2
w (I − e−tLw )

M
}t>0 and {∇L−1/2

w (tLw e−tLw )
M
}t>0

(see Proposition 4.1), whose proofs rest on the weighted oò-diagonal estimates of
the gradient semigroup {

√
t∇e−tLw}t>0 (see Proposition 2.7). We point out that,

since we can only show that, for each (p, 2,M , є)Lw -molecule m (see Deûnition 3.1),
∇L−1/2

w (m) is a classicalweightedHardymolecule (seeDeûnition 4.6),which only has
the zero-order vanishing moment, this forces us to restrict the range of theweights to
a smaller Muckenhoupt weight class Aq0(Rn), with q0 ∈ [1, p(n+1)

n ), than A2(Rn).
_is article is organized as follows. In Subsection 2.1, we ûrst recall some notions

and results on Muckenhoupt weights and QC(Rn) weights; then, in Subsection 2.2,
we establish theweighted oò-diagonal estimates of Lw and prove Proposition 1.5. Sec-
tion 3 is devoted to the proof of_eorem 1.3, while_eorem 1.6 is proved in Section
4.

We end this section by making some conventions on notation. _roughout this
article, Lw always denotes a degenerate elliptic operator as in (1.4). We denote by C
a positive constant that is independent of the main parameters, but which may vary
from line to line. We also use C(α ,β , . . . ) to denote a positive constant depending on the
parameters α, β, . . . . _e symbol f ≲ g means that f ≤ Cg. If f ≲ g and g ≲ f , then
we write f ∼ g. For any measurable subset E of Rn , we denote by E∁ the set Rn/E.
Let N ∶= {1, 2, . . .} and Z+ ∶= N∪ {0}. For any ball B ∶= B(xB , rB) ⊂ Rn with xB ∈ Rn

and rB ∈ (0,∞), α ∈ (0,∞), and j ∈ N, we let αB ∶= B(xB , αrB),

(1.15) U0(B) ∶= B and U j(B) ∶= (2 jB) ∖ (2 j−1B).

2 Preliminaries

In this section, we ûrst recall the deûnition of theMuckenhoupt weights, the QC(Rn)
weights, and some of their properties. _en we establish the weighted oò-diagonal
estimates on balls of the operator Lw , which play a key role in the proofs of our main
results.
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2.1 Muckenhoupt Weights and QC(Rn) Weights

Let q ∈ [1,∞). A nonnegative locally integrable functionw onRn is said to belong to
the Muckenhoupt class Aq(Rn) if there exists a positive constant C such that, for all
balls B ⊂ Rn ,

1
∣B∣ ∫B

w(x) dx{ 1
∣B∣ ∫B

[w(x)]−
1

q−1 dx}
q−1

≤ C

when q ∈ (1,∞), and, when q = 1,

1
∣B∣ ∫B

w(x) dx ≤ C ess inf
x∈B

w(x).

We also letA∞(Rn) ∶= ⋃q∈[1,∞) Aq(Rn) andw(E) ∶= ∫E w(x) dx for anymeasurable
set E ⊂ Rn .

Let r ∈ (1,∞]. A nonnegative locally integrable function w is said to belong to
the reverseHölder class RHr(Rn) if there exists a positive constant C such that, when
r ∈ (1,∞), for all balls B ⊂ Rn ,

{
1
∣B∣ ∫B

[w(x)]r dx}
1/r

≤ C 1
∣B∣ ∫B

w(x) dx ,

where we replace { 1
∣B∣ ∫B[w(x)]r dx}1/r by ∥w∥L∞(B) when r =∞.

Todeûne theQC(Rn)weights, for n ≥ 2, let f ∶= ( f1 , . . . , fn)∶Rn → Rn be ahome-
omorphism whose components { f i}n

i=1 have distributional derivatives in Ln
loc(R

n).
_en f is called a quasi-conformal mapping if there exists a positive constant k such
that, for almost every x ∈ Rn ,

[
n
∑

i , j=1
∣
∂ f i
∂x j

(x)∣2]
1/2

≤ k∣ f ′(x)∣1/n ,

where

(2.1) f ′(x) = det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ f1
∂x1

⋅ ⋅ ⋅
∂ f1
∂xn

⋮ ⋱ ⋮
∂ fn
∂x1

⋅ ⋅ ⋅
∂ fn
∂xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

denotes the determinant of the Jacobian matrix of f . Given such an f , the locally
integrable function w(x) ∶= ∣ f ′(x)∣1−2/n (speciûcally, when n = 2, w(x) ≡ 1) for
almost every x ∈ Rn is called a QC(Rn) weight, denoted by w ∈ QC(Rn).

Recall that QC(Rn) ⊂ A∞(Rn) (see [21, p. 107]).
We recall some properties of the Muckenhoupt classes and the reverse Hölder

classes in the following two lemmas (see, for example, [16] for their proofs).

Lemma 2.1
(i) If 1 ≤ p ≤ q ≤∞, then A1(Rn) ⊂ Ap(Rn) ⊂ Aq(Rn).
(ii) A∞(Rn) ∶= ⋃p∈[1,∞) Ap(Rn) = ⋃r∈(1,∞] RHr(Rn).

Lemma 2.2 Let q ∈ [1,∞) and r ∈ (1,∞]. If a nonnegative measurable function
w ∈ Aq(Rn)∩ RHr(Rn), then there exists a constant C ∈ (1,∞) such that, for all balls
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B ⊂ Rn and any measurable subset E of B,

C−1
(
∣E∣
∣B∣

)
q
≤
w(E)
w(B)

≤ C( ∣E∣
∣B∣

)

r−1
r
.

2.2 Weighted Off-diagonal Estimates for Lw

In this subsection, we establish some weighted oò-diagonal estimates for Lw . To this
end, byusing themethodofDavies [15],weneed to introduce a twist sesquilinear form
of a in (1.1) under exponential perturbation. More precisely, let E(Rn) be the set of all
bounded real-valued functions ϕ ∈ C∞(Rn) such that, for all multi-indices α ∈ (Z+)n

and ∣α∣ = 1, ∥∂αϕ∥L∞(Rn) ≤ 1. _e setE(Rn)of functionsplays an important rolewhen
we consider the distance between two closed sets in Rn .

Let E and F be two disjoint closed subsets of Rn . Let d(E , F) be the Euclidean
distance between E and F, namely,

d(E , F) ∶= inf{∣x − y∣ ∶ x ∈ E , y ∈ F}.

Deûne

d̃(E , F) ∶= sup
ϕ∈E(Rn)

[ inf{ϕ(x) − ϕ(y) ∶ x ∈ E , y ∈ F}] .

_e following result implies that d(E , F) and d̃(E , F) are comparable. Notice that
Davies [15, Lemma 4] proved a similar result, in a diòerentway, by requiring the sets E
and F to be compact and convex. Lemma 2.3 is more general, and its proof is simpler
than that of [15, Lemma 4].

Lemma 2.3 _ere exists a positive constant C such that, for any two disjoint closed
subsets {E , F} of Rn ,

(2.2)
1
C
d̃(E , F) ≤ d(E , F) ≤ Cd̃(E , F).

Proof Let ϕ ∈ E(Rn). _e fact that ∥∂αϕ∥L∞(Rn) ≤ 1 for all α ∈ (Z+)n and ∣α∣ = 1
implies that, for all x ∈ E and y ∈ F,

∣ϕ(x) − ϕ(y)∣ ≲ ∣x − y∣,

which further yields d̃(E , F) ≲ d(E , F).
Let us prove the second inequality of (2.2). If d(E , F) = 0, then the required

inequality is obvious. Suppose now that d(E , F) > 0. Let ϕ ∈ C∞c (Rn) satisfy
supp ϕ ⊂ B(0, 1) and ∫Rn ϕ(x) dx = 1. Let

Ẽ ∶= {x ∈ Rn
∶ d(x , E) < 1

4
d(E , F)} .

For є ∶= 1
4d(E , F) and ϕє( ⋅ ) ∶= є−nϕ( ⋅є ), let

ψ ∶=
є
C(ϕ)

χẼ ∗ ϕє ,

where C(ϕ) ∶= ∫Rn ∣∇ϕ(x)∣ dx > 0. _e choice of ϕ implies that ψ ∈ E(Rn).
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Moreover, for all x ∈ E, by the deûnition of Ẽ, we know that B(x , 1
4d(E , F)) ⊂ Ẽ.

_us, for all x ∈ E and y ∈ F, it holds true that

ψ(x)−ψ(y) = ψ(x) = 1
4C(ϕ)

d(E , F)∫
B(x , 1

4 d(E ,F))
єnϕ( x − z

є
) dz = 1

4C(ϕ)
d(E , F),

which implies the second inequality of (2.2). _is completes the proof of Lemma 2.3.

Now, for ν ∈ R+ ∶= (0,∞) and ϕ ∈ E(Rn), let

(2.3) Lν ,ϕ ∶= eνϕLw e−νϕ .

For all f , g ∈ H1
0(w ,Rn), the twist sesquilinear form aν ,ϕ is deûned by setting

(2.4) aν ,ϕ( f , g) ∶= ∫
Rn

(A(x)∇(e−νϕ f )(x)) ⋅ ∇(eνϕ g)(x) dx .

_en, by the deûnition of Lw , we know that

(2.5) aν ,ϕ( f , g) = (Lν ,ϕ( f ), g) L2(w ,Rn)
.

Namely, Lν ,ϕ is the operator associated with aν ,ϕ . Let also {e−tLν ,ϕ}t>0 be the heat
semigroup generated by Lν ,ϕ .

Notice that conditions (1.2) and (1.3) imply that Lw is of type ω ∶= arctan(Λ/λ) ∈
[0, π

2 ); see [33] (also [12, p. 293]) for details. Hence, for z ∈ Σ(π/2 − ω), where

Σ(π/2 − ω) ∶= {z ∈ C ∖ {0} ∶ ∣ arg z∣ < π/2 − ω},

it holds true that

(2.6) e−zLw ( f ) = 1
2πi ∫Γ

ezξ(ξI + Lw)
−1
( f ) dξ,

where θ ∈ (π/2 + ∣ arg(z)∣, π − ω) and

Γ ∶= γ+ ∪ γ− ∶= { z ∈ C ∶ z = r iθ , r ∈ (0,∞)} ∪{ z ∈ C ∶ z = r−iθ , r ∈ (0,∞)} .

_is, together with (2.3), implies that, for all t ∈ (0,∞),

(2.7) e−tLν ,ϕ = eνϕe−tLw e−νϕ .

We have the following perturbation estimate.

Lemma 2.4 Letw ∈ A2(Rn)∪QC(Rn) and let Lw be the degenerate elliptic operator
satisfying the degenerate elliptic conditions (1.2) and (1.3). _en there exists a positive
constant C such that, for all ν ∈ R+, ϕ ∈ E(Rn), and f ∈ H1

0(w ,Rn),

(2.8) ∣aν ,ϕ( f , f ) − a( f , f )∣ ≤ 1
4
R{a( f , f )} + Cν2

∥ f ∥2
L2(w ,Rn) .
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Proof Let f ∈ H1
0(w ,Rn). By (2.4) and an elementary calculation, we see that

aν ,ϕ( f , f ) = −ν2
∫
Rn

(A(x) f (x)∇ϕ(x)) ⋅ f (x)∇ϕ(x) dx(2.9)

− ν∫
Rn

(A(x) f (x)∇ϕ(x)) ⋅ ∇ f (x) dx

+ ν∫
Rn

(A(x)∇ f (x)) ⋅ f (x)∇ϕ(x) dx

+ ∫
Rn

(A(x)∇ f (x)) ⋅ ∇ f (x) dx ,

which, together with (1.1), implies that

∣aν ,ϕ( f , f ) − a( f , f )∣ ≤ ∣ν2
∫
Rn

(A(x) f (x)∇ϕ(x)) ⋅ f (x)∇ϕ(x) dx∣
(2.10)

+ ∣ν∫
Rn

(A(x) f (x)∇ϕ(x)) ⋅ ∇ f (x) dx∣

+ ∣ν∫
Rn

(A(x)∇ f (x)) ⋅ f (x)∇ϕ(x) dx∣ =∶ I1 + I2 + I3 .

For I1, by the condition that ϕ ∈ E(Rn) and the degenerate elliptic condition (1.2),
we know that

(2.11) I1 ≲ ν2
∫
Rn

∣ f (x)∣2w(x) dx ∼ ν2
∥ f ∥2

L2(w ,Rn) .

For I2, using again the condition that ϕ ∈ E(Rn), the degenerate elliptic conditions
(1.2) and (1.3), and the Young inequality with є, we see that

I2 ≲ ν∫
Rn

∣ f (x)∣∣∇ f (x)∣w(x) dx

≲ є∫
Rn

∣∇ f (x)∣2w(x) dx + ν2

4є ∫Rn
∣ f (x)∣2w(x) dx

≲ єR{∫
Rn

(A(x)∇ f (x)) ⋅ ∇ f (x) dx} + ν2

4є
∥ f ∥2

L2(w ,Rn)

∼ єR{a( f , f )} + ν2

4є
∥ f ∥2

L2(w ,Rn) .

(2.12)

Similar to (2.12), we also have

I3 ≲ єR{a( f , f )} + ν2

4є
∥ f ∥2

L2(w ,Rn) ,

which, combined with (2.9)–(2.12), and a suitable choice of є, implies that (2.8) holds
true. _is ûnishes the proof of Lemma 2.4.

We also need the following technical lemma. Recall that for all f , g ∈ L2(w ,Rn),

( f , g)L2(w ,Rn) ∶= ∫
Rn
f (x)g(x)w(x) dx .

Lemma 2.5 Letw ∈ A2(Rn)∪QC(Rn), k ∈ Z+ and let Lw be the degenerate elliptic
operator satisfying the degenerate elliptic conditions (1.2) and (1.3). _en there exist
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positive constants C0 and C1 such that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and
f ∈ L2(w ,Rn),

(2.13) ∥(tLν ,ϕ)
k e−tLν ,ϕ( f )∥L2(w ,Rn) ≤ C0eC1ν2 t∥ f ∥L2(w ,Rn) .

Proof We ûrst prove Lemma 2.5 in the case k = 0. Let f ∈ L2(w ,Rn) and ft ∶=
e−tLν ,ϕ( f ). Using (2.5), Lemma 2.4, and the degenerate elliptic condition (1.3), we
conclude that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

d
dt

∥ ft∥2
L2(w ,Rn) =

d
dt

(e−tLν ,ϕ( f ), e−tLν ,ϕ( f ))L2(w ,Rn)

= −{(Lν ,ϕ( ft), ft) + ( ft , Lν ,ϕ( ft))} = −2R{aν ,ϕ( ft , ft)}

= −2R{[aν ,ϕ( ft , ft) − a( ft , ft)]} − 2R{a( ft , ft)}

≤ 2∣aν ,ϕ( ft , ft) − a( ft , ft)∣ − 2R{a( ft , ft)}

≤ Cν2
∥ f ∥L2(w ,Rn) −

3
2
R{a( ft , ft)} ≲ ν2

∥ ft∥2
L2(w ,Rn) ,

where C is as in Lemma 2.4. By solving the above diòerential inequality, we see that
there exists a positive constant C̃ such that, for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and
f ∈ L2(w ,Rn),

(2.14) ∥e−tLν ,ϕ( f )∥L2(w ,Rn) ≤ e C̃ν2 t
∥ f ∥L2(w ,Rn) ,

which ûnishes the proof of Lemma 2.5 in the case k = 0.
Nextwe prove Lemma 2.5 in the case k ∈ N. For 0 < λ ≤ Λ <∞ as in (1.2) and (1.3),

let τ ∶= arctan λ
√

Λ2−λ2 . From [12, Lemma 3.3], we deduce that for all θ ∈ (−τ, τ), e iθA
also satisûes the degenerate elliptic conditions (1.2) and (1.3) with λ and Λ therein
replaced by two other positive constants λ(θ) and Λ(θ), depending on θ, respectively.
Let Lθ ∶= e iθLw be the degenerate elliptic operator associated with thematrix e iθA.

Let τ̃ ∶= min{π/2− arctan(Λ/λ), τ}. By (2.3) and (2.6), we see that for all z ≡ re iθ
with r ∈ (0,∞) and θ ∈ (−τ̃, τ̃), and ϕ ∈ E(Rn), (Lθ)ν ,ϕ = e iθLν ,ϕ and

e−zLν ,ϕ = eνϕe−zLw (e−νϕ
) = eνϕe−rLθ (e−νϕ

) = e−r(Lθ)ν ,ϕ .

Similar to the proof of (2.14)with Lw replaced by Lθ ,we see that there exists a positive
constant C2 ∶= C̃/cos τ̃, where C̃ is as in (2.14), such that, for all ν ∈ R+, ϕ ∈ E(Rn),
z ≡ re iθ with r ∈ (0,∞) and θ ∈ (−τ̃, τ̃), and f ∈ L2(w ,Rn),

∥e−z(Lν ,ϕ+C2ν2)( f )∥L2(w ,Rn) = ∥e−r(Lθ)ν ,ϕ(e−re iθC2ν2 f )∥L2(w ,Rn)(2.15)

≤ e C̃ν2 re−r cos θC2ν2∥ f ∥L2(w ,Rn) ≤ ∥ f ∥L2(w ,Rn) .

Since e−zLw is holomorphic with respect to z ∈ Σ(τ̃) (see [34, _eorem 1.53] or [12,
p. 293]), it is easy to show that e−z(Lν ,ϕ+C2ν2) is also holomorphic with respect to z ∈
Σ(τ̃). For all k ∈ N, by the Cauchy formula, we see that, for all ν ∈ R+, ϕ ∈ E(Rn) and
t ∈ (0,∞),

[t(Lν ,ϕ + C2ν2
)]

k e−t(Lν ,ϕ+C2ν2) = (−1)kk! tk

2πi ∫∣ζ−t∣=ηt
e−ζ(Lν ,ϕ+C2ν2) dζ

(ζ − t)k+1 ,
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where the positive constant η is small enough, and the integral does not depend on
η (the choice η = 1

2 sin τ̃
2 insures that {ζ ∶ ∣ζ − t∣ ≤ ηt} is contained in Σ(τ̃)). From

this and (2.15), we deduce that, for any k ∈ N, there exists a positive constant C(k),
depending on k, such that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

(2.16) ∥[t(Lν ,ϕ + C2ν2
)]

k e−t(Lν ,ϕ+C2ν2)( f )∥L2(w ,Rn) ≤ C(k)∥ f ∥L2(w ,Rn) .

To show the conclusion of Lemma 2.5 in the case k ∈ N, we apply an induction
argument. Assume that, for every j ∈ {0, . . . , k − 1}, there exists a positive constant
C( j), depending on j, such that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈

L2(w ,Rn),

(2.17) ∥(tLν ,ϕ)
je−tLν ,ϕ( f )∥L2(w ,Rn) ≲ eC( j)ν2 t∥ f ∥L2(w ,Rn) .

Observe that for all k ∈ N,

(Lν ,ϕ + C2ν2
)
k e−tLν ,ϕ( f )

=
k−1
∑
j=0

(
k
j
)(Lν ,ϕ)

j
(C2ν2

)
k− je−tLν ,ϕ( f ) + (Lν ,ϕ)

k e−tLν ,ϕ( f ),

where (
k
j) denotes the binomial coeõcients. From this, (2.16), and (2.17), it follows

that, for any k ∈ N, there exists a positive constant M(k) > max{C2 ,C(0) , . . . ,C(k−1)},
depending on k, such that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

∥(Lν ,ϕ)
k e−tLν ,ϕ( f )∥L2(w ,Rn)

≲ ∥(Lν ,ϕ + C2ν2
)
k e−tLν ,ϕ( f )∥L2(w ,Rn) +

k−1
∑
j=0

∥(Lν ,ϕ)
j
(C2ν2

)
k− je−tLν ,ϕ( f )∥L2(w ,Rn)

≲ ∥(Lν ,ϕ + C2ν2
)
k e−t(Lν ,ϕ+C2ν2)(eC2ν2 t f )∥L2(w ,Rn)

+
k−1
∑
j=0

(C2ν2
)
k− j

∥(Lν ,ϕ)
je−tLν ,ϕ( f )∥L2(w ,Rn)

≲
1
tk

[eC2ν2 t +
k
∑
j=0

(ν2 t)k− jeC( j)ν2 t]∥ f ∥L2(w ,Rn) ≲
1
tk
eM(k)ν2 t∥ f ∥L2(w ,Rn) .

_us, (2.13) also holds true for k. _is, together with (2.14), ûnishes the proof of
Lemma 2.5.

Since the semigroup {e−tLw}t>0 satisûes the weighted Davies–Gaòney estimate
(1.9) and e−zLw is holomorphic in Σ(π/2 − ω), where ω = arctan(Λ/λ) (see [12,
p. 293]), by an argument similar to the proof of [25, Proposition 3.1], we obtain the
following proposition, the details being omitted.

Proposition 2.6 Let w ∈ A2(Rn) ∪ QC(Rn) and let Lw be the degenerate ellip-
tic operator satisfying (1.2) and (1.3). _en, for every k ∈ Z+, the family of operators,
{(tLw)

k e−tLw}t>0, satisûes the weighted Davies–Gaòney estimates; namely, there exist
positive constants c and C such that, for all t ∈ (0,∞), closed subsets E , F ⊂ Rn and
f ∈ L2(w ,Rn) with supp f ⊂ E,

∥(tLw)
k e−tLw ∥L2(w ,F) ≤ Ce−c

[d(E ,F)]2
t ∥ f ∥L2(w ,E) .
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We now turn to theweighted gradient estimates of {(tLw)
k e−tLw}t>0 with k ∈ Z+.

Proposition 2.7 Let w ∈ A2(Rn) ∪ QC(Rn) and let Lw be the degenerate elliptic
operator satisfying (1.2) and (1.3). _en, for every k ∈ Z+, there exist positive constants
C and C̃ such that for all t ∈ (0,∞), closed sets E , F ⊂ Rn , and f ∈ L2(w ,Rn) supported
in E,

∥
√

t∇([tLw]
k e−tLw ( f ))∥L2(w ,F) ≤ Ce−C̃

[d(E ,F)]2
t ∥ f ∥L2(w ,E) .

Proof Let k ∈ Z+, ν ∈ R+, and ϕ ∈ E(Rn). To prove Proposition 2.7, we ûrst show
that there exist positive constants M and M0 such that for all ν ∈ R+, ϕ ∈ E(Rn),
t ∈ (0,∞), and f ∈ L2(w ,Rn),

(2.18) ∥eνϕ
√

t∇([tLw]
k e−tLw (e−νϕ f ))∥L2(w ,Rn) ≤ MeM0ν2 t∥ f ∥L2(w ,Rn) .

Indeed, from the fact that

eνϕ∇([tLw]
k e−tLw (e−νϕ f )) = (∇− ν∇ϕ)(eνϕ(tLw)

k e−tLw (e−νϕ f )),
it follows that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

∥eνϕ
√

t∇([tLw]
k e−tLw (e−νϕ f ))∥L2(w ,Rn)

≤ ∥
√

t∇(eνϕ[tLw]
k e−tLw (e−νϕ f ))∥L2(w ,Rn)

+ ∥ν
√

teνϕ(tLw)
k e−tLw (e−νϕ f )∇ϕ∥L2(w ,Rn) =∶ J1 + J2 .

By the deûnition of ϕ, (2.3), (2.7), and Lemma 2.5, it is easy to see that for all ν ∈ R+,
ϕ ∈ E(Rn), t ∈ (0,∞) and f ∈ L2(w ,Rn),

J2 ≲ ν
√

t∥(tLν ,ϕ)
k e−tLν ,ϕ( f )∥L2(w ,Rn)(2.19)

≲ ν
√

teC1ν2 t∥ f ∥L2(w ,Rn) ≲ e(C1+1)ν2 t
∥ f ∥L2(w ,Rn) ,

where the positive constant C1 is as in Lemma 2.5.
On the other hand, using (2.3), (2.7), and the degenerate elliptic condition (1.3),

we see that, for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

(J1)2
≤

t
λ
R{a((tLν ,ϕ)

k e−tLν ,ϕ( f ), (tLν ,ϕ)
k e−tLν ,ϕ( f ))}(2.20)

≤
t
λ
R{a((tLν ,ϕ)

k e−tLν ,ϕ( f ), (tLν ,ϕ)
k e−tLν ,ϕ( f ))

− aν ,ϕ((tLν ,ϕ)
k e−tLν ,ϕ( f ), (tLν ,ϕ)

k e−tLν ,ϕ( f ))}

+
t
λ
R{aν ,ϕ((tLν ,ϕ)

k e−tLν ,ϕ( f ), (tLν ,ϕ)
k e−tLν ,ϕ( f ))} =∶ K1 +K2 ,

where the positive constant λ is as in (1.3).
By Lemmas 2.4 and 2.5, we see that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and

f ∈ L2(w ,Rn),

K1 ≤
t
4λ

R{a((tLν ,ϕ)
k e−tLν ,ϕ( f ), (tLν ,ϕ)

k e−tLν ,ϕ( f ))}

+ C ν2 t
λ

∥(tLν ,ϕ)
k e−tLν ,ϕ( f )∥2

L2(w ,Rn)
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≤
t
4λ

R{a((tLν ,ϕ)
k e−tLν ,ϕ( f ), (tLν ,ϕ)

k e−tLν ,ϕ( f ))}

+ C ν2 t
λ
e2C1ν2 t∥ f ∥2

L2(w ,Rn) ,

where the positive constants C and C1 are, respectively, as in Lemmas 2.4 and 2.5.
From this and (2.20), we further deduce that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞)

and f ∈ L2(w ,Rn),

(2.21) (J1)2
≤

4
3λ
Cν2 te2C1ν2 t∥ f ∥L2(w ,Rn) +

4
3
K2 ∼ ν2 te2C1ν2 t∥ f ∥L2(w ,Rn) +K2 .

From (2.5), the Hölder inequality, and Lemma 2.5, we deduce that there exists
a positive constant C̃1 such that, for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈

L2(w ,Rn),

K2 ≲ t∣(Lν ,ϕ(tLν ,ϕ)
k e−tLν ,ϕ( f ), (tLν ,ϕ)

k e−tLν ,ϕ( f ))L2(w ,Rn)∣(2.22)

≲ ∥(tLν ,ϕ)
k+1e−tLν ,ϕ∥L2(w ,Rn)∥(tLν ,ϕ)

k e−tLν ,ϕ∥L2(w ,Rn)

≲ e C̃1ν2 t∥ f ∥2
L2(w ,Rn) .

Combining (2.21) and (2.22), there exists a constant M1 > (max{2C1 , C̃1})/2 such
that for all ν ∈ R+, ϕ ∈ E(Rn), t ∈ (0,∞), and f ∈ L2(w ,Rn),

J1 ≲ [ν2 te2C1ν2 t + e C̃1ν2 t]1/2∥ f ∥L2(w ,Rn) ≲ eM1ν2 t∥ f ∥L2(w ,Rn) .

_is, together with (2.19), implies that (2.18) holds true.
Take ϕ ∈ E(Rn) satisfying ϕ∣F ≥ 0 and ϕ∣E ≤ −

d̃(E ,F)
1+є , where є is some suitable

positive constant (see [15, p. 151] for the existence of such a function). By this and
(2.18), we ûnd that for all k ∈ Z+, t ∈ (0,∞), closed sets E , F ⊂ Rn , and f ∈ L2(w , E)
supported in E,

∥
√

t∇((tLw)
k e−tLw ( f ))∥L2(w ,F)

= ∥e−νϕeνϕ
√

t∇((tLw)
k e−tLw (e−νϕeνϕ f ))∥L2(w ,F)

≤ ∥eνϕ
√

t∇((tLw)
k e−tLw (e−νϕeνϕ f ))∥L2(w ,F)

≲ eM0ν2 t∥eνϕ f ∥L2(w ,E) ≲ eM0ν2 te−ν d̃(E ,F)1+є ∥ f ∥L2(w ,E) ,

where the positive constant M0 is as in (2.18). _is, together with Lemma 2.3 and the
choice that ν ∶= (d̃(E , F))/(C̃0 t) with C̃0 > (1 + є)M0, implies that there exists a
positive constant C̃ such that, for all k ∈ Z+, t ∈ (0,∞), closed sets E , F ⊂ Rn and any
f ∈ L2(w ,Rn) supported in E,

∥
√

t∇((tLw)
k e−tLw ( f ))∥L2(w ,F) ≲ e

−
[d̃(E ,F)]2

t ( 1
1+є −

M0
C̃0

) 1
C̃0 ∥ f ∥L2(w ,E)

∼ e−C̃
[d(E ,F)]2

t ∥ f ∥L2(w ,E) .

_is ûnishes the proof of Proposition 2.7.

To show Proposition 1.5, we also need the following local weighted Sobolev em-
bedding theorems (see [21,_eorem (1.2) and Property 4, p. 107], respectively).
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In what follows, for a subset E ⊂ Rn , C∞c (E) denotes the set of all C∞ functions
with compact support in E.

_eorem 2.8 ([21]) For any given p ∈ (1,∞) and w ∈ Ap(Rn), there exist positive
constants c and δ such that for all balls B ≡ B(xB , rB) of Rn with xB ∈ Rn and rB ∈

(0,∞), all u ∈ C∞c (B), and all numbers k0 ∈ R+ satisfying 1 ≤ k0 ≤ n
n−1 + δ,

(2.23)

[
1

w(B) ∫B
∣u(x)∣k0 pw(x) dx]

1/(k0 p)
≤ crB[

1
w(B) ∫B

∣∇u(x)∣pw(x) dx]
1/p

.

_eorem 2.9 ([21]) Let w ∈ QC(Rn). _en there exist positive constants c and
k0 ∈ (1,∞) such that for all balls B ≡ B(xB , rB) of Rn with xB ∈ Rn and rB ∈ (0,∞),
and all u ∈ C∞c (B),

(2.24) [
1

w(B) ∫B
∣u(x)∣2k0w(x) dx]

1/(2k0)
≤ crB[

1
w(B) ∫B

∣∇u(x)∣2w(x) dx]
1/2

.

We are now in a position to prove Proposition 1.5.

Proof of Proposition 1.5 We ûrst prove that for all l ∈ Z+,

(tLw)
l e−tLw ∈ Ow(L2

− L2k0),

where the positive number k0 ∈ (1,∞) satisûes (2.23) with p = 2 and (2.24) (when
w ∈ A2(Rn), we choose k0 ≡ n

n−1 ).
Given any ball B ≡ B(xB , rB) of Rn with xB ∈ Rn and rB ∈ (0,∞), we deûne

H1
0(w , B) to be the closure of C∞c (B) with respect to the norm

∥ f ∥H1
0(w ,B) ∶= {∫

B
[∣ f (x)∣2 + ∣∇ f (x)∣2]w(x) dx}

1/2
.

Take ϕ ∈ C∞c (2B) such that ∣∇ϕ(x)∣ ≲ 1/rB , supp ϕ ⊂ 2B, ϕ ≡ 1 on B, and for all
x ∈ Rn , 0 ≤ ϕ(x) ≤ 1. _en it is easy to show that for all l ∈ Z+ and f ∈ L2

loc(w ,Rn),

ϕ[(tLw)
l e−tLw (χB f )] ∈ H1

0(w , 2B).

Since C∞c (2B) is dense in H1
0(w , 2B), by the choice of ϕ, Lemma 2.2, _eorems 2.8

and 2.9, Propositions 2.6 and 2.7 and a density argument, we know that for all l ∈ Z+,
B ≡ B(xB , rB) ⊂ Rn with xB ∈ Rn and rB ∈ (0,∞), t ∈ (0,∞) and f ∈ L2

loc(w ,Rn),

[
1

w(B) ∫B
∣(tLw)

l e−tLw (χB f )(x)∣2k0w(x) dx]
1/(2k0)

≲ [
1

w(2B) ∫2B
∣ϕ(x)(tLw)

l e−tLw (χB f )(x)∣2k0w(x) dx]
1/(2k0)

≲ rB[
1

w(2B) ∫2B
∣∇(ϕ[(tLw)

l e−tLw (χB f )])(x)∣2w(x) dx]
1/2

≲ [
1

w(2B) ∫2B
∣(tLw)

l e−tLw (χB f )(x)∣2w(x) dx]
1/2

+
rB
√

t
[

1
w(2B) ∫2B

∣
√

t∇((tLw)
l e−tLw (χB f ))(x)∣2w(x) dx]

1/2
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≲ ( 1 +
rB
√

t
)[

1
w(B) ∫B

∣ f (x)∣2w(x) dx]
1/2

≲ Υ(
rB
√

t
)[

1
w(B) ∫B

∣ f (x)∣2w(x) dx]
1/2
,

where Υ is as in (1.14). _is shows that (1.11) holds true in the case where q = 2k0 and
p = 2.

Next, we prove (1.12) in the case where q = 2k0 and p = 2. For all j ∈ N and
j ≥ 3, let S j(B) ∶= (2 j+1B) ∖ (2 j−2B). Take η j ∈ C∞c (S j(B)) satisfying that, for all
x ∈ Rn , 0 ≤ η j(x) ≤ 1, ∣∇η j(x)∣ ≲ 1

2 j rB , and η j ≡ 1 on U j(B). By the fact that
w ∈ A2(Rn)∪QC(Rn) ⊂ A∞(Rn) and Lemma 2.1(ii),we know that there exists some
r ∈ (1,∞) such that w ∈ RHr(Rn). From the choice of η j , Lemma 2.2,_eorems 2.8,
and 2.9, Propositions 2.6 and 2.7, and a density argument, it follows that there exists
a positive constant c such that for all l ∈ Z+, j ∈ N ∩ [3,∞), B ≡ B(xB , rB) ⊂ Rn with
xB ∈ Rn and rB ∈ (0,∞), t ∈ (0,∞), and f ∈ L2

loc(w ,Rn),

[
1

w(2 jB) ∫U j(B)
∣(tLw)

l e−tLw (χB f )(x)∣2k0w(x) dx]
1/(2k0)

≲ [
1

w(2 j+1B) ∫2 j+1B
∣η j(x)(tLw)

l e−tLw (χB f )(x)∣2k0w(x) dx]
1/(2k0)

≲ [
1

w(2 j+1B) ∫2 j+1B
∣(tLw)

l e−tLw (χB f )(x)∣2w(x) dx]
1/2

+
2 jrB
√

t
[

1
w(2 j+1B) ∫2 j+1B

∣
√

t∇((tLw)
l e−tLw (χB f ))(x)∣2w(x) dx]

1/2

≲ 2 jn r−1
2r ( 1 +

2 jrB
√

t
) e−c

(2 j rB)
2

t [
1

w(B) ∫B
∣ f (x)∣2w(x) dx]

1/2

≲ 2 jθ 1Υ(
2 jrB
√

t
) e−c

(2 j rB)
2

t [
1

w(B) ∫B
∣ f (x)∣2w(x) dx]

1/2
,

where θ1 ≡
r−1
2r n and Υ is as in (1.14). _is implies that (1.12) in the casewhere q = 2k0

and p = 2 holds true.
Similarly, (1.13) in the case where q = 2k0 and p = 2 also holds true.
_us, we conclude that there exists a number k0 ∈ (1,∞) such that for all l ∈ Z+,

(tLw)
l e−tLw ∈ Ow(L2

− L2k0).

_e remainder of the proof of Proposition 1.5 follows from the duality and the compo-
sition rule of theweighted oò-diagonal estimates on balls (see [1, Comments (6),_e-
orem 2.3(b)]), the details being omitted. _is ûnishes the proof of Proposition 1.5.

Remark 2.10 Recall that in [4] Bui et al. establish an abstract theory ofHardy spaces
on the space (X, d , µ) of homogenous type, associated with operators satisfying the
boundedH∞ functional calculus and the oò-diagonal estimates on balls. Proposition
1.5 shows that Lw satisûes the oò-diagonal estimates on balls when

(X, d , µ) ∶= (Rn , ∣ ⋅ ∣,w(x) dx).
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Moreover, by [12, pp. 291–294], we know that Lw has a bounded H∞ functional cal-
culus in L2(w ,Rn). _erefore, Lw satisûes the assumptions of the operators in [4].

3 The Maximal Function Characterization of Hp
Lw
(Rn)

In this section, we give the proof of _eorem 1.3. We begin by introducing some
notions and recalling some needed results from [4,27,32,35].

Deûnition 3.1 Let w ∈ A2(Rn) ∪ QC(Rn), p ∈ (0, 1], M ∈ N, and є ∈ (0,∞). A
function m ∈ L2(w ,Rn) is called a (p, 2,M , є)Lw -molecule if m ∈ R(LM

w ) (the range
of LM

w ) and there exists a ball B ≡ B(xB , rB) ⊂ Rn with xB ∈ Rn and rB ∈ (0,∞), such
that for every k ∈ {0, 1, . . . ,M} and j ∈ Z+, it holds true that

∥(r−2
B L−1

w )
k
(m)∥L2(w ,U j(B)) ≤ 2− jє

[w(2 jB)]1/2[w(B)]−1/p ,

where U j(B) is as in (1.15).

Remark 3.2 We point out that by the weighted Poincaré inequality (see [21, p. 95
and p. 110]), Lw is injective from D(Lw) ⊂ L2(w ,Rn) to L2(w ,Rn), where D(Lw)
denotes the domain of Lw . Hence, L−1

w makes sense.

Deûnition 3.3 Let p ∈ (0, 1] and f be a measurable function on Rn . _e formula
f = ∑∞

j=1 λ jm j is called a molecular (p, 2,M , є)Lw -representation of f if {λ j}
∞
j=1 ∈ l p ,

each m j is a (p, 2,M , є)Lw -molecule and the summation converges in L2(w ,Rn). Let

Hp,2,M
Lw ,mol(R

n
) ∶= { f ∈ L2

(w ,Rn
) ∶ f has amolecular (p, 2,M , є)Lw -representation}.

_emolecularHardy spaceHp,2,M
Lw ,mol(R

n) is deûned as the completion ofHp,2,M
Lw ,mol(R

n)

with respect to the quasi-norm

∥ f ∥Hp,2,M
Lw ,mol(Rn)

∶= inf{(
∞

∑
j=1

∣λ j ∣
p
)

1/p
∶ f =

∞

∑
j=1

λ jm j} ,

where the inûmum is taken over all themolecular (p, 2,M , є)Lw -representations of f
as above.

Since Lw satisûes the assumptions of the operators in [4] (see Remark 2.10), we
have the following theorem, which is just a special case of [4,_eorem 4.8].

_eorem 3.4 ([4]) Let w ∈ Aq(Rn) with q ∈ [1,∞) and p ∈ (0, 1]. Assume that
M ∈ N with

M >
nq
2

[
q
p
+

p
nq(2 − p)

−
1
nq

] and ε ∈ (
nq2

p
,∞) .

_en Hp,2,M
Lw ,mol(R

n) = Hp
Lw

(w ,Rn) with equivalent quasi-norms.
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Let us now introduce an auxiliary square operator S̃(β)
Lw
, which, when w(x) ≡ 1, is

just [27, (6. 3)]. Let β ∈ (0,∞). For any f ∈ L2(w ,Rn) and x ∈ Rn , let

(3.1) S̃
(β)
Lw

( f )(x) ∶= {∬
Γβ(x)

∣t∇e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/2
,

where Γβ is as in (1.7) with α replaced by β. We denote S̃(1)
Lw

( f ) simply by S̃Lw ( f ).
In the following subsections, we will prove the following theorems using this aux-

iliary operator.

_eorem 3.5 Let w ∈ A2(Rn) ∪ QC(Rn). _en, for all p ∈ (0,∞), there exists a
positive constant C ∶= C(n ,p), depending on n and p, such that for all f ∈ L2(w ,Rn),

∥SLw ( f )∥Lp(w ,Rn) ≤ C∥S̃Lw ( f )∥Lp(w ,Rn) .

_eorem 3.6 Let w ∈ A2(Rn) ∪ QC(Rn). _en, for all p ∈ (0, 1], there exists a
positive constant C ∶= C(n ,p), depending on n and p, such that for all f ∈ L2(w ,Rn),

(3.2) ∥S̃Lw ( f )∥Lp(w ,Rn) ≤ C∥Nh( f )∥Lp(w ,Rn) .

Recall that QC(Rn) ⊂ A∞(Rn) (see [21, p. 107]).

_eorem 3.7 Suppose w ∈ A2(Rn) ∪ QC(Rn). Let q ∈ [2,∞) be such that w ∈

Aq(Rn). _en for all p ∈ (0, 1], M ∈ N satisfying M >
qn
2p (1 −

p
2 ) and ε ∈ (

nq
p ,∞),

it holds true that Hp,2,M
Lw ,mol(R

n) ⊂ Hp
Lw ,Nh

(w ,Rn). Moreover, there exists a positive
constant C such that, for all f ∈ Hp,2,M

Lw ,mol(R
n),

∥Nh( f )∥Lp(w ,Rn) ≤ C∥ f ∥Hp,2,M
Lw ,mol(Rn)

.

Remark 3.8 In _eorem 3.7, if w ∈ A2(Rn), then, by Lemma 2.1(i), we know that,
for all q ∈ [2,∞), w ∈ Aq(Rn).

If w ∈ QC(Rn), then w ∈ RHn/(n−2)(Rn). Indeed, if n = 2, this is obviously true.
Now, we assume n > 2. _en for any quasi-conformal mapping f ∶Rn → Rn and
x ∈ Rn , let

L f (x) ∶= lim sup
y→x

∣ f (y) − f (x)∣
∣y − x∣

.

From the deûnition of quasi-conformal mappings, we deduce that for almost every
x ∈ Rn ,

(3.3) [L f (x)]n ∼ ∣ f ′(x)∣,

where f ′(x) is as in (2.1).
By the Gehring lemma (see [24, Lemma 4]), we know that for all balls B in Rn ,

(
1
∣B∣ ∫B

[L f (x)]n dx)
1
n
≲

1
∣B∣ ∫B

L f (x) dx ,
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which, together with (3.3) and the Hölder inequality, implies that if w ∈ QC(Rn),
then

(
1
∣B∣ ∫B

[w(x)]
n

n−2 dx)
n−2
n
= [

1
∣B∣ ∫B

∣ f ′(x)∣ dx]
n−2
n
∼ (

1
∣B∣ ∫B

[L f (x)]n dx)
n−2
n

≲ (
1
∣B∣ ∫B

[L f (x)] dx)
n−2

∼ (
1
∣B∣ ∫B

[w(x)]
1

n−2 dx)
n−2

≲
1
∣B∣ ∫B

w(x) dx ,

namely, w ∈ RHn/(n−2)(Rn). By this and Lemma 2.1(ii), we see that w ∈ Aq(Rn) for
some q ∈ [1,∞).

Our main _eorem 1.3 then follows directly from _eorems 3.5–3.7 as follows.

Proof of_eorem 1.3 Let w ∈ A2(Rn) ∪ QC(Rn) and p ∈ (0, 1]. For any g ∈

L2(w ,Rn), by _eorems 3.5 and 3.6, we see that

∥SLw (g)∥Lp(w ,Rn) ≲ ∥Nh(g)∥Lp(w ,Rn) .

_en it follows from a density argument that for all f ∈ Hp
Lw ,Nh

(w ,Rn),

∥SLw ( f )∥Lp(w ,Rn) ≲ ∥Nh( f )∥Lp(w ,Rn) ,

which further implies that

(3.4) Hp
Lw ,Nh

(w ,Rn
) ⊂ Hp

Lw
(w ,Rn

).

Next, we prove the converse of (3.4), namely, Hp
Lw

(w ,Rn) ⊂ Hp
Lw ,Nh

(w ,Rn). By
Remark 3.8, we know that, for w ∈ A2(Rn) ∪ QC(Rn), there exists some q ∈ [2,∞),
such that w ∈ Aq(Rn). Let

M > max{
qn
2p

( 1 −
p
2
) ,

nq
2

[
q
p
+

p
nq(2 − p)

−
1
nq

]} and ε ∈ (
nq2

p
,∞) .

From _eorems 3.4 and 3.7, we deduce that, for all f ∈ Hp
Lw

(w ,Rn),

∥Nh( f )∥Lp(w ,Rn) ≲ ∥ f ∥Hp,2,M
Lw ,mol(Rn)

∼ ∥ f ∥Hp
Lw

(w ,Rn) ,

which implies Hp
Lw

(w ,Rn) ⊂ Hp
Lw ,Nh

(w ,Rn). _is, together with (3.4), shows that
Hp

Lw
(w ,Rn) and Hp

Lw ,Nh
(w ,Rn) coincide with equivalent quasi-norms, which com-

pletes the proof of_eorem 1.3.

In subsections 3.1, 3.2, and 3.3, we prove _eorems 3.5, 3.6, and 3.7, respectively,
and hence complete the proof of_eorem 1.3.

3.1 Proof of Theorem 3.5

For α ∈ (0,∞) and a closed set F of Rn , we set Rα(F) ∶= ⋃x∈F Γα(x), where Γα(x)
for all x ∈ F is as in (1.7). For simplicity, we o�en write R(F) instead of R1(F).
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Let F ⊂ Rn be a closed set and O ∶= F∁. For any ûxed γ ∈ (0, 1), the set F∗γ of points
with global γ-density with respect to F is deûned by

(3.5) F∗γ ∶= {x ∈ Rn
∶
w(B(x , r) ∩ F)
w(B(x , r))

≥ γ for all r ∈ (0,∞)} .

It is easy to see that F∗γ ⊂ F and

(3.6) (F∗γ )
∁
= {x ∈ Rn

∶ Mw(χO)(x) > 1 − γ},

where Mw denotes the central weighted Hardy-Littlewood maximal operator; namely,
for any f ∈ L1

loc(w ,Rn) and x ∈ Rn ,

Mw( f )(x) ∶= sup
r∈(0,∞)

1
w(B(x , r)) ∫B(x ,r)

∣ f (y)∣w(y) dy.

Lemma 3.9 is just an analogue of [32, Lemma 6.2],whichwas proved by borrowing
some ideas from the proof of [11, Proposition 4], the details being omitted.

Lemma 3.9 For any α ∈ (0,∞),measurable function f on Rn+1
+ , and x ∈ Rn , let

Aα( f )(x) ∶= [∬
Γα(x)

∣ f (y, t)∣2w(y) dy
w(B(x , αt))

dt
t
]
1/2

.

_en for p ∈ (0,∞) and α, β ∈ (0,∞), there exists a positive constant C ∶= C(n ,α ,β ,p),
depending on n, α, β, and p, such that, for all measurable functions f on Rn+1

+ ,

C−1
∥Aβ( f )∥Lp(w ,Rn) ≤ ∥Aα( f )∥Lp(w ,Rn) ≤ C∥Aβ( f )∥Lp(w ,Rn) .

Finally,we have the followingweighted ellipticCaccioppoli inequality for solutions
to the degenerate parabolic system.

Lemma 3.10 Letw ∈ A2(Rn)∪QC(Rn) and let Lw be the degenerate elliptic operator
satisfying (1.2) and (1.3). Assume, in the distributional sense, that ∂tu = −2tLwu in
B(x0 , 2r) × [t0 − 2cr, t0 + 2cr], where x0 ∈ Rn , r, c ∈ (0,∞) and 3cr < t0 < ∞.
_en there exists a positive constant C ∶= C(n ,λ ,Λ ,c), depending on n, λ,Λ, and c, but
independent of x0, t0, and r, such that
(3.7)

∫

t0+cr

t0−cr
∫
B(x0 ,r)

t∣∇u(x , t)∣2w(x) dx dt ≤ C
r2 ∫

t0+2cr

t0−2cr
∫
B(x0 ,2r)

t∣u(x , t)∣2w(x) dx dt.

_e proof of Lemma 3.10 is an analogue of the correspondingCaccioppoli inequal-
ity in the case where w ≡ 1 (see, for example, [30, Lemma 3.3]), choosing a suitable
cut-oò function, the details being omitted.

Proof of_eorem 3.5 For all α ∈ (0,∞), 0 < є < R <∞ and x ∈ Rn , we deûne the
truncated cone Γε ,R ,α(x) by

Γε ,R ,α(x) ∶= {(y, t) ∈ Rn
× (ε, R) ∶ ∣x − y∣ < αt}.

Take a function η ∈ C∞c (Γε/2,2R ,3/2(x)) satisfying η ≡ 1 on Γε ,R ,1(x), 0 ≤ η ≤ 1,
and, for all (y, t) ∈ Γε/2,2R ,3/2(x), ∣∇y ,tη(y, t)∣ ≲ 1/t, where the implicit constant is
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independent of y and t. _en, by the deûnition of Lw (see (1.5)), the degenerate elliptic
condition (1.2), and theHölder inequality, we conclude that

{∬
Γε ,R ,1(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/2
(3.8)

≤ {∬
Γε/2,2R ,3/2(x)

t2Lw e−t2Lw ( f )(y)

× t2Lw e−t2Lw ( f )(y)η(y, t)w(y) dy
w(B(x , t))

dt
t
}

1/2

= {∬
Γε/2,2R ,3/2(x)

[tA(y)∇e−t2Lw ( f )(y) ⋅ t∇[t2Lw e−t2Lw ( f )](y)η(y, t)

+ t2A(y)∇e−t2Lw ( f )(y) ⋅ ∇η(y, t)t2Lw e−t2Lw ( f )(y)] dy
w(B(x , t))

dt
t
}

1/2

≲ {∬
Γε/2,2R ,3/2(x)

∣t∇e−t2Lw ( f )(y)∣

× ∣t∇[t2Lw e−t2Lw ( f )](y)∣w(y) dy
w(B(x , t))

dt
t
}

1/2

+ {∬
Γε/2,2R ,3/2(x)

∣t∇e−t2Lw ( f )(y)∣∣t2Lw e−t2Lw ( f )(y)∣w(y) dy
w(B(x , t))

dt
t
}

1/2

≲ {∬
Γε/2,2R ,3/2(x)

∣t∇e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4

× {∬
Γε/2,2R ,3/2(x)

∣t∇[t2Lw e−t2Lw ( f )](y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4

+ {∬
Γε/2,2R ,3/2(x)

∣t∇e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4

× {∬
Γε/2,2R ,3/2(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4
.

To control the above integrals, we ûrst decompose Γε/4,3R ,2(x) into a family ofWhit-
ney balls, {B((yk , tk), rk)}∞k=0, such that ⋃∞k=0 B((yk , tk), rk) = Γε/4,3R ,2(x),

c1rk ≤ dist(B((yk , tk), rk), (Γε/4,3R ,2(x))∁) ≤ c2rk ,
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and for all z ∈ Γε/4,3R ,2(x),∑∞
k=0 χB((yk ,tk),3rk)(z) ≤ N0,where (yk , tk) ∈ Rn×(0,∞),

3 < c1 < c2 < ∞, and N0 ∈ N are ûxed constants independent of Γε/4,3R ,2(x). Con-
sider a subsequence of {B((yk , tk), rk)}∞k=0 (without loss of generality, we may use
the same notation as the original sequence) such that

Γε/2,2R ,3/2(x) ⊂
∞

⋃
k=0
B((yk , tk), rk) and dist(B((yk , tk), rk), {t = 0}) ∼ rk .

_en by Lemma 3.10, we know that

∬
Γε/2,2R ,3/2(x)

∣t∇[t2Lw e−t2Lw ( f )](y)∣2w(y) dy
w(B(x , t))

dt
t

≤
∞

∑
k=0
∬

B((yk ,tk),rk)
∣t∇[t2Lw e−t2Lw ( f )](y)∣2w(y) dy

w(B(x , t))
dt
t

≤
∞

∑
k=0
∫

tk+rk

tk−rk
∫
B(yk ,rk)

∣t∇[t2Lw e−t2Lw ( f )](y)∣2w(y) dy
w(B(x , t))

dt
t

≲
∞

∑
k=0
∫

tk+2rk

tk−2rk
∫
B(yk ,2rk)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t

≲
∞

∑
k=0
∬

B((yk ,tk),3rk)
∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy

w(B(x , t))
dt
t

≲∬
Γε/4,3R ,2(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
.

_is, together with (3.8) and the Young inequality and via letting ε → 0 and R →∞,
shows that for any ε̃ ∈ (0,∞),

{∬
Γ(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/2

≲ {∬
Γ3/2(x)

∣t∇e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4

× {∬
Γ2(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/4

≲ ε̃{∬
Γ2(x)

∣t2Lw e−t2Lw ( f )(y)∣2w(y) dy
w(B(x , t))

dt
t
}

1/2

+
1
ε̃
{∬

Γ3/2(x)
∣t∇e−t2Lw ( f )(y)∣2w(y) dy

w(B(x , t))
dt
t
}

1/2
,

which, combined with Lemma 3.9 and a suitable choice of ε̃, implies that for all f ∈
L2(w ,Rn),

∥SLw ( f )∥Lp(w ,Rn) ≲ ∥S̃Lw ( f )∥Lp(w ,Rn) .

_is ûnishes the proof of_eorem 3.5.
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3.2 Proof of Theorem 3.6

Before showing _eorem 3.6, let us ûrst introduce the non-tangential maximal func-
tion of β-angle, β ∈ (0,∞), by setting, for all f ∈ L2(w ,Rn) and x ∈ Rn ,

N
(β)
h ( f )(x) ∶= sup

(y ,t)∈Γβ(x)
[

1
w(B(y, βt)) ∫B(y ,β t)

∣e−t2Lw ( f )(z)∣2w(z) dz]
1/2

.

_e following lemma is an analogue of [32, Lemma 6.2], the details being omitted.

Lemma 3.11 Let 0 < γ < β <∞ and p ∈ (0, 1]. _en there exists a positive constant
C ∶= C(n ,γ ,β), depending on n, γ, and β, such that for all f ∈ L2(w ,Rn),

C−1
∥N

(γ)
h ( f )∥Lp(w ,Rn) ≤ ∥N

(β)
h ( f )∥Lp(w ,Rn) ≤ C∥N

(γ)
h ( f )∥Lp(w ,Rn) .

Proof of_eorem 3.6 By Lemma 3.9, we see that

(3.9) ∥S̃Lw ( f )∥Lp(w ,Rn) ≲ ∥S̃
(1/2)
Lw

( f )∥Lp(w ,Rn) ,

for all p ∈ (0, 1] and f ∈ L2(w ,Rn). _erefore, to ûnish the proof of _eorem 3.6, it
suõces to prove (3.2) with S̃Lw replaced by S̃(1/2)

Lw
.

For 0 < ε ≤ R <∞, β ∈ (0,∞), f ∈ L2(w ,Rn), and x ∈ Rn , let

S̃
(ε ,R ,β)
Lw

( f )(x) ∶= [∬
Γε ,R ,β(x)

∣t∇e−t2Lw ( f )(y)∣2 w(y) dy
w(B(x , βt))

dt
t
]
1/2

.

For any σ ∈ (0,∞), let

(3.10) E ∶= {x ∈ Rn
∶ N

(β)
h ( f )(x) ≤ σ},

where β is a ûxed positive constant to be determined later and E∗ ∶= E∗1/2 is the set
of points having the global 1/2-density with respect to E (see (3.5)). Let B∗ ∶= (E∗)∁,
Rε ,R ,β(E∗) ∶= ⋃x∈E∗ Γε ,R ,β(x) and let u(y, t) ∶= e−t2Lw ( f )(y), t ∈ (0,∞), y ∈ Rn . By
[12, Proposition 3.7], it is easy to see that u is aweak solution of the parabolic equation
2t div(A∇u) = w∂tu. By the deûnition of S̃(2ε ,R ,1/2)

Lw
and the Fubini theorem,we know

that

(3.11) ∫
E∗

[S̃
(2ε ,R ,1/2)
Lw

( f )(x)]2w(x) dx ≲∬
Rε ,2R ,1(E∗)

t∣∇u(y, t)∣2w(y) dy dt.

LetG ∶= Rε ,2R ,1(E∗) andG1 ∶= Rε/2,4R ,2(E∗). Take a real-valued function η ∈ C∞c (G1)

satisfying η ≡ 1 on G, 0 ≤ η ≤ 1 and, for all (y, t) ∈ G1, ∣∇y ,tη(y, t)∣ ≲ 1/t. By (1.3), the
deûnition of Lw , integration by parts, (1.2), and the Hölder inequality, we conclude
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that

∬
G
t∣∇u(y, t)∣2w(y) dy dt

≤
1
λ
R{∬

G1
tA(y)∇u(y, t) ⋅ ∇u(y, t)η(y, t) dy dt}

=
1
λ
R{∬

G1
[tA(y)∇u(y, t) ⋅ ∇(ηu)(y, t)

− tA(y)∇u(y, t) ⋅ ∇η(y, t)u(y, t)] dy dt}

=
1
λ
R{∬

G1
[ tLwu(y, t)(ηu)(y, t)w(y)

− tA(y)∇u(y, t) ⋅ ∇η(y, t)u(y, t)] dy dt}

=
1
λ
R{∬

G1
[−

1
4
∂t(∣u(y, t)∣2)η(y, t)w(y)

− tA(y)∇u(y, t) ⋅ ∇η(y, t)u(y, t)] dy dt}

≲∬
G1

∣u(y, t)∣2∣∂tη(y, t)∣w(y) dy dt

+∬
G1

t∣A(y)∇u(y, t) ⋅ ∇η(y, t)u(y, t)∣ dy dt

≲∬
G1∖G

∣u(y, t)∣2w(y) dy dt
t

+ [∬
G1∖G

t∣∇u(y, t)∣2w(y) dy dt]
1/2

[∬
G1∖G

∣u(y, t)∣2w(y) dy dt
t
]
1/2

.

(3.12)

For ε ∈ (0,∞), consider the following three regions:

Bε(E∗) ∶= {(x , t) ∈ Rn
× (ε/2, ε) ∶ dist(x ,E∗) < 2t},(3.13)

BR
(E∗) ∶= {(x , t) ∈ Rn

× (2R, 4R) ∶ dist(x ,E∗) < 2t},(3.14)

B̃(E∗) ∶= {(x , t) ∈ B∗ × (ε, 2R) ∶ t < dist(x ,E∗) < 2t},(3.15)

and observe that

(G1 ∖G) ⊂ (Bε(E∗)∪BR
(E∗)∪ B̃(E∗)).

Next, we consider integrals in (3.12) corresponding, respectively, to the regions in
(3.13) through (3.15).
For each ε ∈ (0,∞), let

I(ε) ∶=∬
Bε(E∗)

∣u(y, t)∣2w(y) dy dt
t
.

For every (y, t) ∈ Bε(E∗), there exists some y∗ ∈ E∗ such that ∣y − y∗∣ < 2t. From the
deûnition of E∗, it follows that w(E ∩ B(y∗ , 2t)) ≥ 1

2w(B(y∗ , 2t)). By the fact that
B(y∗ , 2t) ⊂ B(y, 4t) and Lemma 2.2, we see that

w(E ∩B(y, 4t)) ≥ w(E ∩B(y∗ , 2t)) ≳ w(B(y∗ , 2t)) ≳ w(B(y, 4t)) .
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By this, Lemma 2.2, and the Fubini theorem, we have

I(ε) ≲∬
Bε(E∗)

∫
E∩B(y ,4t)

∣u(y, t)∣2w(z) dz w(y) dy
w(B(y, 4t))

dt
t

(3.16)

≲ ∫

ε

ε/2
∫
E
[

1
w(B(z, 4t)) ∫B(z ,4t)

∣u(y, t)∣2w(y) dy]w(z) dz dt
t

≲ ∫

ε

ε/2
∫
E
[N

(β)
h ( f )(z)] 2w(z) dz dt

t
≲ ∫

E
[N

(β)
h ( f )(z)] 2w(z) dz,

for all β ≥ 4.
For each ε ∈ (0,∞), let

II(ε) ∶=∬
Bε(E∗)

t∣∇u(y, t)∣2w(y) dy dt.

By an argument similar to that used in the estimate for I(ε), we conclude that

II(ε) ≲ ∫
ε

ε/2
∫
E
[

1
w(B(z, 4t)) ∫B(z ,4t)

t∣∇u(y, t)∣2w(y) dy]w(z) dz dt(3.17)

≲ ∫
E
∫

ε

ε/2
∫
B(z ,4ε)

t∣∇u(y, t)∣2w(y) dy dt w(z) dz
w(B(z, 4ε))

.

From the deûnition of u(y, t) = e−t2Lw f (y), togetherwith the Caccioppoli inequality
(3.7), we deduce that

∫

ε

ε/2
∫
B(z ,4ε)

t∣∇u(y, t)∣2w(y) dy dt ≲ 1
ε2 ∫

5ε/4

ε/4
∫
B(z ,8ε)

t∣u(y, t)∣2w(y) dy dt.

Combining this, Lemma 2.2, and (3.17), we ûnd that

II(ε) ≲ ∫
E

1
ε2 ∫

5ε/4

ε/4
∫
B(z ,8ε)

t∣u(y, t)∣2 dy dt w(z) dz
w(B(z, 4ε))

(3.18)

≲ ∫
E
∫

5ε/4

ε/4

1
w(B(z, 32t)) ∫B(z ,32t)

∣u(y, t)∣2w(y) dy dt
t
w(z) dz

≲ ∫

5ε/4

ε/4
∫
E
[N

(β)
h ( f )(z)] 2w(z) dz dt

t
≲ ∫

E
[N

(β)
h ( f )(z)] 2w(z) dz,

for all β ≥ 32. By the same argument as above, we have

∬
BR(E∗)

∣u(y, t)∣2w(y) dy dt
t
≲ ∫

E
[N

(β)
h ( f )(z)]2w(z) dz(3.19)

and

∬
BR(E∗)

t∣∇u(y, t)∣2w(y) dy dt ≲ ∫
E
[N

(β)
h ( f )(z)]2w(z) dz(3.20)

for all β ≥ 32.
To control the integral over B̃(E∗), we ûrst decompose B∗ ∶= (E∗)∁ into a family

ofWhitney balls, {B(xk , rk)}∞k=0, such that B∗ = ⋃∞k=0 B(xk , rk),

c1 dist(xk ,E∗) ≤ rk ≤ c2 dist(xk ,E∗)
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and every point x ∈ B∗ belongs to at most c3 balls. Here 0 < c1 < c2 < 1 and c3 ∈ N are
some ûxed constants, independent of B∗ (see, for example, [36,_eorem 3]). _en by
the deûnition of B̃(E∗) and Lemma 2.2, we see that

Ĩ ∶=∬
B̃(E∗)

∣u(y, t)∣2w(y) dy dt
t

≤
∞

∑
k=0
∫

(1+ 1
c1
)rk

1
2 (

1
c2
−1)rk

∫
B(xk ,rk)

∣u(y, t)∣2w(y) dy dt
t

≲
∞

∑
k=0
∫

(1+ 1
c1
)rk

( 1
c2
−1) rk

2

w(B(xk , rk))[
1

w(B(xk , 2c2
1−c2 t))

∫
B(xk ,

2c2
1−c2

t)
∣u(y, t)∣2w(y) dy] dt

t
.

(3.21)

From the fact thatE∗ ⊂ E, it follows that dist(xk , E) ≤ dist(xk ,E∗) ≤ 2c2
(1−c2)c1 t. Hence,

we have
1

w(B(xk , 2c2
1−c2 t))

∫
B(xk ,

2c2
1−c2

t)
∣u(y, t)∣2w(y) dy ≲ [sup

z∈E
N

(β)
h ( f )(z)]2 ,

for all β ≥ 2c2
(1−c2)c1 . By this and (3.21), we see that

Ĩ ≲
∞

∑
k=0

w(B(xk , rk))[ sup
z∈E

N
(β)
h ( f )(z)] 2

≲ w(B∗)[ sup
z∈E

N
(β)
h ( f )(z)] 2

,(3.22)

for all β ≥ 2c2
(1−c2)c1 .

Similar to (3.21) and (3.22), by using Lemma 3.10 to control the gradient of u, we
conclude that there exist positive constants C and C̃ ∶= C̃(c1 ,c2), depending on c1 and
c2, such that

ĨI ∶=∬
B̃(E∗)

t∣∇u(y, t)∣2w(y) dy dt ≤ Cw(B∗)[sup
z∈E

N
(β)
h ( f )(z)]2 ,(3.23)

for all β ≥ C̃.
Now, by choosing

β ∶= max{32,
2c2

(1 − c2)c1
, C̃}

in (3.10), and via (3.22) and (3.23), we conclude that

Ĩ ≲ σ 2w(B∗) and ĨI ≲ σ 2w(B∗).
By this, (3.11), (3.12), (3.16), (3.18), (3.19), and (3.20), we further ûnd that

∫
E∗

[S̃
(2ε ,R ,1/2)
Lw

( f )(x)]2w(x) dx ≲ σ 2w(B∗) + ∫
E
[N

(β)
h ( f )(z)]2w(z) dz.

Passing to the limit as ε → 0 and R →∞, we see that

(3.24) ∫
E∗

[S̃
(1/2)
Lw

( f )(x)]2w(x) dx ≲ σ 2w(B∗) + ∫
E
[N

(β)
h ( f )(z)]2w(z) dz.

Let λ
N

(β)
h ( f ) be the distribution function of N(β)

h ( f ) with respect to w; namely, for
any a ∈ (0,∞),

λ
N

(β)
h ( f )(a) ∶= w({x ∈ Rn

∶ N
(β)
h ( f )(x) > a}) .
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Recall that N(β)
h ( f ) ≤ σ on E (see (3.10)). From the deûnition of B∗, (3.6) and the

boundedness of Mw from L1(w ,Rn) to the weak-L1(w ,Rn), it follows that

w(B∗) = w({x ∈ Rn
∶ Mw(χE∁)(x) > 1/2}) ≲ w(E∁) ∼ λ

N
(β)
h ( f )(σ).

By this and (3.24) we have

λ
S̃
(1/2)
Lw

( f )(σ) ≤ w({x ∈ E∗ ∶ S̃(1/2)
Lw

( f )(x) > σ}) +w(B∗)

≲
1
σ 2 ∫E∗

[S̃
(1/2)
Lw

( f )(x)]2w(x) dx +w(B∗)

≲
1
σ 2 ∫

σ

0
tλ

N
(β)
h ( f )(t) dt + λ

N
(β)
h ( f )(σ).

From this and Lemma 3.9 we deduce that

∫
Rn

[S̃
(1/2)
Lw

( f )(x)]pw(x) dx

= ∫

∞

0
up−1λ

S̃
(1/2)
Lw

( f )(u) du

≲ ∫

∞

0
up−1 1

u2 ∫

u

0
tλ

N
(β)
h ( f )(t) dt + ∫

∞

0
up−1λ

N
(β)
h ( f )(u) du

≲ ∫

∞

0
tλ

N
(β)
h ( f )(t)∫

∞

t
up−3 du dt + ∫

Rn
[N

(β)
h ( f )(x)]pw(x) dx

≲ ∫
Rn

[N
(β)
h ( f )(x)]pw(x) dx ≲ ∫

Rn
[Nh f (x)]pw(x) dx ,

which together with (3.9) completes the proof of_eorem 3.6.

3.3 Proof of Theorem 3.7

_e following lemma is a special case of [4, Corollary 4.7].

Lemma 3.12 ([4]) Let w ∈ Aq(Rn) with q ∈ [1,∞), p ∈ (0, 1], ε ∈ (0,∞), and
M ∈ N satisfy M > C(p,q ,n), where C(p,q ,n) is a positive constant depending on p, q,
and n. Suppose that T is a linear (resp. non-negative sublinear) operator that maps
L2(w ,Rn) continuously into weak-L2(w ,Rn). If there exists a positive constant C such
that for any (p, 2,M , є)Lw -molecule m associated with the ball B,

∫
Rn

∣T(m)(x)∣pw(x) dx ≤ C ,

then T can extend to be a bounded linear (resp. sublinear) operator from Hp,2,M
Lw ,mol(R

n)

to Lp(w ,Rn).

Recall that an operator T is said to be non-negative, if T( f ) ≥ 0 for all non-negative
functions f in the domain of T . _eorem 3.7 then follows from establishing the
boundedness ofNh on all (p, 2,M , є)Lw -molecules.
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Proof of_eorem 3.7 For M ∈ N, we ûrst introduce the radial maximal functions,
Rh and R

(M)

h , respectively, by setting, for all f ∈ L2(w ,Rn) and x ∈ Rn ,

Rh( f )(x) ∶= sup
t∈(0,∞)

[
1

w(B(x , t)) ∫B(x ,t)
∣e−t2Lw ( f )(y)∣2w(y) dy]

1/2

and

R
(M)

h ( f )(x) ∶= sup
t∈(0,∞)

[
1

w(B(x , t)) ∫B(x ,t)
∣(t2Lw)

M e−t2Lw ( f )(y)∣2w(y) dy]
1/2

.

Both of the operators above are bounded on L2(w ,Rn). Indeed, by Proposition 1.5,
we know that there exists some p ∈ (1, 2) such that e−tLw ∈ Ow(Lp-L2). From this
and the boundedness of Mw in L2/p(w ,Rn), it follows that for all f ∈ L2(w ,Rn),

∥Rh( f )∥2
L2(w ,Rn)

≲ ∫
Rn

{ sup
t∈(0,∞)

∞

∑
j=0

[
1

w(B(x , t))

× ∫
B(x ,t)

∣e−t2Lw (χU j(B(x ,t)) f )(y)∣
2w(y) dy]

1/2
}

2
w(x) dx

≲ ∫
Rn

{ sup
t∈(0,∞)

∞

∑
j=3

2 jθ 1[Υ(
2 j t
t

)]
θ2
e−c

4 j t2
t2

× [
1

w(2 jB(x , t)) ∫2 jB(x ,t)
∣ f (y)∣pw(y) dy]

1/p

+ sup
t∈(0,∞)

[
1

w(B(x , 4t)) ∫B(x ,4t)
∣ f (y)∣pw(y) dy]1/p}

2
w(x) dx

≲ ∫
Rn

{
∞

∑
j=2

2 j(θ 1+θ2)e−c4
j
[Mw(∣ f ∣p)(x)]1/p + [Mw(∣ f ∣p)(x)]1/p}

2
w(x) dx

≲ ∫
Rn

[Mw(∣ f ∣p)(x)]2/pw(x) dx ≲ ∫
Rn

∣ f (x)∣2w(x) dx ,

where θ1, θ2, Υ, and c are as in Deûnition 1.4 with q = 2 and {U j(B(x , t))} j∈Z+ are
as in (1.15) with B replaced by B(x , t). By a similar argument as above, we also obtain
the boundedness of R(M)

h in L2(w ,Rn).
Observe that by the deûnitions ofRh( f ) andN(1/2)

h ( f ), togetherwith Lemma 2.2,
we conclude that for all f ∈ L2(w ,Rn),N(1/2)

h ( f ) ≲ Rh( f ). From this andLemma 3.11
we further deduce that for all f ∈ L2(w ,Rn),

∥Nh( f )∥Lp(w ,Rn) ≲ ∥N
(1/2)
h ( f )∥Lp(w ,Rn) ≲ ∥Rh( f )∥Lp(w ,Rn) .

By this and Lemma 3.12, to prove the desired conclusion of_eorem 3.7, it suõces to
prove that for all (p, 2,M , є)Lw -molecules m associated with the ball B ≡ B(xB , rB)
with xB ∈ Rn and rB ∈ (0,∞),

∥Rh(m)∥Lp(w ,Rn) ≲ 1.
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To this end, by theHölder inequality, we write

∫
Rn

[Rh(m)(x)]pw(x) dx

≤
∞

∑
j=0
∫

U j(B)
[Rh(m)(x)]pw(x) dx

≤
∞

∑
j=0

[w(U j(B))]1−
p
2 {∫

U j(B)
[Rh(m)(x)]2w(x) dx}

p
2

≤
10
∑
j=0

[w(U j(B))]1−
p
2 ∥Rh(m)∥

p
L2(w ,U j(B))

+
∞

∑
j=11

[w(U j(B))]1−
p
2 ∥Rh(m)∥

p
L2(w ,U j(B)) =∶ I + II,

where U j(B) is as in (1.15).
Since Rh is bounded on L2(w ,Rn), from the deûnition of m, it follows that I ≲ 1.
To estimate the term II, we ûx some constant a ∈ (0, 1) such that M >

qn
2ap (1 −

p
2 ),

which is possible, since M >
qn
2p (1 −

p
2 ). _en for every j ≥ 11 and x ∈ U j(B), write

Rh(m)(x) ≤ sup
t∈(0,2a j−2 rB]

[
1

w(B(x , t)) ∫B(x ,t)
∣e−t2Lw (m)(y)∣2w(y) dy]

1/2
(3.25)

+ sup
t∈(2a j−2 rB ,∞)

[
1

w(B(x , t)) ∫B(x ,t)
∣e−t2Lw (m)(y)∣2w(y) dy]

1/2

=∶ II1, j + II2, j .

To handle II1, j , let S j(B) ∶= (2 j+3B) ∖ (2 j−3B),

R j(B) ∶= (2 j+5B) ∖ (2 j−5B) and E j(B) ∶= [R j(B)]∁ .

Write m = mχR j(B) +mχE j(B). Since t ≤ 2a j−2rB , it follows that for any x ∈ U j(B),

B(x , t) ⊂ S j(B) and dist(S j(B), E j(B)) ∼ [2 j+5
− 2 j+3

]rB ∼ 2 jrB .

By Lemma 2.2, we see that for any x ∈ U j(B) and t ∈ (0, 2a j−2rB],

w(B(xB , 2 jrB)) ∼ w(B(x , 2 jrB)) ≲ w(B(x , t))( 2 jrB
t

)
qn

.

From this and (1.9) we deduce that for every j ≥ 11,

∥ sup
t∈(0,2a j−2 rB]

[
1

w(B( ⋅ , t)) ∫B( ⋅ ,t)
∣e−t2Lw (mχE j(B))(y)∣

2w(y) dy]
1/2

∥
L2(w ,U j(B))

≤ ∥ sup
t∈(0,2a j−2 rB]

1
[w(B( ⋅ , t))]1/2

× [∫
S j(B)

∣e−t2Lw (mχE j(B))(y)∣
2w(y) dy]

1/2
∥

L2(w ,U j(B))

≲ ∥ sup
t∈(0,2a j−2 rB]

1
[w(B( ⋅ , t))]1/2

e−c
[dist(S j(B),E j(B))]

2

t2 ∥m∥L2(w ,E j(B))∥ L2(w ,U j(B))
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≲ ∥ sup
t∈(0,2a j−2 rB]

1
[w(B( ⋅ , t))]1/2

(
t

2 jrB
)

N
∥

L2(w ,U j(B))
∥m∥L2(w ,Rn)

≲ ∥ sup
t∈(0,2a j−2 rB]

1
[w(B(xB , 2 jrB))]1/2

2(
qn
2 −N) j

(
t
rB

)
N− qn

2
∥

L2(w ,U j(B))
∥m∥L2(w ,Rn)

≲ 2(
qn
2 −N) j

(
2a jrB
rB

)
N− qn

2
∥m∥L2(w ,Rn) ≲ 2(1−a)(qn/2−N) j

∥m∥L2(w ,Rn) ,

where the positive constant N is greater than qn(2−a)
2p(1−a) . _us, by this and the deûnition

of m, we further conclude that

∞

∑
j=11

[w(U j(B))]1−
p
2 ∥ sup

t∈(0,2a j−2 rB]
[

1
w(B( ⋅ , t))

(3.26)

× ∫
B( ⋅ ,t)

∣e−t2Lw (mχE j(B))(y)∣
2w(y) dy]

1/2
∥

p

L2(w ,U j(B))

≲
∞

∑
j=11

2p(1−a)( qn
2 −N) j2(1−

p
2 ) jqn

[w(B)]1−p/2
∥m∥

p
L2(w ,Rn)

≲ 1.

As for the estimate ofmχR j(B), from the L2(w ,Rn)-boundedness ofRh , the deûnition
of m and the fact that ε ∈ (

nq
p ,∞), it follows that

∞

∑
j=0

[w(U j(B))]1−
p
2 ∥Rh(mχR j(B))∥

p
L2(w ,U j(B))(3.27)

≲
∞

∑
j=0

[w(U j(B))]1−
p
2 ∥m∥

p
L2(w ,R j(B)) ≲

∞

∑
j=0

2− jpε2 jnq
≲ 1.

Combining (3.26) and (3.27), we ûnd that

(3.28)
∞

∑
j=11

[w(U j(B))]1−
p
2 ∥II1, j∥

p
L2(w ,U j(B)) ≲ 1.

Now we consider the term II2, j . For every j ≥ 11 and x ∈ U j(B), we have

II2, j = sup
t∈(2a j−2 rB ,∞)

[
1

w(B(x , t))

× ∫
B(x ,t)

∣t2ML2M
w e−t2Lw (t−2ML−M

w (m))(y)∣2w(y) dy]
1/2

≲ 2−2aMj sup
t∈(2a j−2 rB ,∞)

[
1

w(B(x , t))

× ∫
B(x ,t)

∣ t2ML2M
w e−t2Lw (r−2M

B L−M
w (m))(y)∣ 2w(y) dy]

1/2

≲ 2−2aMjR
(M)

h ( r−2M
B L−M

w (m))(x),
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which, togetherwith the boundedness ofR(M)

h in L2(w ,Rn) and the deûnition ofm,
further implies that

∞

∑
j=11

[w(U j(B))]
1− p

2 ∥II2, j∥
p
L2(w ,U j(B))(3.29)

≲
∞

∑
j=11

2−2apM j
[w(2 jB)]1−

p
2 ∥R

(M)

h (r−2M
B L−M

w (m))∥
p
L2(w ,Rn)

≲
∞

∑
j=11

2−2apM j
[w(2 jB)]1−

p
2 ∥r−2M

B L−M
w (m)∥

p
L2(w ,Rn)

≲
∞

∑
j=11

2−[2apM−(1− p
2 )qn] j ≲ 1,

where M >
qn
2ap (1 −

p
2 ).

By combining (3.25), (3.28), and (3.29), we have II ≲ 1. _is further implies that
∥Rh(m)∥Lp(w ,Rn) ≲ 1, which completes the proof of_eorem 3.7.

4 Boundedness of Riesz Transforms

In this section, we give the proof of _eorem 1.6. Before going into the details, we
present some technical propositions.

Observe that when w ∈ A2(Rn), ∇L−1/2
w is bounded from L2(w ,Rn) to itself (see

[13,_eorem 1.1]) and
√

t∇e−tLw satisûes the weighted Davies–Gaòney estimate (see
Proposition 2.7). Proposition 4.1 is a special case of [5, Lemma 4.4] with (X , d , µ) ∶=
(Rn , ∣ ⋅ ∣,w(x) dx) and DL−1/2 ∶= ∇L−1/2

w .

Proposition 4.1 For every M ∈ N, there exists a positive constant C(M), depending
on M, such that for all t ∈ (0,∞), closed subsets E , F of Rn with dist(E , F) > 0 and
f ∈ L2(w ,Rn) supported in E,

∥∇L−1/2
w (I − e−tLw )

M
( f )∥L2(w ,F) ≤ C(M)(

t
[d(E , F)]2

)
M
∥ f ∥L2(w ,E) ,

∥∇L−1/2
w (tLw e−tLw )

M
( f )∥L2(w ,F) ≤ C(M)(

t
[d(E , F)]2

)
M
∥ f ∥L2(w ,E) .

We also need the following technical lemma.

Proposition 4.2 Let M ∈ N and let E , F be closed subsets of Rn . If d(E , F) > 0, then
there exists a positive constantC(M), depending on M, but independent of E and F, such
that for all t ∈ (0,∞) and f ∈ L2(w ,Rn) supported in F,

∥L−1/2
w (I − e−tLw )

M
( f )∥L2(w ,E) ≤ C(M)

√
t( t

[d(E , F)]2
)

M− 1
2
∥ f ∥L2(w ,F) ,

∥L−1/2
w (tLw e−tLw )

M
( f )∥L2(w ,E) ≤ C(M)

√
t( t

[d(E , F)]2
)

M− 1
2
∥ f ∥L2(w ,F) .
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If d(E , F) = 0, then there exists a positive constant C(M), depending on M, but inde-
pendent of E and F, such that for all t ∈ (0,∞) and f ∈ L2(w ,Rn) supported in F,

∥L−1/2
w (I − e−tLw )

M
( f )∥L2(w ,E) ≤ C(M)

√
t∥ f ∥L2(w ,F) ,

∥L−1/2
w (tLw e−tLw )

M
( f )∥L2(w ,E) ≤ C(M)

√
t∥ f ∥L2(w ,F) .

Proof Notice that for every k ∈ Z+, {(tLw)
k e−tLw}t>0 satisfy the weighted Davies–

Gaòney estimates (see Proposition 2.6), namely, there exists a positive constant C
such that for all t ∈ (0,∞), closed subsets E , F of Rn and f ∈ L2(w ,Rn) supported
in F,

(4.1) ∥(tLw)
k e−tLw ( f )∥L2(w ,E) ≲ e−C

[d(E ,F)]2
t ∥ f ∥L2(w ,F) .

_e remainder of the proof of this proposition is completely analogous to that of [26,
Lemma 2.2], replacing the Davies–Gaòney estimates used therein for the gradient of
semigroup by (4.1) above, the details being omitted. _is ûnishes the proof of Propo-
sition 4.2.

Inwhat follows, let S(Rn) denote the space of all Schwartz functions and let S′(Rn)
be the space of all Schwartz distributions.

Let ψ ∈ S(Rn), ∫Rn ψ(x) dx = 1 and ψt(x) ∶= t−nψ( x
t ) for all x ∈ Rn and

t ∈ (0,∞). For all f ∈ S′(Rn) and x ∈ Rn , the non-tangential maximal function
ψ∗∇( f )(x) is deûned by setting

ψ∗∇( f )(x) ∶= sup
∣x−y∣<t
t∈(0,∞)

∣(ψt ∗ f )(y)∣.

_en for p ∈ (0, 1] and w ∈ A∞(Rn), f ∈ S′(Rn) is said to belong to the weighted
Hardy space Hp

w(Rn), if ψ∗∇( f ) ∈ Lp(w ,Rn); moreover, deûne

∥ f ∥Hp
w(Rn) ∶= ∥ψ∗∇( f )∥Lp(w ,Rn) .

An important fact is that every element in the Hardy space Hp
w(Rn) admits an

atomic decomposition. Let us ûrst recall the deûnition of (p, q, s)w-atoms as follows.
Recall that ⌊s⌋ for any s ∈ R denotes themaximal integer not more than s.

Deûnition 4.3 ([23]) Let p ∈ (0, 1], q ∈ [1,∞)with q > p andw ∈ Aq(Rn). Assume
that s ∈ Z+ satisûes s ≥ ⌊n(qw/p − 1)⌋, where

qw ∶= inf{q ∈ [1,∞) ∶ w ∈ Aq(Rn
)}.

A function a is called a (p, q, s)w-atom associated with the ball B if
(i) supp a ⊂ B;
(ii) ∥a∥Lq(w ,Rn) ≤ [w(B)]1/q−1/p ;
(iii) for all α ∈ Zn

+ with ∣α∣ ≤ s, ∫Rn a(x)xα dx = 0.

Deûnition 4.4 Let p, q, s, andw be as inDeûnition 4.3. _e atomicweightedHardy
space Hp,q ,s

w (Rn) is deûned by setting

Hp,q ,s
w (Rn

) ∶= { f ∈ S′(Rn
) ∶ f =

∞

∑
j=0

λ ja j in S′(Rn
)} ,
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where {a j}
∞
j=0 is a sequence of (p, q, s)w-atoms and {λ j}

∞
j=0 ⊂ C satisûes∑∞

j=0 ∣λ j ∣
p <

∞. _e quasi-norm of f is deûned by setting

∥ f ∥Hp,q ,s
w (Rn) ∶= inf{(

∞

∑
j=0

∣λ j ∣
p
)

1/p
} ,

where the inûmum is taken over all possible decompositions of f as above.

_e following atomic characterization of Hp
w(Rn) can be found in [23].

Lemma 4.5 ([23]) Let p, q, s, andw be as inDeûnition 4.3. _en the spaces Hp
w(Rn)

and Hp,q ,s
w (Rn) coincide with equivalent quasi-norms.

Deûnition 4.6 Let p ∈ (0, 1], w ∈ A2(Rn) and ε ∈ (0,∞). A function m ∈

L2(w ,Rn) is called a (p, 2, ε)w-molecule associated with the ball B if
(i) for every j ∈ Z+, ∥m∥L2(w ,U j(B)) ≤ 2− jε[w(2 jB)]1/2−1/p , where U j(B) is as in

(1.15);
(ii) ∫Rn m(x) dx = 0.

Proposition 4.7 Let

p ∈ (
n

n + 1
, 1] , w ∈ Aq0(R

n
),

with q0 ∈ [1, p(n+1)
n ) and ε ∈ (2n + 2,∞). _en there exists a positive constant C such

that for all (p, 2, ε)w-molecules m, it holds true that

m =
∞

∑
j=0

λ jα j in L2
(w ,Rn

),

where {λ j}
∞
j=0 ⊂ C and {α j}

∞
j=0 is a family of (p, 2, 0)w-atoms up to a harmless constant

multiple, and ∥m∥Hp,2,0
w (Rn) ≤ C.

Proof Let m be a (p, 2, ε)w-molecule associated with a ball B. To prove Proposi-
tion 4.7, we borrow some ideas from [7] (see also [3,32]).
For each j ∈ Z+, let β j ∶= ∫U j(B) m(y) dy and χ j ∶=

1
∣U j(B)∣ χU j(B). _en for each

x ∈ Rn , we deûne
M j(x) ∶= m(x)χU j(B)(x) − β j χ j(x)

and N j ∶= ∑
∞
k= j βk . Since ∫Rn m(x) dx = 0, we write

(4.2) m =
∞

∑
j=0

M j +
∞

∑
j=0

N j+1(χ j+1 − χ j) =∶
∞

∑
j=0

M j +
∞

∑
j=0

Pj ,

where the summations converge for almost every x ∈ Rn .
For each j ∈ Z+, it is easy to see that ∫Rn M j(x) dx = 0 and suppM j ⊂ 2 jB. More-

over, by the fact w ∈ A2(Rn), the Hölder inequality, and the deûnition of m, we ûnd
that

∥M j∥L2(w ,Rn)

≤ ∥m∥L2(w ,U j(B)) +
∣β j ∣

∣U j(B)∣
[w(U j(B))]1/2
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≲ ∥m∥L2(w ,U j(B))

+
[w(2 jB)]1/2

∣2 jB∣
[∫

2 jB
[w(x)]−1 dx]

1/2
[∫

U j(B)
∣m(x)∣2w(x) dx]

1/2

≲ ∥m∥L2(w ,U j(B)) ≲ 2− j(ε−2n/p)
[w(2 jB)]1/2−1/p .

By this together with the fact that q0 ∈ [1, p(n+1)
n ) implies ⌊n( q0

p − 1)⌋ = 0, we see
that 2 j(ε−2n/p)M j is a (p, 2, 0)w-atom associated with the ball 2 jB, up to a harmless
constant multiple.

On the other hand, for each j ∈ Z+, we see that ∫Rn Pj(x) dx = 0, supp Pj ⊂ 2 j+1B
and

(4.3) ∥Pj∥L2(w ,Rn) ≤ ∣N j+1∣{
[w(U j+1(B))]1/2

∣U j+1(B)∣
+

[w(U j(B))]1/2

∣U j(B)∣
} .

Since w ∈ A2(Rn) and ε ∈ (2n + 2,∞), by Lemma 2.1(ii), we know that there exists
some r ∈ (1,∞) such that w ∈ RHr(Rn). Moreover, by this, the Hölder inequality,
Lemma 2.2 and the deûnition of m, we have

∣N j+1∣ ≤
∞

∑
k= j
∫

Uk(B)
∣m(x)∣ dx

≤
∞

∑
k= j

{∫
Uk(B)

[w(x)]−1 dx}
1/2

[∫
Uk(B)

∣m(x)∣2w(x) dx]
1/2

≲
∞

∑
k= j

∣2kB∣
[w(2kB)]1/2

∥m∥L2(w ,Uk(B))

≲
∣2 jB∣

[w(2 jB)]1/2
[w(2 jB)]1/2−1/p2− j(ε−2n/p) ∞

∑
k= j

2−(k− j)[ε− n
2 (3+

1
r )]

≲ 2− j(ε−2n/p)
∣2 jB∣[w(2 jB)]−1/p ,

which, together with (4.3) and Lemma 2.2, implies that

∥Pj∥L2(w ,Rn) ≲ 2− j(ε−2n/p)
∣2 jB∣[w(2 jB)]−1/p

{
[w(U j+1(B))]1/2

∣U j+1(B)∣
+

[w(U j(B))]1/2

∣U j(B)∣
}

≲ 2− j(ε−2n/p)
[w(2 j+1B)]1/2−1/p .

Hence, 2 j(ε−2n/p)Pj is a (p, 2, 0)w-atom associated with the ball 2 j+1B, up to a harm-
less constant multiple. By (4.2), we have

∥m∥Hp,2,0
w (Rn) ≲ (

∞

∑
j=0

2−p jε
)

1/p
≲ 1,

which completes the proof of Proposition 4.7.

Using Proposition 4.7, we now prove_eorem 1.6.

Proof of_eorem 1.6 Suppose that m is a (p, 2,M , є)Lw -molecule associated with
a ball B ≡ B(xB , rB) with xB ∈ Rn and rB ∈ (0,∞), and ε ∈ (2n,∞). We ûrst show
that ∇L−1/2

w (m) is a (p, 2, ε)w-molecule associated with B.
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By the boundedness of ∇L−1/2
w in L2(w ,Rn) (see [13,_eorem 1.1]), together with

Deûnition 3.1 and Lemma 2.2, we conclude that for j ∈ {0, 1, . . . , 10},

∥∇L−1/2
w (m)∥L2(w ,U j(B)) ≤ ∥∇L−1/2

w (m)∥L2(w ,Rn) ≲ ∥m∥L2(w ,Rn) ≲ [w(B)]1/2−1/p

≲ 2− jε
[w(2 jB)]1/2−1/p .

For j ≥ 11, let Wj(B) ∶= (2 j+3B) ∖ (2 j−3B) and E j(B) ∶= [Wj(B)]∁. Write

∥∇L−1/2
w (m)∥L2(w ,U j(B)) ≤ ∥∇L−1/2

w (I − e−r2BLw )
M
(m)∥L2(w ,U j(B))

+ ∥∇L−1/2
w (I − [I − e−r2BLw ]

M
)(m)∥L2(w ,U j(B))

=∶ I1 + I2 .

From Proposition 4.1 and the boundedness of∇L−1/2
w in L2(w ,Rn), together with

Deûnition 3.1 and Lemma 2.2, it follows that

I1 ≤ ∥∇L−1/2
w (I − e−r2BLw )

M
(mχWj(B))∥L2(w ,U j(B))

+ ∥∇L−1/2
w (I − e−r2BLw )

M
(mχE j(B))∥L2(w ,U j(B))

≲ ∥m∥L2(w ,Wj(B)) + (
r2B

22 jr2B
)

M
∥m∥L2(w ,E j(B))

≲ 2− jε
[w(2 jB)]1/2−1/p

+ 2−2 jM
[w(B)]1/2−1/p

≲ {2− jε
+ 2−2 j[M−n(1/p−1/2)]}[w(2 jB)]1/2−1/p

≲ 2− jε
[w(2 jB)]1/2−1/p ,

where 0 < ε/2 ≤ M − n(1/p − 1/2).
Similar to the estimate for I1, by Proposition 4.1, the boundedness of ∇L−1/2

w in
L2(w ,Rn), Deûnition 3.1, and Lemma 2.2, we see that

I2 ≲ sup
1≤k≤M

∥∇L−1/2
w [(

kr2BLw

M
) e−

kr2B Lw
M ]

M
( χWj(B)(r

2
BLw)

−M
(m))∥

L2(w ,U j(B))

+ sup
1≤k≤M

∥∇L−1/2
w [(

kr2BLw

M
) e−

kr2B Lw
M ]

M
( χE j(B)(r

2
BLw)

−M
(m))∥

L2(w ,U j(B))

≲ ∥(r2BLw)
−M

(m)∥L2(w ,Wj(B)) + (
r2B

22 jr2B
)

M
∥(r2BLw)

−M
(m)∥ L2(w ,E j(B))

≲ 2− jε
[w(2 jB)]1/2−1/p .

Since w ∈ A2(Rn) and ε ∈ (n,∞), combining the above estimates for I1 and I2,
and using theHölder inequality we conclude that

∫
Rn

∣∇L−1/2
w (m)(x)∣ dx =

∞

∑
j=0
∫

U j(B)
∣∇L−1/2

w (m)(x)∣ dx

≤
∞

∑
j=0

[∫
2 jB

1
w(x)

dx]
1/2

∥∇L−1/2
w (m)∥L2(w ,U j(B))

≲
∞

∑
j=0

∣2 jB∣[w(2 jB)]−1/22− jε
[w(2 jB)]1/2−1/p
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≲
∞

∑
j=0

2− j(ε−n)
∣B∣[w(B)]−1/p

≲ ∣B∣[w(B)]−1/p ,

which further implies that ∇L−1/2
w (m) ∈ L1(Rn).

For j ∈ {0, 1, . . . , 10}, using the facts that L−1/2
w (m) = ∫

∞

0 e−s2Lw (m) ds and
(tLw)

k e−tLw is bounded on L2(w ,Rn) for every k ∈ Z+, together with Deûnition
3.1, we see that

∥L−1/2
w (m)∥L2(w ,U j(B)) ≤ ∫

∞

0
∥e−s2Lw (m)∥L2(w ,U j(B)) ds

≤ {∫

rB

0
+∫

∞

rB
}∥e−s2Lw (m)∥L2(w ,U j(B)) ds

≲ rB∥m∥L2(w ,Rn) + ∫

∞

rB
s−2

∥s2Lw e−s2Lw (L−1
w m)∥L2(w ,Rn) ds

≲ rB∥m∥L2(w ,Rn) + r−1
B ∥L−1

w (m)∥L2(w ,Rn) ≲ rB[w(B)]1/2−1/p .

From this, the fact that w ∈ A2(Rn), and theHölder inequality, we deduce that

∥L−1/2
w (m)∥L1(U j(B)) ≤ [∫

2 jB

1
w(x)

dx]
1/2

∥L−1/2
w (m)∥L2(w ,U j(B))(4.4)

≲ rB
∣2 jB∣

[w(2 jB)]1/2
[w(B)]1/2−1/p

≲ rB ∣B∣[w(B)]−1/p .

For j ≥ 11, let Wj(B) = (2 j+3B) ∖ (2 j−3B) and E j(B) = [Wj(B)]∁. By the Hölder
inequality, we have

∥L−1/2
w (m)∥L1(U j(B))

≤ [∫
2 jB

1
w(x)

dx]
1/2

∥L−1/2
w (I − e−r2BLw )

M
(m)∥L2(w ,U j(B))

+ [∫
2 jB

1
w(x)

dx]
1/2

∥L−1/2
w [I − (I − e−r2BLw )

M
](m)∥L2(w ,U j(B)) =∶ J1 + J2 .

By Lemma 2.2, we see that there exists some r ∈ (1,∞) such that w ∈ RHr(Rn).
_is, together with Proposition 4.2 and Deûnition 3.1, implies that

J1 ≤ [∫
2 jB

1
w(x)

dx]
1/2

{∥L−1/2
w (I − e−r2BLw )

M
(χWj(B)m)∥L2(w ,U j(B))

+ ∥L−1/2
w (I − e−r2BLw )

M
(χE j(B)m)∥L2(w ,U j(B))}

≲
∣2 jB∣

[w(2 jB)]1/2
{ rB∥m∥L2(w ,Wj(B)) + rB(

r2B
22 jr2B

)
M− 1

2
∥m∥L2(w ,E j(B))}

≲ {2− j[ε−n( 3r+1
2r )]

+ 2− j[2M−1−n( r+1
2r )]

} rB ∣B∣[w(B)]−1/p

and

J2 ≲ [∫
2 jB

1
w(x)

dx]
1/2

sup
1≤k≤M

∥L−1/2
w [(

kr2BLw

M
) e−

kr2B Lw
M ]

M

× [(χWj(B) + χE j(B))(r
2
BLw)

−M
(m)]∥

L2(w ,U j(B))
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≲
∣2 jB∣

[w(2 jB)]1/2
{ rB∥(r2BLw)

−M
(m)∥L2(w ,Wj(B))

+ rB(
r2B

22 jr2B
)

M− 1
2
∥(r2BLw)

−M
(m)∥L2(w ,E j(B))}

≲ {2− j[ε−n( 3r+1
2r )]

+ 2− j[2M−1−n( r+1
2r )]} rB ∣B∣[w(B)]−1/p ,

which, together with (4.4) and ε ∈ (2n,∞), further implies that L−1/2
w (m) ∈ L1(Rn).

Next, we prove that ∫Rn ∇L−1/2
w (m)(x) dx = 0. From [34, _eorem 8.1], it fol-

lows that D(L1/2
w ) = D(a), where D(a) ⊂ H1

0(w ,Rn) is the domain of the sesquilin-
ear form (1.1) associated with Lw , which implies that R(L−1/2

w ) ⊂ H1
0(w ,Rn), where

R(L−1/2
w ) denotes the range of L−1/2

w .
We now choose {ϕ j}

∞
j=1 ⊂ C∞c (Rn) such that

(a) ∑∞
j=1 ϕ j(x) = 1 for almost everywhere x ∈ Rn ;

(b) for each j ∈ Z+, there exists a ball B j ⊂ Rn such that supp ϕ j ⊂ 2B j , ϕ j = 1 on B j
and 0 ≤ ϕ j ≤ 1;

(c) there exists a positive constant Cϕ such that for all j ∈ N and x ∈ Rn , ∣∇ϕ j(x)∣ ≤
Cϕ ;

(d) there exists Nϕ ∈ N such that∑∞
k=1 χ2B j ≤ Nϕ .

For all j ∈ N, let η j ∈ Cc(Rn) such that η j = 1 on 2B j and supp η j ⊂ 4B j . Since
R(L−1/2

w ) ⊂ H1(w ,Rn) and ∇L−1/2
w (m) ∈ L1(Rn), from the properties of {ϕ j} j , the

facts that L−1/2
w (m), ∇L−1/2

w (m) ∈ L1(Rn), and integration by parts, we deduce that

∫
Rn
∇L−1/2

w (m)(x) dx = ∫
Rn
∇([

∞

∑
j=1

ϕ j]L−1/2
w (m))(x) dx

=
∞

∑
j=1
∫
Rn
∇(ϕ jL−1/2

w (m))(x) dx

=
∞

∑
j=1
∫
Rn
η j(x)∇(ϕ jL−1/2

w (m))(x) dx

= −
∞

∑
j=1
∫
Rn
∇η j(x)ϕ j(x)L−1/2

w (m)(x) dx = 0.

By the above arguments, we see that ∇L−1/2
w (m) is a (p, 2, ε)w-molecule, associated

with B, up to a positive constant multiple.
Now, suppose that f ∈ Hp,2,M

Lw ,mol(R
n). By the deûnition ofHp,2,M

Lw ,mol(R
n), there exist

a family {m j}
∞
j=1 of (p, 2,M , є)Lw -molecules and numbers {λ j}

∞
j=1 ⊂ C such that

∥ f ∥Hp,2,M
Lw ,mol(Rn)

∼ (
∞

∑
j=1

∣λ j ∣
p
)

1/p
.

For each (p, 2,M , є)Lw -moleculem j , by the above arguments,we see that∇L−1/2
w (m j)

is a (p, 2, ε)w-molecule up to a positive constant multiple. Moreover, by Proposition
4.7, we know that there exist {Λ j,k}

∞
k=1 ⊂ C and a family {αk}

∞
k=1 of (p, 2, 0)w-atoms
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with a harmless constant multiple such that

∇L−1/2
w (m j) =

∞

∑
k=1

Λ j,kαk in L2
(w ,Rn

)

and

∥∇L−1/2
w (m j)∥Hp,2,0

w (Rn) ≤ (
∞

∑
k=1

∣Λ j,k ∣
p
)

1/p
≤ C ,

where C is a positive constant independent of j. By the boundedness of ∇L−1/2
w in

L2(w ,Rn), we know that

∇L−1/2
w ( f ) =

∞

∑
j=1

∞

∑
k=1

λ jΛ j,kαk

in L2(w ,Rn). Hence, from the deûnition of Hp,2,0
w (Rn), we deduce that

∥∇L−1/2
w ( f )∥Hp,2,0

w (Rn) ≤ [
∞

∑
j=1

∞

∑
k=1

∣λ j ∣
p
∣Λ j,k ∣

p
]
1/p

≲ [
∞

∑
j=1

∣λ j ∣
p
]
1/p

∼ ∥ f ∥Hp,2,M
Lw ,mol

(Rn
).

_en by a standard argumentwe see that∇L−1/2
w extends to a bounded linear operator

from Hp,2,M
Lw ,mol(R

n) to Hp,2,0
w (Rn). _is, together with Lemma 4.5, ûnishes the proof

of_eorem 1.6.
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