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1. Introduction

G denotes a locally compact abelian group and M{G) the convolution
algebra of regular bounded Borel measures on G. An ideal / of M(G) closed
in the usual (total variation) norm topology is called an L-ideal if n e /, v « \i
(v absolutely continuous with respect to \x) implies that vel. Here we are
concerned with the L-ideals Z-^G), L*(G), and M0(G) where, as usual, Ll{G)
denotes the set of measures absolutely continuous with respect to Haar measure,
L*(G) denotes the radical of L*(G) in M(G) and M0(G) denotes the set of
measures whose Fourier-Stieltjes transforms vanish at infinity.

It has long been known that L1(G) is determined as a subset of M(G) by the
norm continuity of translation. This is perhaps most easily seen by noting that
HeL}{G) if and only if | n * d(x)(K) — n(K) |->0 as JC-»0 for every compact
subset K of G. Goldberg and Simon proved in (3) that the continuity of trans-
lation under the supremum norm of Fourier-Stieltjes transforms characterises
M0(G), and they conjectured that Z-*(G) is determined by the analogous property
with respect to the Gelfand (spectral) norm. We verify that conjecture, give a
simple proof of the M0(G) result and show that in each case norm convergence
can be replaced by an appropriate pointwise convergence. The case of Z,*(G)
is the more interesting and will be discussed in Section 3 after the more straight-
forward results have been proved in Section 2.

First, however, we need some notation to make our assertions precise.
Elements of the dual space, M(G)*, can be regarded as generalised functions,
i.e. as members/ = (/„) of the product FJ l?{p) which satisfy the appropriate

consistency conditions. Observe that the CT(M(G)*, M(G))-topology is realised
in this representation as the product of the a{U°{ji), Z^^-topologies.

Any bounded measurable function on G can be regarded as an element of
M(G)* by the definition f^ = f(ji a.e.) (V/i e M(GJ). In this way we regard the
dual group GA as a set of generalised functions, while we adopt the usual
representation of elements of the maximal ideal space, A, of M(G) as generalised
characters (cf. e.g. (1)). For /eA, we write M A ( / ) = ffpdpi this, of course,
defines the Gelfand transform of /z and, by restricting to the dual group GA,
the Fourier-Stieltjes transform.
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Given a set F of generalised functions we define

T(F) = {neM(G): x»*(8(x) */0A(/) is continuous for/eF}

TU(F) = {jjeM(G): XN*(8(X) * / 0 A ( / ) is equicontinuous over/in F}.

Our main result is then

Theorem

(i) L*(G) = 7XA) = ru(A);

(ii) M0(G) = T(GA) = TU(

Observe that, since (S(x) * fi)"(f) = <5(x)AC/>A(/) f o r / e A, it is enough
to consider continuity of translation at 0. In particular, for the cases covered
by the theorem, \i belongs to Tu if and only if || 8(x) * \i—(i || ->0 as x->0, where
|| || denotes successively the Gelfand norm and the Fourier-Stieltjes norm.

A corresponding result characterises UiG) as T{U) = TJJJ), where U is
the unit ball of M(G)*. This is obtained by noting that the characteristic
functions of compact subsets of G can be regarded as members of U, and
applying the result mentioned in the second paragraph. Observe that this can
also be established by noting that U is the closure in M(G)* of the trigonometric
polynomials with supremum norm not greater than 1, and applying the methods
we use in this paper. This is, of course, an absurdly inefficient way to establish
the result—but we did exactly that in a preliminary version. We thank Dr J. W.
Baker who was the first to bring this to our attention.

2. The easy cases

Proposition 1.
M0(G) S TU(GA), LHG) £ TU(A).

Proof. For the first inclusion, fix JIBM0{G) (JI # 0), xo-»0, and e>0.

Choose the compact K in G such that | #(y) | < - off K and then <x0 such that

| yOO-1 |< - || n II"1 uniformly on Kfor a ^ a0. Then

sup | (jS(x,) * nY(y)-n*(y) I = sup | y(x3)-1 | | /zA(y) | <e
G C

for a ^ a0.
For the second inclusion, note that if n e L*(G) then \i e MQ(G) and the

spectral norm of 8(xa) * fi—fi coincides with the Fourier-Stieltjes norm.

Proposition 2.
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Proof. Suppose that \i e T(GA)\M0(G). Then there exists e>0 such that
the set

K(e) = {yeGA: | A ) I ^ }
is not compact in GA. The closure of (the canonical image of) K(e) in the Bohr
compactification, bGA, of GA is compact. Any subset of GA whose canonical
image in bGA is compact is already compact in GA, (cf. (2)), so the closure of
K(s) must intersect bGA\GA. This guarantees the existence of <j> e bGA\GA and
a net {ya} of elements of K(e) such that }>„->$ in bGA. Passing to a subnet, if
necessary, we may also assume that )>„->/in A. It is obvious that

<5(*)A(/) = <«x)(V*eG).
Now choose xfi->0 in G such that <f>(xf)++l. Then

which is a contradiction.
Now we have T(GA) c M0(G) ^ TU{GA), hence equality throughout and a

generalisation of the Goldberg-Simon result.

3. The radical ideal

Before tackling T(A(GJ) we must first establish some properties of JL*(G).
The most basic, which we give in the next lemma, was proved by Taylor (5)
but we prefer to give a proof in the framework of generalised characters.

Lemma 1. Let N be an L-ideal of M(G) and N* the radical of N in M(G)-
Then N* is the L-ideal {n e M(G): n"eNx,n= 1,2,.. .J1.

Proof. iV* is clearly a closed ideal so we check the L-space property by
showing y eGA, lie N*=> y.fie N*. Let 0 denote the hull of N. Now suppose
y e GA, n e N* and (y.^)A(f) # 0. Then y.fe A\0. Hence vA(y./) # 0 for
some v eN. But y. v e N by hypothesis so fe A\0.

Now suppose fiJL v where v" e iVx for all n. We choose co ^ 0 absolutely
continuous with respect to both /x, v. Then con±N for all n, and so

inf || con-A||1/n= || of || 1 / n ^ 0 .
AeiV

Hence the spectral norm of the image of co in M(G)/N is non-zero and thus
a> $ N* which forces \i $ Ni.

Conversely suppose \i $ N* and choose v « n, v ^ 0, such that v±iV*.
There exists fe 0 such that vA(/) ^ 0. Clearly /v ^ 0, so for all £>0,
vA(l/lt) ^ 0. Let g be a limit point of (|/|8) as e-»0.

Then # is an idempotent, gx = 0 (VA e iV), 3 . v is a positive non-zero
measure and (g.v)n = g. V for all n. Hence (g. v)"±N for all n, and the proof
is complete.

Lemma 2. Le/ A be an L-subalgebra of M(G) such that A <£ L*(G) then
there exists a probability measure [i in A such that ft2 « fi an
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Proof. Apply Lemma 1 with N = L*(G) to derive

L*{G) = {/xeM(G): pp 1 L*(G) n = 1, 2, . . . } x .

Hence there exists X e A, X ^ 0, || X || = 1, such that X" ± L*(G) for all n. Set

H= f 2-"A".
n = 1

Lemma 3. Let 4>:G->H be a continuous surjective homomorphism with
compact kernel K. Let <f>*: M(G)->M{H) be the induced homomorphism of
measure algebras, and let mK be the Haar measure of the group K. Then <j>*
induces an isomorphism between l3(G) * mK ana

Proof. Note that <p* preserves both algebraic and Z.-structure, in particular
(j>*(Ll(G)) ^ Ll(H). Also <j)* induces an isomorphism between M(G)*mK and
M{H). Thus L}(G)*mK is isomorphic to Ll(H). There are various ways to
complete the proof. For example the assumption <j>*(L*{G)) <fi L*(H) would
lead by the previous lemma to the existence of some fi* mKe L*(G) all of whose
powers were singular to LX{G), thus contradicting Lemma 1. Also

is clearly the radical in M(G) * mK of L*(G)*/MK and is a fortiori contained in

In view of this result we will eventually prove that (j)*(T(A(G))) = T(A(H)),
at the moment we require only:

Lemma 4. With the notation of Lemma 3,

Proof. In the contrary case we may suppose that there exist fi e T(A(G)),
fe A(H), £>0 and a net ya->0 in B, such that for all a,

. (i)
Choose za arbitrarily such that <j>(z^ = ya and some compact neighbourhood V
of 0 in G. Then there exists a0 such that zx e F+ker (j>, for all a Si a0. Since
ker <f> is compact there is some subnet (z^) such that z^-»z.

Then yfi = <j)(zp)-KJ>(z), so, of course, z e ker </>. Now write xe = z^—z, to
obtain $(*/>) = yp and xfi->0 in G. Observe next that, since fe A(H), f>cj)* is
a well-defined member of A(G). Because n belongs to T(A(G)), this gives

I (5(x/,)«/0A(/» 4*)-nA(f°<t>*) HO,
equivalently

I ̂ ( ^ ) ) * 0*(^A(/)-^*WA(/) HO,
and this contradicts (1).

Lemma 5. It suffices to prove i*(G) = T(A(G)) for metrisable groups.
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Proof. Evidently r(A(C?))<=r(cl GA), so by Proposition 2 we have
r(4(6))cM0(6) in the general case. Now given /i e T(A(6), there is a a-
compact subgroup A of GA such that / i s O outside of A. Then G/A1 is
metrisable but AL, the annihilator of A need not be compact. Therefore take
some compact ys subgroup, K, of A1 so that AL/K is metrisable (cf. (4), Section
64) and H = G/K is metrisable. Writing $ for the quotient map as in Lemma 1,
we have <j>*{p) e T(A(H)) — L*(H). Thus, by Lemma 3, n* mK belongs to
mK * L*(G)cZ*(G). By the choice of K, \i = \i * mK, and the lemma is proved.

Lemma 6. T(A(G)) is an L-ideal.

Proof. T(A(G)) is clearly a linear subspace, and is seen to be (variation)
norm closed from the formula

which is valid for \i, nneM(G), xeG,/eA(G).

To complete the proof that 7\A(G)) is an 1,-space it is sufficient to check that
H e T(A(G)) implies y.fie T(A(G)). This follows immediately from the fact that
A(G) is a semigroup containing GA.

It remains only to check that T(A(G)) is an ideal. In fact, suppose that
H e T(A(G)), v e M(G),fe A(G), and note that

( / ) ( / ) I £ || v |
The result now follows.

We consider now one of the few cases in which there is a universal extension
theorem for generalised characters.

Lemma 7. If H is an open subgroup ofG then every element ofA(H) extends
to A(G).

Proof. Given fe A(H), we let y be the character of Hd (the group H with
the discrete topology) induced by/; in other words we define

Let y' be any extension of y to the group Gd. Now define/' in A (G) as follows:
given n e M{G) then /z is of the form

1 «(**)• ft, (2)
k = 1

where each nk belongs to M(H) and the xk belong to distinct cosets of H.
Now write

M A ( / ' ) = E y'(**)ftACD- (3)
k = 1

(Observe that (3) is the only candidate for the definition of/', so that, once its
validity has been checked, we will have shown that A(G) is determined by A{H)

E.M.S.—18/4—E
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modulo the extension H£ to Gd
A.) Any other representation of n of the type

00

given in (2) takes the form £ 8{x'k)*\i'k, where x'kexk + H, and since the closed
* = i

cosets are mutually disjoint we have 5(xk) * /ik = S(xk) * fi'k, for all k. Hence the
first consistency check requires simply that y'(xk)n£(f) = /(xD04)A(/)> a n ( i
this is seen to be true by applying/to the relation d(xk—x'k)*nk = fi'k which is
expressed in M(H). Therefore (3) is a good definition but it remains to check
that/ ' is a complex homomorphism of M(G). In view of (2) the relations which
occur in checking f'(ji + v) = / 'GO +/'(v), f'(ji * v) = f'{jj)f'(y) can be broken
down into countably many relations each of which involves only measures
supported by some fixed coset. These " elementary " relations must then take
the form

Z ( y k ) k S ( , ) J ,
k = 1 j = 1

where kk, Oj belong to M(H); yk, Zj belong to x+H, say, for all k, j .
Multiplying both sides of (4) by <5(—x) we obtain a relation in M(H) and
therefore/' respects (4). This completes the proof.

Lemma 8. If H is an open subgroup of G and T (A(H)) = L*(H) then
A(G)) = L*(G).

Proof. If T(A(G)) ^ L*(G), then using the fact that both these spaces are
translation invariant we can find ju supported by H such that n e T(A(G)) but
fi _L L*(G). If now xa-^x in H a n d / e &{H) we simply extend/ to / ' in A(G)
by the previous lemma to see that (S(xa) * /0A(/') = (<50O • Al)A(/) tends to
^ ( / ' ) = n*(J). Thus n e T(A(H)y On the other hand L*(G)nM(H) = L±{H)
so we have a contradiction.

The problem is now reduced to the study of non-discrete groups of the form
R" x K where K is compact, and can be reduced still further by means of the
open subgroup property. In fact either wK-almost all elements of K have in-
finite order or for some positive integer n the kernel of the homomorphism
n: K-^K defined by n{x) = nx has positive mK measure. In the latter case,
normalising the Haar measure of AT as 1, we have mK(Ker n) is the reciprocal of
the index of Ker n in K. This shows that Ker n has finite index and hence is
open. Now choose n to be minimal with respect to this property—then almost
all elements of Ker n have order n. In this way we may define ^{K), the
essential exponent of K, to be oo or the least positive integer n such that K has
an open subgroup almost all of whose elements have order n. Moreover, as
far as proving the theorem is concerned we may as well restrict attention to the
groups G = R9 x K described above, where, in addition, K is of reduced form in
the sense that all elements of K have order g ^(K) and almost all elements of K
have order W^K).

The strategy is to employ induction on the essential exponent. In particular
the base of the induction is when *¥(K) = 1, hence G = Rq. In order to accom-
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modate this case in the statement of the next lemma we find it a technical
convenience to introduce the quantity Q>(K) defined by

O(X) = V(K), for V(K) # 1; <b(K) = oo, otherwise.

Let us recall here that a subset X of G is independent if
k

£ mixl = 0, m,eZ, x(eX,
i= 1

implies mixi = 0 for all /, and that gp(X) denotes the subgroup of G generated
by JT.

Lemma 9. Let G be a non-discrete group of the form W x K, with K compact
and metrisable. Suppose that fi e M(G) satisfies n _L L^iG) and is such that,
for all y in G and for all positive integers p such that p(K) is infinite,

Then there exists a sequence (xn) in G with the following properties:

(i) xn->0 as n-*co,

(ii) X = {xn: n = 1, 2, ...} is an independent set,

(iii) the order of xn equals <&(FC)for all n,

(iv) for all non-zero y in gp{X), 8{y) * fi ± fi.

Proof. It is straightforward to check that we may assume, without loss of
generality, that n is a probability measure and that K is in reduced form. This
we do and consider three cases.

(a) Suppose that ¥ ( # ) = oo. We define the sequence (*„) n = 1, 2, ... by
induction, starting by introducing the auxiliary element x0 = 0. Fix a sequence
(Vn) of symmetric neighbourhoods of zero in {0} x K such that diam (KJ-»0.
Suppose that x0, xu ...,xn have been chosen, for some n ^ 0, such that Xj e Vs

and Xj has infinite order for j = 1,...,«; the set Xn = {xu ..., xn} is independent
and for all non-zero y e gp(Xn), 8(y) * fi JL \i. (The conditions are, of course
vacuously true when n = 0.) It will be possible to continue the induction
provided the (measurable) set

N(p, y, n) = {xs Vn+1: || S(px + y)*n-n | |<2}

is mK null for all non-zero integers p and all elements y of the (countable)
group gp(Xn). In the contrary case we have the existence of a positive integer/*
and a (possibly zero) yegp(Xn) such that mK(N(p, y, «))>0. Define the
probability measure X (= k(j>, y, «)) to be the normalised restriction of mK to
N(p, y, n). Observe that p*(A) is again a probability measure. Now for any
/ e C 0 ( G ) , i l / IL g 1, we have

where J(y) =f(x + y) (x, yeG).
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Since the last quantity is strictly less than two, we see that \i is not singular
to S(y) * p*(A) * n which is in turn absolutely continuous with respect to
d(y) * mp(K) * p. Therefore n JL S(y) * mpiK) * p. But p(K) is infinite because
^(K) is infinite, so the assumption of the lemma is contradicted and the inductive
construction proceeds without hindrance.

(b) Suppose that O(/Q is finite. Here W(K) = ®(K) = k, for some posi-
tive integer k. Since K is in reduced form ak(K) = {0} for all integers a and
b{K) is infinite for 0<b<k. Hence p(K) is infinite unless p is a multiple of k.
In the analogous construction to that given in (a) we choose each xn, n ^ 1,
to have order k and hence ignore the case where p is a multiple of k in the dis-
cussion of N(p, y, ri). This means that we obtain the required contradiction as
before. (Observe that in neither of these cases did we make explicit use of the
assumption that fi is singular to LX{G), but in the next case this will not be a
consequence of the other assumption which is vacuously true.)

(c) Suppose <&{K) = oo, *F(X) = 1. Since Kis in reduced form this implies
that G = R*. Accordingly we choose the neighbourhoods Vn in R* and add the
hypothesis that they are compact. The induction proceeds as in case (a).
N(p, y, n) has the same formal definition but X is now the normalised restriction
of mRq to N(p, y, n). One obtains as before that ft is not singular to

S(y) * p*(X) * ft

but on this occasion p*(X) e Ll(G), hence \i is not singular to Ll(G). This is the
required contradiction which justifies stage «+ l of the induction in case (c),
and the proof of the lemma is now complete.

The next lemma is the last (conceptually the first!) step required to establish
the machinery of an inductive attack on the theorem. G is assumed to be of the
form R" x K.

Lemma 10. Suppose that /z is a positive measure in M(G) which has the
property p.2 « n and satisfies the conclusion of Lemma 9 for some sequence (xn).
Then n does not belong to T(A(G)).

Proof. We simply prove the existence of a generalised character/such that

O as K^O>.

To do this first construct a generalised character g on the L-subalgebra A
generated by n and {S(y): yegp{xn: n = 1,2,...}} as follows. Using the
independence of (xn) choose yeG£ such that y(xn)++l. Every v in A is
absolutely continuous with respect to some measure co of the form

E Z
i = 1 i = 1

Define g^yd = y ^ ) , 0 J O = y(zt) ((5(z;)*n)a.e.). Since 5(zt)*n±<5(z,-)*n
unless z, = z,- this is a consistent definition and it is easy to see that g is, indeed,
a generalised character of A.
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By construction \gm\ = I (co a.e.) for all co in A, hence, by Theorem 1.2 of
(1), g belongs to the Silov boundary of A. This, in turn, guarantees the existence
of some/in A(G) whose restriction to A is g, and the lemma is proved.

We can now complete the proof of the theorem.

Proposition 3. Let G = R* x K, where K is compact and metrisable. Then
T(A(G)) s L*(G).

Proof. We assume that K is in reduced form and proceed by induction on
^(K). Note by Lemmas 2 and 6 that if the conclusion fails for any group G
then there exists a probability measure \x in T(A(G)) such that ju2 « n and
ii 1 £*(G). In the case G = R* the last statement ensures that Lemma 9
applies; we obtain a contradiction via Lemma 10. Accordingly we have
proved the result when *¥(K) = 1. Next suppose that n is a positive integer
and the result is known for V(K) ^ n. Consider G such that *¥(K) = «+ l .
If the result fails for G, there exists n *z 0, || /i || = 1, with \i2 « fi, and
ii e r(A(G))nL*(G)x. Let p be a positive integer such that p(K) is infinite.
As we saw in the proof of Lemma 9, p(K) = b{K) for some 0<b<n+l.
Consider now the canonical epimorphism <f>: G->G/p(K) = H. Note first that
H « R" x (K/p(K)), and V(K/p(K)) ^ n (since b(K/p(K)) = {0}). By the
inductive hypothesis we have T(A(H)) c L*(H). By Lemma 4, $*(/*) belongs
to T(A(H)), hence to L*{H). Now Lemma 3 shows that fi * mp(K) e L*(G) and
hence <5(j) * \i * mp(K) e L*(G) for all y in G. But \i. is singular to L*(G) so that
the conditions of Lemma 9 apply. Once more we arrive at a contradiction using
Lemma 10.

The result is now established whenever xP(AT)<oo. Consider therefore G
with *P(A") = oo for which the result fails. There exists a positive \i with
pi2 « y., \is T(A(G)), /x ± L*(G). For any positive integer p consider the
canonical epimorphism 0: G-+G/p(K) = H. p(K/p(K)) = {0} so ̂ (K/piK)) < oo
and we have T(A(H)) c L^{H)—this leads to a contradiction as before.

We have now completed the proof of the theorem.
The same methods give us a slightly stronger result, i.e. T(dM(G)) = L*{G)

where dM(G) is the Silov boundary of M(G). To see this, first note that in the
proof of Lemma 10 it is possible to choose the extension / of g in the Silov
boundary of M(G). For the analogous result to Lemma 4, let (j>: G->H be a
continuous surjective homomorphism with compact kernel K. Since
<j)*: mK* M(G)->M(H) is an isomorphism, fedM(H) implies /°</>* when
restricted to mK * M(G) is in the Silov boundary of that algebra. This being so,
the complex homomorphism has an extension to a member of the Silov boundary
of M{G). However mK * M(G) is an ideal and so such an extension is neces-
sarily unique. Thus f°(f>* e 8M(G). The rest of the proof of Lemma 4 for
dM(G) is as for A(G). Finally for y e GA, n~*y.n is a Banach algebra auto-
morphism of M(G), so that yfe dM(G) if and only i f /e dM(G). This supplies
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the information necessary for the proof of the result corresponding to Lemma 6.
The adaptation of the remaining lemmas is straightforward.
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