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Weak polymorphism can be sound
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Abstract

The weak polymorphic type system of Standard ML of New Jersey (SML/NJ) (MacQueen,
1992) has only been presented as part of the implementation of the SML/NJ compiler, not as
a formal type system. As a result, it is not well understood. And while numerous versions of
the implementation have been shown unsound, the concept has not been proved sound or un-
sound. We present an explanation of weak polymorphism and show that a formalization of this
is sound. We also relate this to the SML/NJ implementation of weak polymorphism through
a series of type systems that incorporate elements of the SML/NJ type inference algorithm.

Capsule Review

The problem of safely incorporating assignment into a Hindley-Milner polymorphic type
system has received considerable attention for more than a decade. Numerous solutions have
been proposed and carefully studied. Standard ML of New Jersey, one of the most widely
used implementations of Standard ML, employs a method known as weak polymorphism. But
despite the inclusion of weak polymorphism in the New Jersey implementation for many
years, weak polymorphism has received little formal study and is not generally understood
by ML programmers.

This paper presents a long-overdue formal study of weak polymorphism. The paper exposes
the concepts underlying weak polymorphism through a number of examples, codifies these
concepts in a formal type system, and presents a proof that this type system is sound. Several
refinements yield type systems that closely model the behaviour of the Standard ML of New
Jersey implementation. This paper should be valuable both to type system designers and to
programmers seeking to understand the intricacies of weak polymorphism.

1 Background

A reference cell is an assignable store location and is the primary imperative
feature of Standard ML (SML) (Milner et al., 1990). However, it is well known
that its Hindley-Milner type system (Milner, 1978) is unsound if reference types
are polymorphically generalized in the usual manner. For example, in the following
expression, polymorphically generalizing the type of ref n i l allows that reference
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cell to be used as both an int l i s t ref and a bool l i s t ref:
le t val a = ref n i l
in

a := [1]; not (hd(!a))
end

This code stores a list of integers in the cell, but then reads a list of booleans from
it. Such inconsistencies must not be allowed by the type system.

While it is unsound to polymorphically generalize reference types, it is not nec-
essarily unsound to generalize function types involving reference types. A simple
example is the following expression:

l e t val r e f = fn x => ref x
in

ref' 1; ref' t rue
end

The function ref', which creates reference cells, can safely be used at both the types
int -> int ref and bool -> bool ref.

A number of type systems have been proposed to allow code such as the latter
example while preserving soundness (Damas, 1985; Hoang et al., 1993; Leroy and
Weis, 1991; Talpin and Jouvelot, 1992a, 1992b; Wright, 1992). Of particular interest
for this paper are those of Tofte (1988), which is used in the definition of SML,
and MacQueen (1992), which is used in the New Jersey implementation of SML
(SML/NJ).

In the standard Hindley-Milner type system, generalization is allowed on all free
type variables not occurring in the variable type assumption, which is a mapping
from variables to type schemes. As shown by Tofte, if references are added to the
language, the type system must also have a location type assumption assigning a
type to each location of the store. The unsoundness of the first example above is a
result of generalizing a type variable occurring free in the location type assumption.
Since neither the store nor location type assumption can be known statically, a safe
approximation must be made to determine those type variables which may occur in
the location type assumption and should not be generalized.

To provide such a safe approximation, Tofte introduces a distinction between two
classes of type variables, called applicative and imperative. Applicative type variables
are not used with reference types and can always be polymorphically generalized if
they are not free in the variable type assumption. Imperative type variables are used
to statically track values that may be placed in reference cells and can be generalized
only if the evaluation of the let-bound expression does not lead to the creation of
a reference cell. Determining when an expression leads to the creation of a cell is
undecidable, so Tofte conservatively assumes that expressions that are not syntactic
values may create cells. He calls these expressions expansive. Thus imperative type
variables can only be polymorphically generalized if the expression is non-expansive.

The expansiveness criterion treats the above examples appropriately. The first
is not typable since the expression ref n i l is expansive, and the imperative type
variable '_a in its type '_a l i s t ref is not generalized. The second is typable
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since the definition of ref' is non-expansive, and its type is generalized and then
instantiated to both int -> int ref and bool -> bool ref.

However, this static analysis is overly conservative. In the example

let val ref2 = fn x => fn y => ref x

in

let val refl = ref2 nil

in

true :: !(ref1 ()); 1 :: !(ref1 ())

end

end

the type of ref 1 is not generalized because ref 2 n i l is considered expansive. Since
there is no generalization, ref l cannot have both the type unit -> bool ref and
unit -> int ref, and the expression is not typable. However, allowing this example
is sound, since a different reference cell is created for each application of refl.

One method to improve upon Tofte's system is to track not only which values
might be placed in reference cells, but when the cells are created. This additional
information can then be used for a more accurate definition of expansiveness, which
is the essence of MacQueen's weak polymorphic types.

2 Weak polymorphic types

Weak polymorphism expands on Tofte's distinction of type variables. To produce
a better static analysis of what values may be in reference cells, each type variable
has a strength, which is an integer or positive infinity. Type variables of infinite
strength correspond to Tofte's applicative type variables, whereas those of finite
strength correspond to imperative type variables. Non-critical type variables, those
of positive strength, may be generalized, but critical variables may not. A more
detailed comparison of the two systems is found in section 7.

The strength s of a type variable a in the type of an expression e indicates to
how many arguments e may be applied before a cell of a type involving a might be
created. More precisely, if 0 <, i < s, and no expression in e\,...,e, uses reference
cells, then the expression e e\... e,- will not create such a cell. In particular, if s = 0,
then expression e might create such a cell. Following SML/NJ, we assume that each
instance of the same type variable in a type has the same strength.

Using these definitions, we now look at a series of examples which point out the
key ideas of the type system formalized in section 3. The type of a reference cell
should never be generalized, and thus must contain only critical type variables. So
we have

ref n i l : '0a l i s t ref

where 0 is the strength of type variable ' a. Purely functional terms have types of
infinite strength, as in

fn x => x : 'a -> 'a

(The SML/NJ convention is that infinite strengths are not printed.) Placing an ex-
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pression inside the syntactic context of an abstraction increments the strengths, since
they count the number of applications needed until a reference may be created:

fn x => ref n i l : 'b -> ' l a l i s t ref
fn x => ref x : ' l a -> ' l a ref

Conversely, placing an expression in the function position of an application context
decrements the strengths:

(fn x => ref x) n i l : 'Oa l i s t ref

An important idea to point out from these examples is that the strengths of type
variables in an expression's type depend on the syntactic context of that expression.

The most complicated case is when an expression occurs as the argument of an
application. The type and strengths of the function provide little information about
how its argument is used in its body. As a result, if the argument's type involves weak
type variables, a conservative approximation must be made. In general, the function
may in turn apply its argument to multiple arguments, where each application
corresponds to a decrement in strengths. Statically, the conservative assumption is
made that enough applications are performed for a reference cell to be produced.
For example, the strength of ' a is 2 in

(fn x => fn y => ref x) : '2a -> 'b -> '2a ref

but ' a must be critical when this expression is used as an argument in

(fn f => f n i l n i l ) (fn x => fn y => ref x) : 'Oa l i s t ref

While these examples do not use negative strengths, following these principles does
lead to that possibility. Similar to the previous example, we have

(fn f => f n i l ) (fn x => fn y => ref x) : 'b -> 'Oa l i s t ref

It would be sound to have the strength of ' a be 1 here, but the analysis is overly
conservative. Providing another argument decrements these strengths:

((fn f => f n i l ) (fn x => fn y => ref x)) n i l : '~la l i s t ref

Usually, negative strengths occur only when type-checking subexpressions of the
original expression, as in

ref (fn z => z) : ('Oa -> 'Oa) ref

The strength of 'a when type-checking z is — 1, which is then incremented by the
abstraction.

By typing applications less conservatively, SML/NJ avoids negative strengths at
the top-level in most cases. But Version 0.66, which closely follows this motivation,
assigns negative strengths in the following example:

(let val x = ref (fn z => z) in fn y => x end) ()
: ( ' " l a -> ' " la ) ref

The l e t expression has type unit -> ('Oa -> 'Oa) ref since a reference is cre-
ated, and the application to () decrements the strengths one more.

Weak polymorphism has been developed by MacQueen within the type inference
algorithm of SML/NJ. Only this algorithm has served as the definition of the type
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system, and several versions of the algorithm have been shown unsound. Each had
problems which could be ascribed to implementation details, but the concept has
not been proven sound or unsound. Furthermore, key ideas of the algorithm, such
as application's conservative approximation, have not been widely known, so the
system has been poorly understood even by skilled SML/NJ programmers.

This paper addresses these problems. In section 3, we incorporate the ideas
outlined in this section into a formal type system, the soundness of which is outlined
in section 4 and proved in full in the Appendix. In section 5, we show how this
formalism relates to more algorithmic formalisms similar to that of SML/NJ. In
sections 6 and 7, we compare the formalisms to SML/NJ, and to related work
including Tofte's, respectively.

3 A declarative formalism - XL

This section presents a formal definition of the static semantics of an SML-like
language XL as outlined by section 2.

The expressions of this language are defined by the following grammar:

x € variables = a countably infinite set

I € locations = a countably infinite set

e e expressions ::= x | /1 () | refe \ \e \ e\ :=ei \

fn x => e | e\ ei \ let x = e\ in ei

Locations are the formal equivalents of reference cells and are allowed as expressions
to simplify the dynamic semantics and its correspondence to the static semantics.
Expressions that are a-equivalent are identified, and capture-avoiding expression
substitution, [e'/x]e, is defined in the usual manner.

The static and dynamic semantics use several kinds of finite mappings. An empty
mapping is denoted by []. The extension of mapping X to an additional domain
element d is denoted by X[d •—> r], or X[d : r] for a type assumption. Mappings
are also abbreviated like [d\ H-> r\,...,dn \—> rn]. The union of disjoint mappings is
written as X • X'. The restriction of X to a subset A of its domain is written X [ A
and has lower precedence than union.

The types and type schemes of XL are defined by the following grammar:

s € strengths = Int U {oo}

a, P S type-variables = a countably infinite set

T e types ::= a | unit | TI—>T2 | T ref

typejschemes : := VZ.T

L 6 strength-contexts = type-variables —> strengths

The trivial type scheme V[].T is abbreviated by T, and type schemes that are a-
equivalent are identified. Strength contexts assign strengths to type variables.

As previously described, the semantics use two types of type assumptions. A
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location type assumption A maps locations to types, and a variable type assumption
F maps variables to type schemes.

The set of free type variables of a type or type scheme is defined as usual and
denoted by FTV(-). The sets FTV(A) and FTV(T) contain the free variables in the
ranges of the type assumptions. This notation is extended to be n-ary so that, for
example, FTV(A, T) = FTV(A) U FTV(T).

As we have seen, the generalization of type variables is dependent on their
criticality. To define the criticality of type variables, types and strength contexts
formally, we first state that a strength is critical if it is non-positive, and non-critical
otherwise. A type variable a is critical in I if £(<x) is critical, and a type is critical
in £ if all of its type variables are. Similarly, a strength context is critical, written
Crit (Z), if all of the type variables in its domain are. Non-criticality is defined
similarly, but note that -*Crit (X) is not equivalent to NonCrit (£).

A type judgment A;F (-£ e : T reads 'With strength context E, given the location
type assumption A and variable type assumption T, expression e has type T'. A
judgment holds if it is derivable by the rules of Figure 1, which use the definitions
found below.

The side conditions of the base cases ensure that a well-formedness constraint
holds for all derivable judgments: the free type variables in the type assumptions
and in the expression's type are in the domain of the strength context. Thus if a
type variable is mentioned, its strength is explicitly given.

Instantiation is defined much as usual, but with restrictions on weak type variables.
A type scheme instantiates to a type,

l-£ V[ai i-> s i , . . . , a n i -»s n ] .T > T',

if there exists a type substitution S = [a\ H-> TI, ..., an i-> rn] such that S(T) = %', and
for each i in {1,. . . , n}, for all a in F7K(T,), £(a) < s,. Note that by replacing X with
E + 1, which corresponds to placing a variable within one more function application
context, it may become impossible to satisfy this last condition. For example, this
restricts instantiation so that the following is derivable only if s < 0:

[]; [] h»-«] let ref =fnx=>refx in ref (fnz^-z) : (a-»a) ref

Note that the strength context is incremented in APPD and decremented in LAMD.
Addition of a constant to a strength context is defined point-wise. Infinitely strong
type variables are unaffected by this, since oo + c = oo.

The side condition of APPD enforces the conservative approximation described
in section 2 by placing an upper bound on strengths in the strength context. The
relation Weaker (£, s) holds if all finite strengths in strength context £ are at most s.
The similar relation where all finite and infinite strengths in S are at most s is used
in the soundness proof and can be written Crit (L — s).

The REFD rule is simply a special case of APPD which reflects the usual treatment
of ref as a functional primitive having the type scheme V[a i—> l].a—>a ref. In
particular, its side condition ensures that reference cells have critical types.

In LETD the strength contexts £ and £' have disjoint domains by the definition of
the mapping union operator. So, by the well-formedness of the second precondition,
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A;F \-z x : x
^— if FTV (A, Y) is a subset of dom (Z)

if FTV {A, Y) is a subset of dom (Z)

A; F l-s () : unit if FrK(A, F) is a subset of dom (Z)

A;n-re :T
A; F hs re/ e : T ref

A; F hi e : T re/

if Cnt(Z | FTV(x))

!e : T

A;l

A;F

A;
: T
Fh

rej
-zei :=e2

A;n-Ze2 :T
: unit

A; F hj; ei ei '•

• i] l-z-i e : x2

if Weaker (LI FTV (x'),0)

if x is not in dom (T)
A;F \~zfn x => e : TI—

A; F h E . r e, : T' A; F[x : VS'.T,] h r e2 :

A; F h j /e£ x = e\ in e-i : T

if x is not in dom (F), NonCrit (£'),
and Wea/cer ( I | (FTV(x') n dom (Z)) \ FrK(A, F), 0)

(VARD)

(LOC D )

( U N I T D )

(REFD)

(b)

(:=D)

(APP D )

( L A M D )

(LETD)

Fig. 1. The ^Z static semantics.

the domain of £' is disjoint from the free type variables of A and P. By using the
strength context Z' only in the first subderivation, it is explicit that the generalized
type variables are local. Furthermore, they are not critical, by the second side
condition.

The last side condition of LETD states that any finite positive type variables
in the type of the let-bound expression, but not in the type assumptions, must be
generalized. Without this restriction, the following judgment is derivable:

[]; [] h»-2] let x=fnz =>fn y => ref y in x() : a-»a ref.

This expression should only be typable with a having a strength of 1 or less, like the
observationally equivalent fny=> ref y, since applying it to one argument creates
a cell. The problem here is that if a is not generalized, then its strength might not
be properly decremented in the let body, as the appropriate decrementing is to be
enforced by instantiation.

This is a very technical condition. It disallows the rule's use if any type variable
in (FTK(T') n dom (I)) \ FTV [A, Y) is finite and positive in I . But if this is the case,
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there exists another derivation which types the let expression by renaming these type
variables with fresh ones and adding them to Z'.

4 Soundness

This section defines the dynamic semantics of AZ and outlines its proof of soundness
of typability.

The dynamic semantics defines to what answer, if any, an expression evaluates. An
answer is either the symbol wrong or a value, which is a closed expression defined
by the following grammar:

v S values ::= /1 () \fn x => e

a e answers ::= v | wrong

Since values are expressions, those that are a-equivalent are identified.
We use the the standard rules shown in Figure 2 to define the semantics in terms of

judgments of the form a \- e = > a, a', which reads 'Given the store a, the expression
e evaluates to answer a, resulting in a new store a". A store a is a finite mapping
from locations to values.

To relate the mappings of locations used in the dynamic and static semantics, we
define that a store a type-matches a location type assumption A with respect to Z,
written \-% a : A, if dom(a) = dom(A), and A; [] hz a{l) : A(/) ref for all / in dom(a).

Soundness is shown via a form of type preservation under evaluation (Harper,
1993; Hindley and Seldin, 1986; Tofte, 1988; Wright and Felleisen, 1991). Unfortu-
nately, while evaluation preserves types, it does not necessarily preserve strengths.
For example, consider the following expressions and value:

e0 = fn z => z

e\ = fn x =>fn y => x e0 e0

e2 = fn a => (let b = ref a in fn c => \b)()

e = e\ e2

v = fn y => e2 eo eo-

The expression e2 is a function that is assigned a critical type, i.e. the judgment

is derivable only if s < 0. The expression e evaluates to v, and the strongest typings
for these are

In XL, v cannot be typed with the higher strengths of e's type derivation, even though
that would be sound. However, note that only the strength of a is not preserved
under evaluation, and it is critical in both judgments. The type preservation theorem
will show that all non-critical strengths in an expression's type are preserved under
evaluation.
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a \- v v,a

ffhe ==> v, a'

a h ref e = > /, a'

<TY-e=>l,ff>

if / is not in dom (a1)

ah !e=>CT'(/),(T'

a \- e\ = > /, <j\ a\ h ei = > v, 02U <

a\-

a h ei :=e2 = > (), <72 [/ >-> v]

Ghei=~Vl

02 h [v:

ffhe

,ffi

)/xJ<

1 e2

?i =

h [

=>

• f ,

:«i/

u,

a'

'X]

ff'

162=^^2,̂ 2
a \- let x = e\ in e^ => V2,02

a h e => wrong, []

a h ref e ==> wrong, []

a \- e ==> a, o'
IT h !e = > wrong, []

if a is not a location

' 02,

a h e\ :=ei ==> wrong, []

o\- e\ => ai,Gi a\ h e2 = :
<72 h [ai/x]e\ =^a,G'

a \-ei e2 = > wrong, []

r- ei ^=> a!,(Ti ITI h [ai/x]e2

if ai is not a location,
02 = wrong,
or f is not in dom(G[)

if oi is not a function,
a2 = wrong,
or a = wrong

*2, G2 if ai = wrong,

G \- let x = ei in e2 => wrong, [] or a2 = wrong

(VAL)

(ALLOC)

(CONT)

(UPD)

(APPLY)

(BIND)

(ALLOC-wrong)

(CONT-wrong)

(UPD-wrong)

(APPLY-wrong)

(BIND-wrong)

Fig. 2. The dynamic semantics.

In most cases, including whenever critical strengths are not involved, XL types the
value with the same or higher strengths than the expression. For a simple example,
consider the following expression and its value:

e = (fn x => x)(fn y => ref y)
v = fn y => ref y-

Type preservation will show that since [] ; [] h[a,_o] e '• <*—•<* ref, then there exists a
critical strength s such that [ ] ; [] \-[a->S] " : a - > a ref. But v is also typable with the
strength context [on-> 1].

To formalize this idea of weakening strengths, we define a relation on strength
contexts. A strength context £' is weaker (below s) than strength context £ of the
same domain, £' < s Z, if for all a in dom(1,'), £'(a) = £(a) whenever s < S(a), and
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Z'(a) < Z(a) otherwise. Of particular interest is the case when s = 1, as then the two
strength contexts agree on all positive strengths, and Z' is said to be more critical
than Z. Note that Z' + 1 < s Z + 1 implies Z' <s Z, which implies Z' <s +i Z, but the
converses do not hold.

Soundness proof outline

The remainder of this section presents an overview of the soundness proof. This
presentation is in a top-down manner, giving the theorems first in order to motivate
the needed lemmas. For the full proof, refer to the Appendix, which gives the
theorems and lemmas in the order of their dependence. This proof is relatively
complex because of the need for tight control over the strengths of type variables.

The soundness of the static semantics is the conjunction of the following two
theorems. The first states that evaluation preserves types, i.e. if e evaluates to v, then
e and v have the same type. As previously explained, v may require more critical
strengths. Furthermore, any cells created during this evaluation have critical types.
The second theorem states that any well-typed expression does not 'go wrong', i.e.
it either evaluates to a value, or it diverges.

Theorem (Top-level type preservation under evaluation)
If [] h e => v, a', and [];[] \—ze : t, then there exist Ao and Zo such that

1. Zo <i Z,
2. Ao;[] hZo v : T ,

3. hSo a' : Ao, and
4. Crit (Zo | FTV(Ao)).

Proof Sketch This is proved by generalizing the theorem to all memories and lo-
cation type assumptions, generalizing the form of some of the strength contexts,
and then using structural induction on the evaluation derivation. The APPLY and
BIND cases require the Value Substitution lemma below that describes the effect
on the typability of an expression when substituting a value for a variable in that
expression. The last hypothesis of that lemma is achieved through the side conditions
on the A P P Q and LETD rules.

Most of the cases make extensive use of weakening and strengthening lemmas.
Weakening describes when hypotheses can be safely added and when strengths can
be decreased in a typing judgment. In particular, XL does not allow infinite strengths
to be decreased arbitrarily. For example,

[ ] ; [] h«^,/*~°o] fnf=>fn x = > / x : (a->jS)-*x->j?

is derivable only if s = oo, or s < 2. Conversely, Strengthening and Strength Context
Strengthening describe when unused hypotheses can be removed from a typing
judgment. •

To relate this theorem to the preceding example of the lack of strength preserva-
tion, define Z = [a i—> 0, /? i—> oo], and Zo = [a H-• —1,/? •-• oo]. No cells are created
by that evaluation, so a' = [], and Ao = [].
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Theorem (Well-typed programs do not go wrong)
V [ ] ; [ l h e : T, then []\fe=> wrong, [].

Proof Sketch Like the previous theorem, this is proved by generalizing the judg-
ments to all memories and location type assumptions and generalizing the form
of the strength contexts. Then we assume that e does go wrong and use structural
induction on the evaluation derivation to show that it cannot be typed, essentially
the contrapositive of the above statement.

If e is a value, then it cannot go wrong. Otherwise, there are two classes of
cases for e to go wrong. First, if one of the hypotheses of the evaluation re-
lation goes wrong, then induction shows that that expression cannot be typed.
Second, one of the hypotheses of the evaluation relation could result in a value
of the wrong form, e.g. if e = \e', and e' evaluates to an abstraction. Using proof
by contradiction and assuming that e is typable, the Type Preservation theorem
shows in the first case that each of the expressions in the hypothesis of the
evaluation rule are typable, and in the second case, that any intermediate val-
ues are of the expected form. Since both cases lead to contradictions, e is not
typable.

For the APPLY and BIND cases, the following Value Substitution lemma shows
the typability of the needed substitution instances. •

The Value Substitution lemma states that, under restrictions, the type of an
expression is stable under substitution of a value for a variable of more general
type. The result of the substitution may require more critical strengths.

Lemma (Value substitution)
/ / 1. A ; r [ x : V Z 2 . T 2 ] l - x : e : T , ,

2- A; [] I-E.jj v : ii, and
3. Weaker (Z | FTV(A, T2) n dom (Z), 0),

then there exists a Z' such that Z' <\ Z, and A;F \~i< [v/x]e : Ti.

Proof Sketch We generalize the statement of this lemma to prove it by structural
induction on the type derivation. In general, the strength context for the first
hypothesis is of the form (Z • Zj) + c, and for the conclusion, (Z' • Zj) + c. The
strength context Zi accounts for the local type variables in the L E T D case, which
cannot be allowed to decrease. The constant c generalizes the constant 1 or —1
added in the A P P D and L A M D cases. With this generalization, the only interesting
case is when e = x, which is proved as an instance of the following Type Substitution
lemma and Weakening. D

The basic idea of the Type Substitution lemma is to show that the type of an
expression is stable when substituting types for its type variables. The strength
context Zi contains those type variables being substituted by S, whereas Z2 contains
those added by the substitution. Critical strengths of type variables unaffected by
the substitution may need to be lowered. The constant c and strength context Zi
added by the generalization of the Value Substitution lemma carry over to this
lemma.
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Lemma (Type substitution)

2. S = [<xi !->• T I , . . . , an H-> r n ] ,
3. dom(S) = dom{L\),
4. /or a// i in {1,...,«}, Crit ((Z • Z2) + c - Zi(a,) 1 FTTCr,)), and
5. Wfeafcgr (Z | FTV(A, T, T) n rfom (Z), 0),

f/iere exists a Z' suc/i t/iat Z' <i Z, and S(A);S(r) h(z<.i2)+c e : S(T).

Proof Sketch As with Value Substitution, the strength contexts are generalized so
that the lemma may be proved by structural induction on the type derivation.
In particular, the first hypothesis uses (Z • Zi • Zo) + c', and the conclusion uses
(((Z' • Z2) + c) • Zo) + c'. The strength context Zo accounts for the local vari-
ables in LETD, and the constant d accounts for the constants used in APPD and
LAMD.

The VARD case is then proved by finding an appropriate Z' such that the required
instantiation holds. Similarly, the REFD, APPD, and LETD cases require calculating
an appropriate Z' such that the side conditions hold, as well as using a Ground
Type Substitution lemma to eliminate some type variables from consideration. The
remaining cases follow by induction alone. •

5 Algorithmic formalisms

There are other ways to formalize weak type polymorphism. For example, Hoang et
al. (1993) describe an alternative, which we compare to XL in section 7. Furthermore,
the implementation of SML/NJ does not resemble the formalism of XL directly.
This section discusses how to adapt the declarative formalism to a more algorithmic
approach similar to that of SML/NJ.

We introduce the concepts in this SML/NJ-like formalism in three stages, using
three pairs of formalisms, each consisting of a declarative and an algorithmic for-
malism. First, we define the equivalent formalisms XL~ and X¥~ to relate the
two families of formalisms and to motivate the algorithmic framework. Next,
we improve the application rules of ,W~ to obtain 1*P and show its similar-
ity to XL. Finally, we improve application rules and add a weakening rule to
obtain XL+ and X¥+. This last formalism is the most like that of SML/NJ
given in this paper. Of these additional formalisms, only XL+ is known to be
sound.

Type systems XL and X<¥

A primary idea of the algorithmic approach is to explicitly relate the type and
strengths of an expression to a syntactic context. Since this context can be arbitrarily
deep, an approximation, called an occurrence, is defined. For this paper, we consider
only two components of SML/NJ's occurrences: the abstraction depth and the
maximum strength.

Consider the typing rules as an algorithm. Incrementing and decrementing the
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A;
A;Fh

A;Fh

~ \-z e :x

z ref e : x ref

t+i ei : T'->T

AjFI-se

if C

1 e2

A; F h

t/TK(

i e2 :T

T)), and Weaker (Y. I FTV(A

if Weaker(Y. I FTV(A,r,T'),0)

(REFD)

(APP5)

Fig. 3. Changes to AT, that results in the AY. static semantics.

strengths of all type variables in the strength context at every abstraction and
application is inefficient, and it would be better to use a single offset, the abstraction
depth, instead. We can split the strength context £ into a strength context *P and an
abstraction depth d such that Z = *P—d, and the typing rules can be written such that
*P is fixed. Then the negation of the abstraction depth of a given subexpression is a
lower bound on the number of application contexts within which the subexpression
is a function.

To motivate the maximum strength, we digress temporarily. Using the more
restrictive application typing rules given in Figure 3 results in the A2,~~ type system.
These stronger side conditions will simplify the transition to a more algorithmic
formalism.

However, the Value Substitution lemma surprisingly does not hold in Xlr. For
example, consider the following expression and value:

v = / h a =><,()()()
e = fn y => let u = ref y in x,

which are assigned non-critical types:

[ ] ; [ ] h»->oo] v '• {unit—nmit^mnit-*a)-Kx.

[]',[x : (unit—*unit—mnit—>ot)—•a] (-[a^oo^i] e : P-+(unit—*unit—*unit^Kx)—*a..

But the best typing of their appropriate substitution is

[v/x]e : [}-

where the non-critical strength of /? has been lowered. As a result, type preservation
in XL" is still open. But well-typed expressions do not go wrong, since anything
well-typed in Air is also well-typed in AZ.

We can now explain the maximum strength m, which is an upper bound on the
finite strengths in *P. Its use allows the side condition on APP5 to be replaced by
a side condition on VARA. There is no reason to prefer the latter in the context of
XL~, but some motivation for this change will be given within the context of 12.

The 'top-level' occurrence is named Root, and the functions on occurrences are
named Rator(-), Rand(), Abs(), and Let(-), corresponding to the possible syntactic
contexts of application functions, application arguments, abstraction bodies and
let-bound expressions, respectively. The function corresponding to the syntactic
context of a let body is the identity. These functions on occurrences (d, m) are then
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i- A r(x) >
x • '

if Weaker (¥ | FrK(A,F,T),m)

Weaker ?V{FTV(K,T),m)

() : unit if Weaker(¥ J F7K(A,F),m)

: T

i r A ; r hv;

: T 2

A; e, :

if x is not in dom (F)

A; T[x : V4" - d.xx\ e2 : x
A; let x =

if x is not in dom (r), NonCrit (4" - rf),
and Weaker (¥ J. (FTK(T') ndomCP)) \

(VARA)

(LOCA)

(UNITA)

(REFA)

(U)

(:=A)

(APP A )

(LAMA)

(LET A )

Fig. 4. The M~ static semantics.

defined by

Rand (d, m) = {d, min(d, m))

Rator(d,m) = (d—l,m)

Abs(d,m) = (d+l,m)

Let (d, m) = (d, oo)

Root = (0, oo)

A type judgment A;F hlJ/.^m e : T reads 'With strength context 4*, at the occur-
rence containing the abstraction depth d and maximum strength m, and given the
location type assumption A and variable type assumption F, expression e has type
T\ Derivability in lx¥~ is defined by the rules of Figure 4.

As in XL, the base cases have a side condition which ensures that all derivable
judgments are well-formed. Only the abstraction depth is incremented in APPA

and decremented in LAMA. But VARA, REFA and LETA use the strength context
offset by the abstraction depth. In LETA the second precondition ensures that
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-<r-d r(x) ^ T ifF7-K(A,r) is a subset of dom(T),
A ; r hv.dm x:x and Weaker^ J. FTV(t),m)

if FTV(A, T) is a subset of dom (¥) (LOCA)
^>Th<v-4m l -T ref

A;T K,.d m () : unit if FrK(A, T) is a subset of &m(¥) (UNITA)

Fig. 5. Changes to A*P~ that result in the A*F static semantics.

m is an upper bound on the strengths in *F. Since Let{d,m) = (d,oo), the first
precondition enforces only a trivial upper bound on the strengths in *F'. If instead
Let{d,m) = (d,m), then there would be no generalization in expressions such as
/ (let x = fn z => ref z in e). Similarly, the top-level occurrence Root also has an
infinite maximum strength, so that the empty syntactic context places no upper
bound on strengths.

Now we show that the two systems are equivalent. First, the side conditions on
the application cases in kir are satisfied via the side conditions on the base cases
in k*¥~, as shown by the following lemma.

Lemma (Maximum strength for k*¥~)
If \;T \-y.dm e : x, then Weaker(T j F7T(A,F,T),m).

This lemma and the following two each hold by structural induction. Using that
lemma, we can prove that anything typable in k^~ is typable in XL" with the same
type and the strengths offset by the abstraction depth:

Lemma (A*F~ typability implies klr typability)

/ / A ; F h j / . ^ m e '• T, then A ;F \~v_d e : i.

The converse relationship holds if m bounds the appropriate strengths.

Lemma (XL~ typability implies k*¥~ typability)
/ / A;T \-v_d e : t, and Weaker(¥ j FTV(\,T,z),m), then A;T \-w.dm e : z.
In particular, this means that the two semantics admit corresponding type derivations
at the top-level, where m = oo, and thus the second hypothesis holds trivially.

Type system k*¥

The SML/NJ implementation is not as restrictive as ky¥~ in its use of the maximum
strength. Replacing the first three rules in Figure 4 with the corresponding rules in
Figure 5 results in a system k^V that is more like ?£ and the implementation.

These changes seem natural, e.g. the side condition of VARA does not place
constraints on type variables not in the type of the variable as does VAR^- When
comparing this sytem to AZ and considering the typing rules as an algorithm, it can
be argued that the side condition of V A R A is more efficient than that of A P P D since
instantiation must examine the strengths of some of the type variables of r anyway.
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A;rhr+iei:T'-t K;T^,e2:r> ( A p p S )

A; r f-£ e\ e2 • T

if Weaker (Y' { FTV(x'),O),
and Z'(a) > S(a) if a is in F7F(T ' ) \FrK(A,r),

Z'(a) = 2(a) otherwise

' :— if 2' is point-wise less than or equal to £ (WEAKEND)
A; l hjy e : T

Fig. 6. Changes to XL that result in the XL+ static semantics.

This system is strictly less conservative than XL~ and X¥~, but is incomparable
with XL. For example, if

e — (fn z => z)(/h a => let x = fn y => ref a in fnb=> ref b),

then in XY we have [] ; [] r-[a)_2-^g,.Root e : a.—>fi—*fi ref. But in IE, the finite
strengths of the argument's type must be critical, so a is at most 0. And if

e = (fn z => (fn x =>fn y => z)(z:=fn a => ref a)())(ref (fn a => ref a)),

then in XL we have [ ] ; [] h ^ o ] e : a—>a re/ But in X¥, a has strength at most —1
at the top-level occurrence. It is open whether A*P is sound or even stable under
substitution.

Type systems XL+ and X*¥+

As previously discussed, when typing an application expression any finite strengths
of the argument's type must be critical because the function may, in turn, apply
the argument to other arguments, possibly creating a reference cell. However, if the
argument is purely functional, no cell can be created that is not already reflected
by the type and strengths of the function. In XL, this results in overly conservative
strengths as in

[] ; [] h»-.o,/?~oo] {fnx=>fny=> refx)(fn a => a) : 0->(<x->a ref).

The argument, the identity function, is given a weak type to match the strength of
the function domain.

The application rule of Figure 6 does not force the conservative approximation on
the type variables of the argument which 'could have been' of infinite strength. The
system XL+, which replaces the application rule of XL with this one, is strictly less
conservative than XL, and the previous example can be typed with strength context
[<x>—• l,/J>-> oo].

The soundness proof extends to this system with little modification once a weak-
ening rule such as WEAKENp is also added. This rule allows infinite strengths
to be weakened to any finite strength, as in SML/NJ, and unlike the Weakening
lemma. Because of Weakening, it would be sufficient for the side condition to state
that L and L' agree on all finite values in Z. Without such a rule, the system is not
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Fig. 7. Sequencing typing rule.

stable under substitution. This weakening rule is only useful immediately preceding
application, so the typing rules could be combined, which would restore the syntax-
directedness of the system, but would further complicate the side conditions on the
application rule.

The algorithmic system W+ can be defined similarly, and is the most SML/NJ-
like system in this paper. Like XV, its soundness is still open.

6 Relation to SML/NJ

None of these formalisms completely models the implementation, and this section
describes some of the differences. Syntactic differences include that SML/NJ types
correspond to the pairing of types and strength contexts and that the formalisms
restrict the reference primitives to their fully applied forms. It is almost equivalent
to replace the given inference rules for the reference primitives with the following:

ref : V[ai—» l].a—>a ref

! : V[ai—> oo].a ref—>a

oo].a ref—>a—ninit

in the variable type assumption, or as the equivalent axioms. A disadvantage of
this alternative is that values must be given to the evaluation of partially applied
primitives, which complicates the dynamic semantics and loosens the correspondence
of the inference rules of the static and dynamic semantics. Furthermore, use of !
and := would then involve the conservative approximation of general application.

Sequencing, e\;ei, can be treated as syntactic sugar for let z = e\ in e-i, where z is
new. Or a type inference rule such as that in Figure 7 can be added. Either option
admits the same expressions, although the definition as a let expression allows more
derivations. The other traditional definition, that of the semicolon (;) as an infix
function, unnecessarily involves the conservative approximation of application.

The implementation has additional fields in the occurrence to more accurately
approximate the syntactic contexts. For example, one field allows curried function
applications to be treated somewhat like a single uncurried application, by using
the same occurrence in typing each of its arguments. This corresponds to having a
single application rule for typing multiple curried arguments at once, as in Figure 8.

7 Comparisons with other related systems

Weak polymorphism is usually explained as a generalization of Tofte's imperative
type system, but this is not entirely correct. Tofte's system uses two inference rules
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A ; r i - z + n e0 : Ti-» • • •Tn-->T
A; T h r e, : T, for all i in {1,...,«} (APPmany+)

A ; r h r e0 e{ ...en : T

if Weaker (I,1 1 FTV(xu...,rn),O),
and I'(a) > S(a) if a is in FrK(T,,...,Tn)\/TK(A,r)>

S'(a) = E(a) otherwise

Fig. 8. A closer approximation of SML/NJ's application typing rule.

for type-checking let expressions. One generalizes both applicative and imperative
type variables when the let-bound expression is non-expansive. The other generalizes
only applicative type variables when the expression is expansive. If an expression of
critical type were necessarily expansive, then LETD and LETA would each subsume
both cases, but this is not so. For example, in the declarative systems,

[]; [] h»-»s] fna=> Vet x = refa infn y =*• *)() : a~*a ref

only if s < 0. Thus the expression is of critical type but is non-expansive. Thus we
conjecture that restricting any of the formalisms to using only the strengths 0 and oo
(defining 0—n = 0, 0+n = 0, and oo—n = 0, for any n) and augmenting it with Tofte's
non-expansive let type inference rule is strictly more powerful than Tofte's system.

Hoang et al. (1993) proved the soundness of a different type system based on
weak types. They permit different strengths on different instances of a type variable
in a type, as in

fn f => f n i l : ('5a l i s t -> 'sa) -> ' ( s - l ) a

for any strength s. The decremented strength of the function's range reflects the single
application in the function body. This generalization of the SML/NJ approach gives
a more informative analysis of strengths, even for purely functional terms as above,
which eliminates the need for the conservative approximation of strengths at function
applications. As a result, they claim that their system is more general than that of
SML/NJ and provide empirical evidence of this, but they lack a formalization of
SML/NJ to prove the claim.

In their analysis of reference creation, both weak and imperative type systems
label type variables with information. Another approach is to label each type arrow
with an effect, which describes an approximation of the change in the store that
occurs when applying the function. The static semantics then derives both a type and
an effect for an expression, and generalization is denned relative to those effects. This
approach is taken by Leroy and Weis (1991), Talpin and Jouvelot (1992a; 1992b)
and Wright (1992). A slightly different approach is given by Leroy (1992), where
type arrows are labelled with the types of any values that may occur in references.
Damas' (1985) system has aspects of both Tofte's and those using effects, as it
distinguishes references that have been created from those that may be created after
further application. Reynolds (1989) uses an effects-like system to detect interference
such as aliasing of references.
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For a comparison of some of these systems to each other, see Wright (1992),
Leroy (1992) and O'Toole (1989). However, O'Toole incorrectly allows generalization
of critical type variables in his formalization of weak polymorphism. Existing weak
type and effect systems are formally incomparable. Effects systems generally have
simpler inference rules, but in practice the approach may be unwieldy, because of
the size of the type arrow labels.

Yet another alternative is to restrict polymorphic generalization to only those
expressions which are values. Leroy's polymorphism by name (1992; 1993) effec-
tively restricts generalization to thunks. Wright (1993) gives empirical evidence that
imposing this restriction directly on SML is not a great sacrifice in programming
flexibility, since any non-value of functional type that does not create a reference
cell when evaluated may be replaced by its ^/-expansion, which is a value.

8 Conclusions and future work

We have motivated and defined several formalisms of weak polymorphic types and
described their similarity to that of SML/NJ. In particular, the algorithmic family of
static semantics closely model the details of the implementation. Naturally, either of
those shown sound could be incorporated into SML/NJ to restore proven soundness
to its type system, although it should be verified that extending the system with
continuations and exceptions is still sound. The soundness of AW and 2}¥+ should
also be determined, since they are the most similar to the SML/NJ's implementation.

These systems provide the first formalization of weak types that are directly related
to SML/NJ. As such, they should be formally compared to that of Hoang et al. to
test their claim that their approach is strictly more general than that of SML/NJ.

From the given examples, it should be clear that these systems are complex
and sometimes result in non-intuitive maximal typings. Both of these properties are
undesirable, especially when types must be given in module specifications. Therefore,
it is the author's opinion that such systems are not wholly suitable for practical use.

Despite the similarities to SML/NJ's implementation, detailed comparisons are
still somewhat difficult because the implementation has a broader definition of
occurrences and uses side effects. The X*¥ family of formalisms could be enriched
with the more general definition of an occurrence to further study some of these
details. Doing so, however, only further complicates the static semantics.

We have not explored type inference algorithms for these systems. The standard
algorithm for SML (Damas and Milner, 1982) depends on the existence of principal
types. We conjecture that these systems all have principal types and that ?JL+ and
?MI+ have principal strengths because of the W E A K E N D rule. The other systems do
not have principal strengths, but instead appear to have a maximal finite strength
and possibly an infinite strength for each type variable of the principal type. Since
the strengths of different type variables in a type are independent, this still gives a
small number of maximal strengths.

The connection between type systems which label type variables and those which
label type arrows should also be further explored. Since specific systems of these two
approaches are generally incomparable in power, it may be worthwhile to somehow
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combine the ideas in one system. However, such a combination would likely result
in types too cumbersome in practice.

Appendix: Soundness proof for ?£

Now we present the proof of the soundness of system XL, as outlined in section 4.
Here the theorems and lemmas are in the order of their dependence.

The first lemma shows that in any derivable judgment, the strength context
gives the strength of any type variable mentioned in the type assumptions or the
expression's type.

Lemma 1 (Well-formedness)
If K;T hz e : x, then FTV(A,T,T) is a subset of dom (L).

Proof This holds by structural induction on the derivation. The side condition of
each of the base cases states that FTV(\, T) is a subset of dom(L). And FTV(t)
is also a subset of dom (£) in V A R D by the definition of instantiation, in LOCD

since FTV(z) is a subset of FTV{A), and in UNITD since FTV(x) is empty. The
remaining cases follow inductively. •

Lemmas 2 and 3 are two common forms of type substitutions which are not
simply special cases of the general Type Substitution lemma (Lemma 7) for two
reasons: they do not weaken the strength context of the type derivation, and the
proof of that lemma is dependent on these two. The first shows that type variables
can be renamed to avoid conflicts with other strength contexts. The second shows
that type variables can be replaced by arbitrary ground types to remove them from
consideration.

Lemma 2 (a-Renaming type substitution)
/ / 1. A ; r h j e : r ,

2. S = [a\ »-+ / ? i , . . . , an i—y /?„], where /?], . . . , /?„ are distinct from each other,
3. dom(S) is a subset of dom (L), and
4. none of fii,...,pn are in dom(L),

thenS(A);S(r)\-S(z)e:S(T).

Lemma 3 (Ground type substitution)
/ / 1. A;rf-Ze :T,

2. S= [a, i - > T i , . . . , a n H - » Tn],

3. dom(S) is a subset of dom (E), and
4. T) , . . . ,Tn are ground,

then S(A);S(r)r-£ e : S(T).

Proof Each of these lemmas holds by structural induction on its type derivation.
The VARD cases are simplifications of that of Lemma 7, and the other cases follow
inductively. •

The following weakening lemma shows that unnecessary type assumptions can
be removed and variables added to the strength context. It also shows that finite
strengths can be lowered arbitrarily. By the definition of type-matching, this lemma
also extends to that relation.
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Lemma 4 (Weakening)
/ / 1. Airhs.e :T,

2. ZQ <OO ZO,

3. fTK(A',r") is a subset ofdom(Z,0 • Zi), and
4. A • A' and T • V are defined, i.e. dom (A) n rfow (A') = dom (T) D dom (V) = 0,

A-A ' j r - r ' h^ . j ; , e : x.

Proof This holds by structural induction on the type derivation. In the LETD case,
we use Lemmas 2 and 3 to rename and remove type variables in dom (A1) that
conflict with those bound in the type scheme to ensure that the strengths of the
bound type variables are not lowered. •

Conversely, the next lemma allows unnecessary assumptions to be removed from
the variable type assumption and the strength context. It could easily be generalized
to strengthen the location type assumption as well, but that is not needed. The
second and third hypotheses define when the strength context Z' and variable type
assumption P are unnecessary.

Lemma 5 (Strengthening)
/ / 1. A jF-n - t s e :T,

2. FTV(A,T,^) is a subset of dom (Z), and
3. the free variables ofe are not in dom{T'),

then A;T hx c : t.

Proof This holds by structural induction on the type derivation, using Lemma 3
to eliminate any extra type variables occurring only in the mediating types in :=D,
APPD, and LETD- The last hypothesis is used in the VARD case.

For brevity, we prove only the most involved case, that of LETD, which uses all
of the techniques needed to prove the other cases. Inversion of the typing derivation
provides Zo and x' such that NonCrit (Zo), and

A ; r • V \-z.u.s ex:x' A; T • T'[x : VZ 0 .T ' ] \-Z.V e2 : T

Weaker ( I • I ' | (FTV(x') ndom(S • S')) \ FTV(A,T • V),0). (1)

Since a-convertible values are identified, we can assume that the bound variable x
is not in dom(T'). Induction cannot be used yet, since FTV(T') is not necessarily
a subset of dom (L • Zo)- So, define S to be a ground type substitution on the type
variables in FTV(x')D dom (£'). By Lemma 1 and since the domains of Z and Z' do
not intersect, then A, T, and T are invariant under S, and S(VZ0.T') = VZO.S(T')- SO,

Lemma 3 gives

A; T S(F') h ^ r . a : S(T') A; T • S(V)[x : VZ0.S(T')] I -M ' e2 : x.

Induction on each of the typing derivations for e\ and e2 then applies, showing that

A; r \-z.u a : S(T') A; T[x : VZ0.S(T')] r-s e2 : x.

We now want to work towards applying LETD, but its side condition does not
hold for these derivations as there may be a finite positive type variable in both
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S(T') and V. So, let 5' be a ground type substitution on the type variables in
(FTV(S(x')) n FTV(T') n dom(L)) \ FTV(A,x). By the construction of S' and the
second hypothesis, then A, F, and x are all invariant under S', and dom(S') is a
subset of dotn (Z, Zo). So, Lemma 3 on each of the previous typing derivations gives

A; r hz.r,, e, : S'(S(t')) A; F[x : S'(VZ0.5(T'))] h- e2 : T.

And note that since dom(S') is a subset of dom(Z), it shares no variables with Zo,
so S'(VZ0.S(T')) = VZ0.S'(S(T')). The appropriate side condition of LETD,

Weaker (Z j (F7r(S'(S(T/))) n dom(Z)) \ Frr(S'(S(A)),S'(S(F))),O),

now holds by Statement 1 and since for any ground type substitution S and sets
A and B, FTV(S(A)) \ FTV(S(B)) is a subset of FTV(A) \ FTV(B). Therefore the
conclusion holds by LETQ- •

The following lemma allows the strength context to be strengthened by removing
irrelevant type variables. The converse, adding irrelevant type variables, is a special
case of Lemma 4. Together they show that the strength of type variables not in a
typing judgment's type assumptions or type may be changed freely.

Lemma 6 (Strength context strengthening)
If A;F !-£.£> e : x, and FTV(A,F,T) is a subset ofdom(L), then A;F \~z e : x.

Proof The proof is by structural induction on the typing derivation. As in previous
lemmas, the :=D, APPD, and LETD cases use Lemma 3 to eliminate any type
variables which occur only in intermediate stages of the derivation. •

Lemma 7 (Type substitution)
/ / 1 . A ; T ! - ( £ . £ , . Z o ) + C < e : x ,

2 . S = [ai ( - » T i , . . . , a n i - » T n ] ,

3. dom(S) = dom(l.]),
4. for all i in {1,...,n}, Crit ((Z • Z2) + c - Z,(a,) | FTV(XJ)), and
5. Weaker (Z J, FTV(A, T, T) D dom (Z), 0),

then there exists Z' such that Z' <i Z, and S(A);S(T) \-(((z'--£2)+cyZo)+c e '• S(T).

Proof This holds by structural induction on the typing derivation. The constant c
and strength context Zi are those used in Lemma 8. The constant c' allows the first
hypothesis to hold inductively in the A P P D case, and similarly Zo is for the LAMQ

and LETD cases. We will use only the case where c' = 0, and Zo = [].
The LOCQ and U N I T Q cases hold trivially with the definition Z' = Z. For the

remaining cases, note that FTV(x\,...,xn) is a subset of rfom(ZZ2) by the fourth
hypothesis.

In the VARD case, inversion of the type derivation states that the instantiation
l~(£ ZiZo)+c T(x) > x holds. We work towards showing the instantiation necessary for
the conclusion. Let

By a-equivalence of type schemes, we can assume that the domain of S does not

https://doi.org/10.1017/S0956796800001593 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001593


Weak polymorphism can be sound 133

overlap with any of /?i,..., ft, so

By the definition of instantiation, there exists a type substitution

such that S'(T') = T. In particular, we can choose S' such that for all / in {1, . . . ,k}, if
Pj is not in FTV(z'), then x'j is ground, so that FTV(x\,...,x'k) is a subset of F 7 T ( T ) .

Now define Z' so that for all a in dom (X') = dom (Z),

= J
I

(<x),-c) if a is in FTV{x\,...,x'k),
otherwise.

By the last hypothesis, and since FTV{x\,..., x'k) is a subset of FTV(x), then Z' <i Z.
And since the definition of instantiation implies that for all j in {l,...,/c},

Crit ((Z • 2 , • Zo) + C - sj j F7T(TJ)),

then the fourth hypothesis implies that for all j in {l,...,/c},

Crit ((((I' • E2) + c) • Zo) + d- sj | FTV(S(x'j))).

Thus the instantiation ^(«z' E2)+C) io)+c' S(F(x)) > S(x) holds, and the conclusion fol-
lows by V A R Q .

The !D and L A M Q cases follow simply by induction. Both the : = D and APPD

cases must also use Lemma 3, while in the R E F D , A P P D , and L E T D cases, an
appropriate Z' must be calculated to satisfy the side conditions, as in the VARD

case.
For example, in the A P P D case, inversion gives a x1 such that

A;F \-(z-z,-zo)+c'+i e\ : T'-»T A j r h ^ . y + c ' e2 : x'

Weaker ((Z • Z, • Zo) + d { FTV(x'), 0). (2)

To allow induction to be used on these type derivations, we must remove the type
variables which occur only in the mediating type x1, so that the last hypothesis
holds inductively. So, define a ground type substitution S' over the type variables in
(FTV(x') n dom(L)) \ FTV(A,T,x). In particular, A, T, and x are unaffected by S',
so by Lemma 3,

i : S '(T')-»T A;F ^Z-^^+C 2̂ : S'(T').

By the construction of S', FTV{S\x'))ndom{T) is a subset of FTV{\,T,x). So, with
the last hypothesis, we have

Weaker (Z | FTV(A, F, x, S'(T')) n dom (Z), 0).

Thus induction can be applied on the type derivations of e\ and e2, proving that
there exist Z" and Z'" such that Z" <i Z, Z'" <, Z, and

S(A);S(F) h(

S(A);S(F)
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Now we work towards applying the APPD rule. To use the same strength context in
these derivations, let HI'" = min(Z", Z'"), where the minimum of two strength contexts
having the same domain is defined by the point-wise minimum. Clearly, HI'" <\ Z.
To satisfy APPD'S side condition, define Z' so that for all a in dom(H') = dom(H),

min(Z"», -c) if a is in FTV(S'(x')),
Z""(a) otherwise.

Since Weaker (L [ FTV(S'(x')) n dom(H),0), the last hypothesis and Statement 2
show that Z' <i HI'". Thus the above typing derivations for e\ and e2 can be
weakened to use HI in place of Z" and HI". And since FTV(S'(x')) is a subset of
FTV(x'), the necessary side condition holds:

Weaker((((Z' • Z2) + c) • Zo) + d [ FTV(S(S'(x'))),0).

For the type variables of S'(x') that are in Z', this follows from the construction of
Z' and Statement 2. Those in Zi were substituted by S, and this holds by the fourth
hypothesis. And for those in Zo, this follows directly from Statement 2. Thus the
conclusion holds by APPD- •

Lemma 8 (Value substitution)
/ / 1. A;r[x:VS2.T2]l- ( S .S l )^e:ti ,

2. A;[] l~££2 " '• ^2>
3. Weaker (Z j FTV(A, x2) n dom (Z),0),

then there exists a Z' such that Z' <i Z, and A;F h^'-z^+c [v/x]e : x\.

Proof The proof is by structural induction on the type derivation for e. The constant
c is used to allow the first hypothesis to hold inductively in the APPD case, and
similarly Z] is used for the LETD case, and F for APPD and LETD- We are only
interested in the case where c = 0, Zi = [], and F = [].

The LOCQ, U N I T D , and when e =j= x, VARD cases follow from Lemma 5 with the
definition Z' = Z. When e = x, then \-(zzx)+c VZ2.T2 >: x\ follows by inversion. By
this instantiation, there is a type substitution S such that S(x2) = x\, and for all a in
dom(S) =dom(H2), Crit((H • Zi) + c-Z2(a) | FTV(S(a))). By Lemma 1 applied to
the first hypothesis, FTV(A) is a subset of dom (Z • Zi), and thus A is unaffected by
S. The conclusion then holds by Lemmas 7 and 5.

The REFD, !D, and L A M D cases hold by induction, while the :=D and APPD

cases also use Lemma 4. In the LETD case, we must calculate an appropriate Z'.
Inversion of the first hypothesis shows there are x' and Zo such that NonCrit (Zo),
and

A;F[X:VZ 2 .T 2 ]

A;F[x:VZ2.T2,y:VZo.T']

Weaker ((Z' • Zi) + c j (FTV(x') n dom (Z • ZO) \ FTV(A, T[x : VZ2.T2]), 0).
By Lemma 2, we can assume that the type variables in Zo do not clash with those
in H.\. So, by induction on the type derivations of e\ and e2, there exist Z" and Z'"
such that Z" <, Z, Z'" <, Z, and

A;F t-«s"-2;i)+c)Zo b>/x]ei : x' A;F[y : VZQ.T'] \-m"-u)+c [v/x]e2 : xt.
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Let I"" = min(Z", I'"). In order to satisfy the last side condition of LETD, define Z'
so that for all a in dom (Z') = dom (Z),

, f m i n ( Z " » , - c ) if a is i
W \ Z"» otherwise.

By the last hypothesis, Z' <, Z, and Weaker(Z' + c j FrK(VZ2.T2),0). So the side
condition

Weaker({Y • Zi) + c | (FrK(t') n dom(Z • Zi)) \ FrF(A, T),0)

holds, and the conclusion follows by weakening the type derivations to use Z', and
then using LETD- •

Theorem 1 (Type preservation under evaluation)
/ / l. a \ - e ^ v ^ \

2. A; [] t-(r+c)-i, e : x,
3. h z a : A,
4. Crit(S IFTV{A)),
5. NonCrit(Ei), and
6. c>0,

t/ien t/iere exists Ao and Zo suc/i f/iat
1. So <, Z
2. A-Ao;[] r-(r0+c).r1 v :z,
3. h£o a' : A • Ao, and
4. Cn t (Z 0 +c | F^F(Ao))

Proof The proof is by structural induction on the evaluation derivation. The
constant c generalizes the constant 1 added in APPD and corresponds with the
abstraction depth of the algorithmic formalisms. Thus the strength context 2 is that
of the top-level. The strength context I i generalizes the local strength context used
in LETD and is kept separate from Z so that it does not interact with the constant c.
The Top-Level Type Preservation Under Evaluation theorem then holds by setting
c = 0, A = [ ] , * = [], and S = [].

The VAL case holds with Ao = [], and Zo = Z, since a' = a.
Since the location type assumption and strength context are extended and weak-

ened for each use of induction, Lemma 4 is used frequently in the inductive cases.
For the ALLOC case, inversion of the first two hypotheses gives

<7|-e=>y,ff1 a' = ox [I>-> v] A; [] h(I+c).Sl e : T'

where x = T' ref. So, induction on the evaluation derivation of e shows there exist
Ai and Zo such that the first conclusion holds, and

A-A,;[]r- ( i 0 + c ) . r i» :T ' h ^ a, : A • A, Cnt(Z0 + c I F7T(A,)).

Defining Ao = Ai[/ : T], then A • Ao; [] hio+cj-i, l '• T' re/holds by LOC. So the third
conclusion holds by Lemma 4 and the definition of type-matching. The remaining
conclusions hold since FrF(A0) = FTV(Aux'), and Crit (Z + c | FTV(x')).
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In the CONT case, inversion gives

A; [] l-(£+c)z, e:xref a\-e=>l,a>,

where v = a'(I). Induction on the evaluation derivation of e then proves there exists
a Ao and Zi such that Z' <i Z, and

A • Ao; [] (-(z'+cM, l:zref \-s a' : A • Ao Crit (Z' + c j F7T (Ao)).

So, A • Ao(/) = T. By the definition of type-matching and Lemma 5, then we have
A • Ao; [] hjv v : x. Define Zo so that for all a in dom(Zo) = dom(L),

Z'(a) - c if a is in F TV (A • Ao),
Z'(a) otherwise.

Since Crit (Z' | FTV(A • Ao)), then the first and fourth conclusions hold. The second
follows by Lemmas 6 and 4 since Zo + c and Z' differ only for irrelevant type
variables. And the third follows by Lemma 4.

The UPD, APPLY, and BIND cases are similar, with a pattern of induction
followed by weakening. The latter two also use Lemma 8 to allow induction on the
result of substitution.

For APPLY, inversion of these first two hypotheses gives <TI and G2 such that

o\- e\ =>fn x => e\,o\ a\ V e2 = > vi, G-I GI \- [v2/x]e[ = > v,o',

and T' such that

A; [] l-(i+c+i)(i,+i) e\ • T ' - H A; [] \-p.+cyzi e2 : r1

Weaker((Z +c) • Zj | FTV(x'),0).

Induction on the e\ evaluation derivation shows that there exist Ai and Z' such that
Z' <i Z, and

A • A t ; [] l-(£'+c+i)-(Zi+i)/" x ="• e'\ '• T'->T h^' ffi : A • Ai

Crit{£'+c+\lFTV{\i)).

To apply induction to the ei evaluation deriviation, we first note that we have
Crit(Z' + c I FTV(A • A\)), and that Lemma 4 proves A • Ai; [] K(i'+c)z, e2 : x'. In-
duction then gives A2 and Z' such that Z" <i Z', and

A • A, • A2; [] \-(z»+c)u v2 : x' \~z» o2 : A • Ax • A2

f c | F7T(A2)).

We cannot yet apply Lemma 8 to obtain a typing of the appropriate substitution.
To satisfy that lemma's third hypothesis, define Z3 so that for all a in dom(E'") =
dom(L"),

min(Z"(a), - c ) if a is in FTV(A),
Z"(a) otherwise.

Thus Z'" <! Z", and Weaker ((Z'" + c) • Z, | FTV(A • Ai • A 2 , T ' ) , 0 ) . Inversion on the
type derivation on the function value and Lemma 4 prove

A • Ai • A2; [x : x'] \-(Z'"+c)z, e\ : x A • Ai • A2; [] l-(Z'"+c)i, »2 '• x'.
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So, using the trivial generalization of T', Lemma 8 proves that there exists a Z""
such that Z"" + c <i Z'" + c, and

A • Ai • A2; [] l-(i""+c)i, [v2/x]e\ : T.

We do not need to weaken Si here since it is non-critical. Since c > 0, then
Z"" <! Z'", and Crit(L"" | F7T(A • A( • A2)). We can now apply induction to the
final evaluation derivation, obtaining A3 and Zo such that Zo <i Z"", and

A • Ai • A2 • A3; [] l-tio+c)-!, v : T h ^ CT' : A • A{ • A2 • A3

CritCL0+clFTV(A3)).

The conclusions then hold with Ao = At • A2 • A3.
The BIND case is very similar, but with only two uses of induction. Inversion of

the first two hypotheses proves there exist <TI and v\ such that

ffhei =>t>i,ffi <TI h [vi/x]e2 =>v2,o2,

and L2 and T' such that NonCrit (L2), and

A; [] l-(E+c)-Zii2 ei : T' A; [x : VE2.T'] h^+cj.j;, e2 : x

Weaker ((Z + c) • Z, | (FrF(r ' ) Pi dom(Z • ZO) \ F rF(A, []),0).

Then induction on the e\ evaluation derivation shows there exist Ai and Z' such
that Z' <i Z, and

A • A,; [] hs'+O-rrrj ui : T' H? ffi : A • Ai Crit(Z' + c

We cannot yet apply Lemma 8 to obtain a typing of the appropriate substitution.
To satisfy that lemma's third hypothesis, define Z" so that for all a in dom{V) =
dom{V),

„ _ f min(Z'(a),-c) if a is in FTV(A),
(<X) ~ \ Z'(a) otherwise,

so that Z" <, Z', and Weaker {(I." + c) • Z, j FTF(A • AI ,T ' ) D dom(Z" • Z,),0). And
now Lemma4 shows that A • Ai; [x : VZ2.T'] I-(Z"+C)SI e2 : T, SO that Lemma8 applies,
giving a Z'" such that Z'" <i Z", and

A • Ai; [] l~(r"+c)ii [^l/^]^ : t.

As in the APPLY case, we do not need to weaken the non-critical Z). Next, Lemma 4
shows that hz» o\ : A • Ai, and since also Crit (Z" + c J. F7T(Ai)), then induction
applies on the evaluation derivation of the substitution. This shows there are A2 and
Zo such that Zo <i Z'", and

A-Ai-A2;[]\-{U+o^ v2 :T h ^ <T2 : A • AJ • A2 Cnt(Z0 + c [ FTV{\2)).

The conclusion then holds by defining Ao = Ai • A2. D

Theorem 2 (Well-typed programs do not go wrong)
/ / 1. a V- e = > wrong, [],

2. r-s a : A,
3. Cm(Z|FrF(A)) (
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then there do not exist Zi, c, and x such that

1- A ; [ ] l - ( z + c ) z , e : x ,
2 . NonCrit(Li), and
3. c > 0.

Proof This is proved by structural induction on the evaluation derivation. For
brevity, we say in this proof simply that an expression is typable only if the three
conclusions do hold. As in Theorem 1, the constant c and strength context Zi allow
induction in the APPLY and BIND cases.

The expression e cannot be a value, since values do not go wrong. So, consider
the expressions that must be evaluated to evaluate e. For e to go wrong, one of these
expressions, say e', goes wrong or its value is of the wrong form, e.g. a function
is being dereferenced. If the former, induction shows that e' must not be typable,
which leads to the untypability of e. If the latter, e' may be typable, but not so
that e is, e.g. the expression ! e' cannot be typed when e' has a function type. The
following describes the cases in more detail.

If e = ref e', then the only way for e to go wrong is for e' to go wrong. By
induction, e' is not typable, so neither is e.

If e = ! e', there are two possible ways for e to go wrong. First, if e' goes
wrong, then by induction e' is not typable, so neither is e'. Second, e goes wrong
if a V- e' = > a, a', where a is one of () or fn x => e. Assuming that e is typable,
i.e. A;[] (-(i+c)Zi e : x, leads to a contradiction. For that typing to hold, then
A;[] \~{z+c)-Zi d '•* ref must hold. But by Theorem 1, then there would exist Z'
and A' such that A • A'; [ ] r-£< a : x ref which is impossible with the two possible
values of a. So, e is not typable.

If e = e\ :=e2, there are four possible ways for e to go wrong. Three of these
are like those of the previous case: e\ could go wrong, e\ could evaluate to () or
a function, or ex could evaluate to a location not in the resulting store. The fourth
case, that of e2 going wrong, combines aspects of the other subcases, and we describe
it further. To apply induction on the evaluation derivation of e2, we must extend the
type-matching to include any locations created by the evaluation of e\. Assuming
that e is typable implies that there exists a x' such that

A; [] h£+c)-z, ei '•T' ref A ; H hx+c)-^ ei '•%>-

By Theorem 1 on the typing of e\, there exist I! and A' such that Z' <i Z, and

hz- ffi : A • A' Crit (Z' + c | FTV(A')),

and thus Crit (I,1 j FTV(A • A')). By Lemma 4 we have A • A'; [] r-^+cyi., e2 • x1,
which contradicts the conclusion of applying induction on ej, so the assumption
that e is typable must be false.

If e = e\ e2, again we have four subcases, three of which are like those previously
described: e\ could go wrong, e2 could go wrong, or e\ could evaluate to a value
of the wrong form - here, either () or a location. The fourth subcase, that of
the substitution instance going wrong, is similar to those shown previously, but
Theorem 1 is used on both e\ and e2 to obtain the required type-matching, and
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Lemma 8 is used to type the substitution instance. Assuming that e is typable implies
that there exists a T' such that

A; [] H(i+c+i).(i,+i) e\ : T'-+T A; []

Since c + 1 > 0, Theorem 1 shows there would exist Z' and A' such that E' < , E,
and

A • A'; [] l-(z'+c+i)(i1+i)/n x => e\ : x'-+x hi- eri : A • A'

Cm(Z' + c + l

Then Lemma 4 would show that

A A ' [ ] h ) £ , e2 :

and since c > 0, then Crit(L' j F7T(A • A')). So, Theorem 1 shows there would exist
Z" and A" such that Z" <, Z', and

A • A' • A"; [ ] l-d-.^,.!, a2 : r' hz» ff2 : A • A' • A"

We cannot yet apply Lemma 8 to obtain a typing of the appropriate substitution.
To satisfy that lemma's third hypothesis, define Z'" so that for all a in dom(X'") =
dom(I!'),

min(Z"(a), - c ) if a is in FTV(A),
Z"(a) otherwise.

Then Z'" <i Z", and Weaker ((If" + c) • Zi | F 7 T ( A , T ' ) n dom(Z'" • Zi),0). After in-
version and Lemma 4 show that A • A' • A"; [x : T'] r-(i»+C) z, c'i : T, Lemma 8 shows
there would exist a Z"" such that Z"" + c <, Z'" + c (and thus Z"" <! Z'"), and

,Sl [a2/x]e', : T. (3)

By Lemma 4, the type-matching above could use the same strength context, i.e.
hz»- <T2 : A • A' • A". But since Cnt(Z"" | F7K(A • A' • A")), induction on the substi-
tution instance contradicts Statement 3, so the assumption that e has the typing is
false.

Finally, if e = let x = e\ in e2, then e can go wrong only if e\ or the appropriate
substitution instance of e2 goes wrong. The first possibility is like those previously
shown. The second is similar to the last subcase of the previous application case.
Assuming that e is typable implies that there exist Z2 and x' such that NonCrit (Z2),
and

A; [] l-(i+c)i,i2 e\ : x1 A; [x : VZ2.T'] h(j:+c). r i e2 : x

Weaker ((Z + c) • Z, | (FTV (x1) n dom (Z • Z,)) \ FTV (A), 0).

Then Theorem 1 shows there would exist Z' and A' such that Z' <i Z, and

A • A'; [] \-{z'+c)^2 fli = * I T of.A-A' Cnf(Z' + c j F7T(A')).
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Define Z" such that for all a in dom (Z") = dom (Z'),

min(Z'(a), -c) if a is in FTV(A),
Z'(a) otherwise,

so that Z" <! Z', and Weaker ((I." + c) • Z, { FTV(A • A1;T') n dom(I." • Z,),0). Then
by Lemma 8, there would exist a II" such that Z'" + c <i Z" + c (and thus Z'" <, Z"),
and

A • A'; [] !-(£'»+£).£, [ax/x]e2 : T.

But since hj»' o-j : A • A' and the fact that Crir (Z'" J. A • A'), induction on the evalua-
tion of the substitution contradicts this typing, so the assumption of e being typable
is false. •
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