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1 Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine,

Cornell University, Ithaca, NY, USA
2 Department of Physics, Florida International University, Miami, FL, USA

(Accepted 7 November 2007; first published online 16 January 2008)

SUMMARY

The objective of this study was to address the impact of heterogeneity of infectious period and

contagiousness on Salmonella transmission dynamics in dairy cattle populations. We developed

three deterministic SIR-type models with two basic infected stages (clinically and subclinically

infected). In addition, model 2 included long-term shedders, which were defined as individuals

with low contagiousness but long infectious period, and model 3 included super-shedders

(individuals with high contagiousness and long infectious period). The simulated dynamics, basic

reproduction number (R0) and critical vaccination threshold were studied. Clinically infected

individuals were the main force of infection transmission for models 1 and 2. Long-term shedders

had a small impact on the transmission of the infection and on the estimated vaccination

thresholds. The presence of super-shedders increases R0 and decreases the effectiveness of

population-wise strategies to reduce infection, making necessary the application of strategies that

target this specific group.

INTRODUCTION

Non-typhoidal strains of Salmonella enterica are a

major cause of foodborne illness in humans. In the

United States alone, Salmonella accounts for an

estimated 1.4 million cases of illness, 16 000 hospi-

talizations and 600 deaths annually [1]. Cattle are

recognized as an important source of Salmonella

causing human illness, particularly for antimicrobial-

resistant strains. Transmission from cattle to humans

has been described via contaminated meat [2], milk

[3], dairy products [4] and also by direct contact with

sick animals and their environment [5]. Recently,

the emergence of several multidrug-resistant (MDR)

strains of Salmonella, notably MDR Typhimurium

DT104 and Newport, has complicated treatment and

control of clinical disease in humans; humans infected

with MDR strains are at greater risk of bacteraemia,

hospitalization and death compared to patients in-

fected with susceptible strains [6, 7].

Prevention of human salmonellosis depends on

decreasing the prevalence of infections in livestock

hosts as well as identifying and intervening along

key transmission routes. Controlling the spread of

Salmonella at farm level and through the food chain

has proven difficult [8] ; partly because of the large

variation observed in the epidemiological character-

istics of Salmonella infection at herd level, which

range from large clinical outbreaks to endemic per-

sistence without clinical cases [9, 10]. Elucidation of
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effective control strategies requires, therefore, an im-

proved understanding of the dynamics of infections

within host populations and the causes of such a wide

range of outcomes in the host–pathogen interaction

[11] ; including interactions among immunity of the

host, infectious dose and virulence of the serotype,

and environmental factors [12].

Mathematical models of disease dynamics provide

a comprehensive framework in which our current

understanding of disease transmission can be sum-

marized, and the impact of intervention strategies can

be evaluated [12]. There are only three existing math-

ematical models of Salmonella transmission dynamics

in dairy herds. Xiao and colleagues developed theor-

etical deterministic [13] and stochastic [14] models

of Salmonella infections. These authors investigated

the effects of demographic (e.g. culling rate) and epi-

demiological (e.g. pathogen-induced mortality) factors

on epidemic behaviour and threshold for invasion,

while Chapagain et al. developed a mathematical

model to describe an outbreak of S. Cerro in a dairy

herd [15].

Heterogeneity in host–pathogen interaction (such

as heterogeneous infectious period and contagious-

ness) may play an important role in determining the

outcome of a Salmonella infection. Cattle with clinical

salmonellosis, which can shed up to 1010 c.f.u./g faeces

[16], may be responsible for amplifying environmental

contamination and therefore raising the challenge

exposure enough to cause large outbreaks in the herd

[10]. On the other hand, long-term persistence of

Salmonella in herds has been attributed to the pres-

ence of a few individuals that persistently excrete the

organism, and thus, removing those individuals has

been proposed as a control measure [11]. Hetero-

geneity in infection transmission has not been ad-

dressed in previous models [13, 15].

The overall objective of this study was to assess

how heterogeneity in infectious period and con-

tagiousness affect transmission dynamics of Salmonella

infection in dairy herds. In particular we addressed

the following questions: (1) What is the relative

importance of clinical and subclinical cases in the

transmission of the infection? (2) What is the role of

long-term shedders? (3) How can heterogeneity in

host infectiousness impact the efficiency of control

strategies such as vaccination? To address these

questions we developed a series of state transition

models (i.e. SIR models) in which different in-

fectious states representing current knowledge were

included.

MATERIAL AND METHODS

Models formulation

We developed three deterministic SIR models of

Salmonella transmission within cattle group. In an

SIR-type model, the host population is categorized

according to infection status into susceptible (S), in-

fected (I), and recovered (R) classes [12]. A latent state

was not included in the models as the latent period in

Salmonella infections is thought to be very short

(24–48 h), and therefore it has little impact on the in-

fection dynamics [12]. Infection with Salmonella can

result in clinical or subclinical disease [17]. For sub-

clinically infected animals, the duration of faecal

shedding can be highly variable [11, 18]. To account

for these differences, several I stages were included

in the models. Each of the I stages differ in several

parameter values, including infectious period and

‘transmission coefficient’, also known and defined

here as ‘b ’, describing the rate at which susceptible

hosts are ‘converted’ into infected hosts by their

contact with infectious material (defined as in [19]).

An assumption in assigning b for each infected stage

is that bacterial load is the only factor that varies

among infected stages, and thus other factors that

determine the probability of successful transmission

are identical.

The following assumptions are common to all three

models :

(1) The population size is constant as the recruitment

rate is equal to the exit rate. This reflects the

tendency of dairy farms to maintain a constant

herd size.

(2) All newly introduced animals are susceptible. In

reality, a replacement animal could be infected

and actually serve as a vehicle for introduction of

new infection into the herd. However, the purpose

of this study was not to evaluate sources for

Salmonella infection into the herd and a sim-

plifying assumption was accepted.

(3) Direct transmission is the only route of new

infection (i.e. vertical and indirect transmission

were not considered). Although the main route of

transmission is faecal–oral, and therefore infec-

tion is mostly acquired through contact with

bacteria shed in the environment (i.e. an indirect

exposure), an environment compartment is not

explicitly included in the model. We instead

assume one common environment in which

environmental proliferation is rather limited.
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In addition, the main objective is to assess the

relative contribution of different types of infected

animals to transmission, which would remain

unchanged whether or not we include indirect

route of infection. The potential for vertical

transmission was not included because it is

thought to be less important than other routes of

infection [20] and also because we modelled an

adult cow population.

We selected the transmission term to be ‘density-

dependent’, and thus the force of infection (l) is

represented by bI. This form was favoured because

increased prevalence of Salmonella infection has been

reported with increasing herd size [21, 22].

The ordinary differential equations describing the

three models are presented in Appendix 1. Two I states

were included in model 1: clinically infected (Ic) and

subclinically infected (Is) (Fig. 1) ; a fraction of the

infected animals was assumed to become Is immedi-

ately following infection, and all Ic were assumed to

become Is before full recovery. These states reflect the

biological reality that not all infected animals develop

clinical salmonellosis [17], and cattle that have re-

covered from clinical disease can continue to shed

Salmonella [23, 24]. Exposure to cattle with clinical

salmonellosis has been described as a risk factor for

development of salmonellosis [22, 25], as Ic may shed

larger quantities of c.f.u. than do Is. Therefore, it was

assumed that the transmission coefficient for Ic was

greater than for Is.

A third infected stage, termed long-term shedders

(Ilt), was included in addition to the Ic and Is
states in model 2 (Fig. 2). Long-term persistence of

Salmonella at farm level has been observed for several

serotypes, including MDR S. Newport [11] and

S. Dublin [9]. On farms with persistent Salmonella,

few animals without clinical signs were reported

to shed Salmonella persistently or intermittently.

Because animals at the Ilt stage do not present clinical

signs, their transmission coefficient was assumed to be

equivalent to the transmission coefficient for Is.
In model 3, an alternate third infected stage, termed

super-shedders (Iss), was included in addition to the Ic
and Is states (Fig. 3). For other bacteria within the

family Enterobacteriaceae, the term super-shedder

has been used to describe those animals that harbour

and shed bacteria at high levels [26]. Super-shedders

have a significant impact on the transmission dy-

namics of E. coli O157, and thus removal of high-

shedding individuals has been proposed as a control

measure [27]. For Salmonella, we hypothesized that a

fraction of the animals, after recovering from clinical

signs of disease, would continue to shed high numbers

of Salmonella for a long period of time. It is assumed

that the transmission coefficient for Iss is equal to the

transmission coefficient for Ic.

Model parameters

Model parameters are defined in Table 1 and mean

values and observed range are presented. Data from

a longitudinal study to determine the incidence of

S
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Fig. 1. Flow diagram representing model 1. Four transition
states are included: susceptible (S), clinically infected (Ic),
subclinically infected (Is) and recovered (R). Animals move
from S to Ic at rate f l1 and from S to Is at rate (1xf )l1,
where f is the proportion of infected animals that develop
clinical disease. Clinically infected animals progress to Is at
rate e. Animals in Is acquire immunity at rate h. The im-

munity of recovered animals wanes at rate r. Exit for all
compartments and replacement for compartment S takes
place at rate m. Animals in Ic also exit the compartment at

rate m.
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Fig. 2. Flow diagram representing model 2. Five transition
states are included: susceptible (S), clinically infected (Ic),
subclinically infected (Is), long-term shedders (Ilt) and re-

covered (R). Animals move from S to Ic at rate f l2 and from
S to Is at rate (1xf )l2, where f is the proportion of infected
animals that develop clinical disease. Clinically infected
animals progress to Is at rate e. Animals in Is either acquire

immunity at rate (1xflt)h or become Ilt at rate flth, where
flt is the proportion of Is that become Ilt. The immunity of
recovered animals wanes at rate r. Exit for all compartments

and replacement for compartment S takes place at rate m.
Animals in Ic also exit the compartment at rate m.
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salmonellosis in dairy cattle in the Northeastern

United States was used to estimate some of the par-

ameters [28]. Of 34 herds enrolled in the study,

22 farms with at least two laboratory-confirmed cases

of salmonellosis and on-farm individual cow milk

records were enrolled in a prospective follow-up study

to determine the duration of faecal shedding follow-

ing clinical salmonellosis. Diagnostic was established

by bacteriological culture of faecal samples. Faecal

samples from dairy cattle exhibiting clinical signs

of salmonellosis were collected at around monthly

intervals until three consecutive negative samples

were obtained or the animal was lost to follow-up

[24, 28]. Because no serological or faecal diagnostic

tests were available for all apparently healthy animals,

the actual size for all the compartments could not be

determined, and therefore the transmission coefficient

could not be calculated directly from the data.

The reciprocal of the duration of the clinical signs

was assigned as recovery rate for Ic. The mean dur-

ation of clinical signs was estimated to be 4 days based

on the literature [20] and by interviewing veterinarians

experienced in bovine medicine (T. Divers, C. Guard,

L. Warnick, personal communication). Data from the

two enrolled herds with the largest outbreaks were

used to estimate the remaining recovery rates, fraction

of long-term shedders ( flt) and super-shedders ( fss)

and diseased induced mortality rates. Recovery

rates for Is, Iss, and Ilt were estimated from the avail-

able Salmonella faecal shedding data. Duration of

Salmonella shedding was estimated by the Kaplan–

Meier life-test method; animals without three con-

secutive negative samples after the last positive

sample were right-censored [24]. The proportion of

animals shedding after clinical salmonellosis follows a

decay curve. To obtain the recovery rates for each

model, it was assumed that the decay curve was the

result of one or two populations (depending on the

model) shedding at given rates, and an exponential

compartment model based on the model structure was

fitted to the data:

(1) For model 1, since all infected animals after Ic
become Is, the proportion of animals shedding at

time t (P(t)) was fitted to one single exponential

decay curve,

P(t)=exht: (1)

(2) In model 2, there are two populations of animals

shedding sequentially. All animals in Is shed at

rate h, and a fraction of Is ( flt) continues to shed at

a rate hlt. Solving the corresponding system of dif-

ferential equations analytically gives the following

sequential irreversible compartmental model,

P(t)= 1x
h

hxhlt
flt

� �
exht+

h

hxhlt
flte

xhltt: (2)

(3) In model 3, there are two populations of animals

shedding simultaneously (Is and Iss), and there-

fore the decay curve is the sum of two exponential

decay curves,

P(t)=(1xfss)e
xht+fsse

xhsst (3)

The decay functions were fitted to the data by non-

linear regression, using the NLIN procedure of SAS

(SAS Institute, Cary, NC, USA). The Levenberg–

Marquard algorithm was used.

Salmonella-induced mortality rate was calculated

as the number of deaths which reported Salmonella as

the cause divided by the number of days at risk of

death times the number of cows at risk, where cows at

risk were defined as the animals with clinical signs

and days at risk of death were the mean duration of

clinical signs.

Models analysis and simulations

Both numerical and analytical techniques were used to

analyse and compare the models. For the numerical

S
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(1–fss)e
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fsse hss

h
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µ

µ
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fλ3
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Fig. 3. Flow diagram representing model 3. Five transition
states are included: susceptible (S), clinically infected (Ic),
subclinically infected (Is), super-shedders (Iss) and recovered

(R). Animals move from S to Ic at rate fl3 and from S to Is at
rate (1xf )l3, where f is the proportion of infected animals
that develop clinical disease. Clinically infected animals
progress to Is at rate (1xfss)e and to Iss at rate fsse, where fss
is the proportion of Ic that become Iss. Animals in Is acquire
immunity at rate h and Iss acquire immunity at rate hss. The
immunity of recovered animals wanes at rate r. Exit for all

compartments and replacement for compartment S takes
place at rate m. Animals in Ic also exit the compartment at
rate m.
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Table 1. List of parameters

Symbol Parameter definition (units)
Mean
value*

Estimated
range Models Sources

m Replacement and exit rate (dayx1) 0.0011 0.00078–0.0018 1, 2, 3 Data#

bc Transmission coefficient for clinical animals (animalx1 dayx1) 0.0016 — 1, 2, 3 Assumed$
bs Transmission coefficient for subclinical animals (animalx1 dayx1) 0.00006 — 1, 2, 3 Assumed$
blt Transmission coefficient for long term shedders (animalx1 dayx1) 0.00006 — 2 Assumed$

bss Transmission coefficient for super-shedders (animalx1 dayx1) 0.0016 — 3 Assumed$
f Proportion of infected animals that develop clinical disease (dimensionless) 0.50 — 1, 2, 3 Assumed
flt Proportion of subclinical cases that become long term shedders (dimensionless) 0.12 0.05–0.26 2 Outbreak data
fss Proportion of clinical cases that become super-shedders (dimensionless) 0.14 0.04–0.23 3 Outbreak data

e Rate of clinical cases that become subclinical (dayx1) 0.25 0.14–0.50 1, 2, 3 [20]/experts
h Recovery rate for subclinical cases (dayx1) 0.041· 0.0411–0.0419 1, 2, 3 Outbreak datak

(0.057) (0.047–0.093)

hlt Recovery rate for long-term shedders (dayx1) 0.01 0.006–0.012 2 Outbreak datak
hss Recovery rate for super-shedders (dayx1) 0.01 0.0059–0.012 3 Outbreak datak
m Disease induced mortality rate (dayx1) 0.011 0.006–0.016" 1, 2, 3 Outbreak data

r Immunity loss rate (dayx1) 0.01 0.007–0.015 1, 2, 3 [39]

* Value used when parameter was not varied in a simulation.
# Based on average lactating cows longevity in a convenience sample of New York herds (from Ambulatory and Production Medicine Services, Cornell University).
$ Based on iterative fitting of the model output to the available outbreak data.

· Estimated value for model 1. Estimated values for models 2 and 3 in parentheses.
k Faecal shedding data were fitted to equations (1), (2), and (3).
" Lower range value was estimated from an outbreak of Salmonella group C; Upper value was estimated from an outbreak of Salmonella group B.

1
5
0
0

C
.
L
a
n
za
s
a
n
d
o
th
ers

https://doi.org/10.1017/S0950268807000209 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0950268807000209


simulations, the median of the census of lactating

cows in farms with at least two clinical cases in the

longitudinal study [28] was used as the value for the

total population (N=345). Simulations started with a

complete susceptible population and the introduction

of one clinically infected animal. The models were

implemented and simulated with Vensim professional

version 5.0a (Ventana Systems Inc., Harvard, MA,

USA). A fourth-order Runge–Kutta method was

used for integration. We assessed the effect of chang-

ing the proportion of the different infected stages on

the pattern of prevalence of infection and clinical

disease and the relative contribution of each stage to

new infections. We tested values for the fractions f, flt
and fss greater than the range used on the sensitivity

analyses (¡25% from the mean) in order to explore

range of patterns of prevalence simulated by each

model. For model 1, we simulated the model with the

following arbitrarily chosen f values, 0.15 and 0.85.

For models 2 and 3, we used the values 0.05 and 0.25

for flt and fss.

The basic reproduction number (R0) is the average

number of secondary infections produced when one

infected individual is introduced into a wholly sus-

ceptible host population and is the threshold quantity

that determines when an infection can invade and

persist in a new host population [29]. If R0<1, an

infected individual produces less than one newly

infected individual on average over the course of its

infectious period, and therefore the infection cannot

invade or persist [29]. For a SIR model with one

category of infected individuals, R0 is the product

of the infection rate and the mean duration of the

infectious period. Because our models have several

categories of infected individuals (e.g. clinically and

subclinically infected individuals), the next-generation

method was used to obtain R0 expressions [29, 30] ;

Appendix 2 contains the derivation of R0. To assess

the potential impact of the heterogeneity of in-

fectiousness on a vaccination programme, the critical

proportion of the population to be immunized in

order to decrease R0 to below 1 (pc) was estimated for

each model. The efficacy for Salmonella vaccinations

is highly variable [31, 32], therefore pc was calculated

for different vaccination efficacies (W). In a popu-

lation with homogenous mixing, and with a vaccine

that is equally effective across all infectious stages,

pc is given by the expression [12],

pc=
1

w
1x

1

R0

� �
, (4)

R0 can be expressed as the sum of the contribution of

the clinical stage (R0c) and the contribution of the

other infected stages (R0ck), i.e.

R0=R0c+R0c0 : (5)

The eradication criterion in a homogenously mixed

population is [12]

(1xpc)R0c+(1xpc0)R0c0 : (6)

If we assume that the vaccines that attenuate the sev-

erity of the clinical cases but do not prevent infection

only reduce the transmission due to clinically infected

animals (i.e. pck=0), then pc is given by the expression,

pc=
1

w
1x

1xR0c0

R0c

� �
: (7)

If R0ck>1, then the reduction of the transmission

from the clinically infected individuals would not

be enough to prevent an epidemic or eliminate an

endemic infection.

Because the parameters were obtained either from

only two outbreaks or were assumed, we tested the

sensitivity of the predicted endemic prevalence of

infection and R0 to the parameters’ uncertainties.

We performed a global sensitivity analysis in which

all parameters tested were varied simultaneously

using Monte Carlo techniques [33]. Parameters were

described by uniform distribution with ¡25% from

the mean as the minimum and maximum values. The

sampling technique chosen for drawing the samples

from the distributions was the Latin Hypercube [34].

In order to relate the variation in the model outputs

to the parameters, a stepwise regression analysis was

used. Standard regression coefficients (SRC) were

used to rank the parameters. When models are linear

or moderately nonlinear (R2>0.70), SRC provide a

measure of importance of each parameter based on

the effect of moving each parameter away from

its mean value by a fixed fraction of its standard

deviation while retaining all the other parameters

at their mean value [33]. For all the models, the R2

for the stepwise regression was >0.95. Monte Carlo

simulations (200 iterations) were carried out in

Vensim professional version 5.0a (Ventana Systems

Inc.) and the REG procedure of SAS was used for the

stepwise regressions (SAS Institute, Cary, NC, USA).

RESULTS

Epidemic and endemic behaviour

The simulated prevalence of infection at the peak of

the epidemics and at the endemic stage using the mean

Model of Salmonella transmission 1501

https://doi.org/10.1017/S0950268807000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268807000209


parameter values from Table 1 were 0.18 and 0.08

for model 1, 0.16 and 0.10 for model 2 and 0.32 and

0.17 for model 3, respectively. Figure 4 shows the

simulated total prevalence of infection when the

fraction of newly infected individuals that develop

clinical diseases ( f ) was varied for model 1. When f

was low (0.15), subclinically infected animals were not

able to maintain the infection, and an outbreak did

not take place (predicted R0<1). On the other hand,

large f ( f=0.85) resulted in well-defined epidemics

that peaked early and were followed by damped

oscillations before reaching a steady state. Predicted

endemic prevalence was greater for large f. High b for

clinically infected animals and a faster recovery rate

for subclinically infected animals had a similar impact

to large f on the pattern of infection (results not

shown).

When the fraction of subclinically infected in-

dividuals that become long-term shedders ( flt) was

varied in model 2 (Fig. 5), the early stages of epi-

demics remained similar (<100 days) as the early

contribution of long-term shedders is relatively low

(Fig. 5b). High flt resulted in patterns in which

prevalence of infection increased almost mono-

tonically until it reached equilibrium; the prevalence

of infection at the peak and the prevalence at

equilibrium were very close (Fig. 5a).

The presence of super-shedders impacted both

the short-term epidemic dynamics and the endemic

stage fixed point (Fig. 6a), as a result of their high

contribution to transmission (Fig. 6b). When the

fraction of clinically infected animals that become

super-shedders ( fss) was 0.25, the probability that a

new infection was transmitted by a super-shedder

increased to 0.81 (Fig. 6b).

The relationship between population size and

predicted endemic prevalence was highly nonlinear

(Fig. 7). Models 1 and 2 had similar population size

threshold values (Ny215), while in model 3 the

presence of super-shedders decreased the threshold

value to 75 (Fig. 7). At large population size, the three

models predicted similar prevalence.

The impact of the parameter uncertainty on the

prevalence of infection at equilibrium was assessed

(Fig. 8). Models 1 and 2 behaved very similarly.

The standard deviation around the mean predicted

prevalence was the same, and the five parameters

ranked as most influential ( bc, e, f, h, r) were the same,

with similar SRC. On the other hand, model 3 pre-

dictions were also very sensitive to the parameters
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Fig. 5. (a) Simulated prevalence of infection with model 2

when the fraction of subclinically infected animals that be-
come long-term shedders ( flt) is 0.05 (. . . . . .), 0.12 (––––)
and 0.25 (– – –). (b) Probability that a newly infected case

arises from contact with a long-term shedder in model 2
when flt is 0.05 (. . . . . .), 0.12 (––––) and 0.25 (– – –).
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related to super-shedders (bss, fss, hss). All three

models were sensitive to the duration of immunity for

Salmonella (r).

Basic reproduction number and critical vaccination

thresholds

For models with several stages of infection such as the

ones presented in this paper, the i terms that make

up R0 expressions can be interpreted as the number

of new infections produced by a ‘typical ’ individual

during the time it spends in the ith infectious stage.

For model 1, the three terms of R0 expression rep-

resent the newly infected individuals produced by the

‘typical ’ infected individual while clinically sympto-

matic [first term, R0c in equation (5)], subclinically

infected (second term), and subclinically infected after

clinical recovery (third term) [equation (A 2.1)]. The

sum of the second and third terms represents R0ck in

equation (5). Using the mean parameter estimates

from Table 1, the three terms for model 1 were 1.05,

0.25, 0.23 and thus the estimatedR0 was 1.53; the mean

predictedR0 values were greater for model 2 (R0=1.62)

and model 3 (R0=4.7). In model 2, the contribution

of the long-term shedder stage to the newly infected

cases was 0.21 cases, while for model 3, the contri-

bution of the super-shedders was 3.32 new cases.

The sensitivity of R0 to the model parameters was

also explored (Fig. 9). The contribution of Ic toR0 was

the same for the three models (see Appendix 2).

Therefore altering bc resulted in an identical marginal

increase of R0 in the three models (with a R0 change of

0.66 units with each change of 10x4 units of bc).

However, bc rankings differed in the SRC analysis ;

for model 1, bc was the second most influential par-

ameter (SRC=0.50), first most influential parameter

(SRC=0.55) for model 2, and fifth for model 3

(SRC=0.09) (Fig. 9). The predicted R0 for model 3

had a more skewed distribution when uncertainty on

the parameters was included (Fig. 9). Model 3 was

very sensitive to bss, fss, and hss.

The critical vaccination thresholds [equations (4)

and (7)] were estimated for different scenarios

(Table 2). When low vaccine efficacy (w<0.50) was

assumed, vaccination was inefficient in preventing

an epidemic or eliminating an endemic infection,

particularly if the vaccine is assumed to reduce only

transmission from clinically ill animals. When the

vaccine efficacy was>0.75, vaccination was a feasible

control strategy for models 1 and 2. However,

the presence of super-shedders would complicate the

eradication of the infection. For model 3, only vacci-

nations that reduced transmission from all infected

animals and had perfect efficacy were able to reduce

R0 to <1.

DISCUSSION

The overall objective of this study was to address

the impact of heterogeneity of contagiousness and
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infectious period. Our approach consisted in the

development of deterministic compartment models, in

which heterogeneity was added by postulating differ-

ent homogenous infected subgroups. The dynamics

displayed by the models and threshold quantities were

studied.

Importance of the different infection stages on

Salmonella transmission

The three models exhibited different qualitative dy-

namic patterns. Model 1 was more prone to damped

oscillations, especially with a high fraction of clini-

cally infected animals, high transmission coefficients

or fast recovery rates. Model 2 tended to increase the

prevalence of infection until it reached the endemic

prevalence, with a less defined epidemic curve.

Model 3 simulated an epidemic with a well-defined

peak followed by high prevalence at equilibrium. All

these dynamic patterns are plausible for Salmonella,

whose epidemic behaviour at herd level range from

large clinical outbreaks to endemic persistence with-

out clinical cases. The range of prevalence of faecal

shedding and clinical disease reported in the literature

for Salmonella is also wide. The prevalence of faecal

shedding for MDR S. Newport in post-parturient

cows was 0.23 and 0.09 in two dairy farms with a

history of clinical disease [11]. Huston et al. [18] re-

ported prevalence of faecal shedding in adult cows as

high as 0.87 without clinical signs for farms infected

mostly with S. Kentucky and S. Cerro. This suggests

that the presence of different infected states is the
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result of the combined effect of host immunity, herd

and serotype characteristics.

Clinically infected animals were the main force

of transmission for models 1 and 2. Increasing the

number of clinically infected individuals resulted in

larger outbreaks and higher prevalence at the endemic

stage. The relevance of clinical cases on Salmonella

persistence has been outlined in previous studies.

In a case study, the prevalence was higher for the

two herds that had a previous history of clinical

salmonellosis [10]. Exposure to cattle with clinical

salmonellosis has been described as a risk factor for

both salmonellosis and Salmonella shedding [22, 25].

Diarrhoeic animals can shed Salmonella in a range of

108–1010 c.f.u./g faeces [16], which overlaps with the

order of magnitude of the reported oral challenge

doses for adult cattle (109–1011) [20]. In order to

simulate the high prevalence of subclinical infection

displayed by some serotypes (e.g. S. Cerro) in the

absence of clinically infected animals ( f=0), slower

recovery rates for subclinically infected animals and

long-term shedders than the values reported in Table

1 were necessary in our study.

Although heterogeneity in transmission has not

been previously addressed for Salmonella, extensive

work has been undertaken to investigate sources of

heterogeneity for Escherichia coli O157 [27, 35]. The

distribution of prevalence for E. coli O157 is over-

dispersed; most of the farms have low prevalence,

while a small proportion demonstrate high prevalence

of infection [35]. Matthews et al. [35] evaluated several

stochastic SIS models that included different sources
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of heterogeneity. Models that included between-

animal variability in infectious period failed to re-

produce the observed data. Similarly, simulations

with model 2 showed that only when long-term

shedders ( flt=0.12) had very slow recovery rates (i.e.

duration of shedding longer than 2 years), were they

able to maintain R0 >1, suggesting that the role a few

individuals with unusually long infectious period but

low contagiousness have on the persistence and

transmission of the infection may be overestimated.

On the other hand, models that incorporated either

farm or animal variability in transmission rates im-

proved the fit to the E. coli O157 prevalence data [35].

It was estimated that the fraction of animals with

higher transmission rates (50 times higher) was 0.05

[35] for E. coli O157. In model 3, we included the

super-shedder stage; based on our parameter esti-

mates from field data and model assumptions, those

super-shedders had both greater transmission rates

(26.7 times higher than Is) and longer infectious

periods (5.7 times longer than Is). It is reasonable to

assume that animals that shed Salmonella in greater

counts do so for a longer period of time. As has been

shown before [27, 36], those individuals would have

an important impact on the dynamics of transmission,

being responsible for y80% of the transmission

(Fig. 6b). Sensitivity analysis indicated that the as-

sumed high bss made model 3 very sensitive to the

recovery rate for Iss. (Figs 8, 9). In fitting the shedding

data, continuous shedding of Salmonella was as-

sumed. However, intermittent shedding of Salmonella

can also take place [17, 27], in which case, the total

duration of shedding would be shorter and therefore

recovery rates would be higher than the values

reported in Table 1.

Impact of heterogeneity on vaccination programmes

for Salmonella

An important implication of the presence of hetero-

geneity on the transmission of disease is that

individual-specific control measures designed to

target the most infectious individuals (e.g. isolation)

are more efficient at eradicating disease than are

population-wide control measures (e.g. random vac-

cination) [36, 37]. However, targeting specific sub-

groups to control Salmonella in a farm environment

may prove very challenging. There are difficulties in

identifying persistently infected individuals without

clinical signs. For example, in the case of S. Dublin,

the reported sensitivity of ELISA and bacterial

culture from faeces may be as low as 21–50%

and 6–14%, respectively in animals without clinical

symptoms [38]. Further, ill-conceived intervention

strategies may actually increase the prevalence of

infection; the isolation of clinically ill animals in joint

hospital and maternity pens has been reported to

favour Salmonella persistence [11]. Therefore, we

Table 2. Critical vaccination thresholds when vaccination is equally effective across all infectious stages (pc)

or only transmission from clinically infected animals is reduced ( pc(cl)) for the three models assuming different

vaccination efficacies (W) and group sizes (N)

W

0.25 0.5 0.75 1

pc pc(cl) pc pc(cl) pc pc(cl) pc pc(cl)

N=200
Model 1 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1

Model 2 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1 R0<1
Model 3 n.f. n.f. n.f. n.f. 0.84 n.f. 0.63 n.f.

N=345
Model 1 n.f. n.f. 0.70 n.f. 0.46 0.68 0.35 0.51

Model 2 n.f. n.f. 0.76 n.f. 0.51 0.78 0.38 0.58
Model 3 n.f. n.f. n.f. n.f. n.f. n.f. 0.79 n.f.

N=450
Model 1 n.f. n.f. 1 n.f. 0.67 0.97 0.50 0.73

Model 2 n.f. n.f. n.f. n.f. 0.70 n.f. 0.53 0.81
Model 3 n.f. n.f. n.f. n.f. n.f. n.f. 0.84 n.f.

n.f., Non-feasible, pc>1.
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focused on evaluating the impact that heterogeneity

has on population-wide control measures such as

vaccination when the objective of vaccination is to

eradicate an endemic Salmonella infection or prevent

its introduction in a completely susceptible popu-

lation.

The proportion of individuals that must be vacci-

nated to eliminate the infection is related to both R0

and vaccine efficacy. The objective of the simulated

scenarios (Table 2) was to compare models rather

than provide absolute vaccination threshold values.

Results indicated that vaccines with low efficacy

would be rather ineffective at providing protection

against persistent or invasive Salmonella infection.

High efficacy vaccines that either reduce transmission

from clinically ill animals or from all infective in-

dividuals were predicted to aid in eradicating infec-

tion for models 1 and 2. In one study comparing the

efficacy of a Salmonella bacterin and a modified live

Salmonella vaccine for adult cattle on a commercial

dairy, the bacterin did not have any effect on faecal

shedding; while the modified live vaccine was able to

reduced the frequency of faecal shedding for the same

serogroup by 25% [31]. This would not reach the

efficacy thresholds needed to eliminate infection as

predicted for models 1 and 2. However, we cannot

give a general recommendation regarding Salmonella

vaccination because our study did not addresses

economic factors such as vaccine costs and benefits

other than elimination of infection. In addition, key

data such as vaccine efficacy for current vaccines are

not available.

The presence of super-shedders decreases the

effectiveness of population-wide strategies, making

necessary the application of strategies that target this

specific group. The onset of large clinical outbreaks

may be associated with the presence of concurrent

diseases (e.g. metabolic diseases) or nutritional stress

[10, 17]. It is plausible that the super-shedder stage

of Salmonella could be associated with herd-level

characteristics that induce a generalized decrease on

the immunological resistance to Salmonella. In that

case, further work examining the factors that predis-

pose a herd to immunological incompetence against

Salmonella are a necessary step to design appropriate

control measures.

We demonstrated the impact of individual hetero-

geneity on Salmonella transmission dynamics and

eradication thresholds. Infected individuals with

clinical signs were the main force of infection and

transmission for models 1 and 2, thus demonstrating

that reducing transmission from Ic could be an effec-

tive way to reduce Salmonella prevalence. Long-term

shedders had a small impact on the transmission of the

infection and on the estimated vaccination thresholds,

while the presence of super-shedders increased R0 and

decreased the effectiveness of population-wide strat-

egies to reduce infection, making necessary the appli-

cation of strategies that target this specific group.

The question of which model is more appropriate to

describe Salmonella transmission under various con-

ditions remains contingent upon future findings. Data

on Salmonella counts for clinically infected animals

and apparently healthy animals in Salmonella out-

breaks would help to elucidate the relative contri-

bution of the infected stages to transmission. In

addition, because farms are small populations, large

fluctuations on the prevalence can occur by chance,

and therefore, stochastic approaches will be necessary

to move modelling efforts forward to determine the

presence of heterogeneity in Salmonella transmission.

APPENDIX 1

List of the differential equations for the state

transition models

Model 1

dS

dt
=mN+rRx( bcIc+bsIs+m)S, (A1:1)

dIc
dt

=f( bcIc+bsIs)Sx(e+m+m)Ic, (A1:2)

dIs
dt

=(1xf )( bcIc+bsIs)S+eIcx(h+m)Is, (A1:3)

dR

dt
=hIsx(r+m)R: (A1:4)

Model 2

dS

dt
=mN+rRx( bcIc+bsIs+bltIlt+m)S, (A1:5)

dIc
dt

=f( bcIc+bsIs+bltIlt)Sx(e+m+m)Ic, (A1:6)

dIs
dt

=(1xf )(bcIc+bsIs+bltIlt)S+eIcx(h+m)Is,

(A1:7)

dIlt
dt

=flthIsx(hlt+m)Ilt, (A1:8)
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dR

dt
=(1xflt)hIs+hltIltx(r+m)R: (A1:9)

Model 3

dS

dt
=mN+rRx( bcIc+bsIs+bssIss+m)S, (A1:10)

dIc
dt

=f (bcIc+bsIs+bssIss)Sx(e+m+m)Ic, (A1:11)

dIs
dt

=(1xf )( bcIc+bsIs+bssIss)S+(1xfss)eIc

x(h+m)Is, (A1:12)

dIss
dt

=fsseIcx(hss+m)Iss, (A1:13)

dR

dt
=hIs+hssIssx(r+m)R: (A1:14)

APPENDIX 2

The R0 expressions were obtained by using the next-generation matrix method [29, 30]. R0 is defined as the

spectral radius (dominant eigenvalue) of the next-generation matrix. To construct the next-generation matrix

(FVx1), we define the matrices F and V as follows:

F=
@Fi(x)

@xj

� �
x=x0

and V=
@Vi(x)

@xj

� �
x=x0

,

where the (i, j) entry of F is the rate at which infected individuals in compartment j produce new infections in

compartment i and the (i, j) entry of V is the net rate of change of animals in compartment i by any other means.

The rates are evaluated at the disease-free equilibrium x=x0. For model 1, F and V matrices are :

F=
fbcS0 fbsS0

(1xf )bcS0 (1xf )bsS0

� �

V=
e+m+m 0

xe h+m

� �
:

The next-generation matrix is then given by the product FVx1 .Vx1, which indicates the average time that an

individual spends in compartment i during its lifetime, is :

Vx1=

1

e+m+m
0

e

(e+m+m)(h+m)

1

h+m

2
664

3
775

and thus

FVx1=

fbcS0

e+m+m
+

febsS0

(e+m+m)(h+m)

fbsS0

h+m

(1xf )bcS0

(e+m+m)
+

(1xf )ebsS0

(e+m+m)(h+m)

(1xf )bsS0

h+m

2
664

3
775:

The dominant eigenvalue of the matrix FVx1 gives R0, which is obtained by solving the characteristic equation

(FVx1)IxLI=0 where L is the eigenvalue and I is the identity matrix. The characteristic equation is given by

fbcS0

e+m+m
+

(1xf )bsS0

h+m
+

febsS0

(e+m+m)(h+m)
xL

� �
L=0:

Thus the dominant eigenvalue is given by

Lmax=R0=
fbcS0

e+m+m
+

(1xf )bsS0

h+m
+

febsS0

(e+m+m)(h+m)
: (A2:1)

For model 2, F and V matrices are :

F=
fbcS0 fbsS0 fbltS0

(1xf )bcS0 (1xf )bsS0 (1xf )bltS0

0 0 0

0
@

1
A
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V=
e+m+m 0 0

xe h+m 0
0 xflth hlt+m

0
@

1
A:

The next-generation matrix is then given by the product FVx1. The characteristic equation for FVx1 is then

given by

fbcS0

e+m+m
+

febsS0

(e+m+m)(h+m)
+

feflthbltS0

(e+m+m)(h+m)(hlt+m)

�
+

(1xf )bsS0

h+m
+

(1xf )flthbltS0

(h+m)(hlt+m)
xL

�
L2=0:

Thus the dominant eigenvalue is given by

Lmax=R0=
fbcS0

e+m+m
+

(1xf )bsS0

h+m
+

febsS0

(e+m+m)(h+m)
+

(1xf )flthbltS0

(h+m)(hlt+m)
+

feflthbltS0

(e+m+m)(h+m)(hlt+m)
: (A2:2)

For model 3, F and V matrices are :

F=
fbcS0 fbsS0 fbssS0

1xfð ÞbcS0 1xfð ÞbsS0 1xfð ÞbssS0

0 0 0

0
@

1
A

V=
e+m+m 0 0
x(1xfss)e h+m 0

xfsse 0 hss+m

0
@

1
A:

The characteristic equation for the next-generation matrix FVx1 is given by

fbcS0

e+m+m
+

(1xf )bsS0

h+m
+

f(1xfss)ebsS0

(e+m+m)(h+m)

�
+

effssbssS0

(e+m+m)(hss+m)
xL

�
L2=0

Thus the dominant eigenvalue is given by

Lmax=R0=
fbcS0

e+m+m
+

(1xf )bsS0

h+m
+

f(1xfss)ebsS0

(e+m+m)(h+m)
+

effssbssS0

(e+m+m)(hss+m)
: (A2:3)
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