Y. Kitaoka

Nagoya Math. J.
Vol. 51 (1973), 79-89

TWO THEOREMS ON THE CLASS NUMBER OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. In this note we study the estimate from above and below and the asymptotic behaviour of the class number of positive definite integral quadratic forms.
1. Let S_{1}, S_{2} be positive definite matrices of degree m; then S_{1}, S_{2} are called equivalent (resp. equivalent in the narrow sense) if $S_{1}={ }^{t} T S_{2} T$ for some T in $G L(m, Z)$ (resp. $S L(m, Z)$). By definition $E(S)$ is the order of the unit group of S, i.e., the number of matrices in $G L(m, \boldsymbol{Z})$ such that ${ }^{t} T S T=S$. Let m, D be natural numbers; by $H_{m}(D)$ (resp. $h_{m}(D)$) we denote the number of equivalence classes (resp. equivalence classes in the narrow sense) in positive definite integral matrices of degree m and determinant D.

THEOREM 1. Let m be a natural number larger than 2 , and ε be any positive number. Then we have

$$
c_{1}(m) D^{(m-1) / 2} \leq H_{m}(D) \leq c_{2}(m, \varepsilon) D^{(m-1) / 2+\varepsilon},
$$

where $c_{1}(m)$ is a positive constant depending on m, and $c_{2}(m, \varepsilon)$ is a positive constant depending on m and ε. Moreover we can take 0 instead of ε if we consider cases of square-free D.

Corollary. For even m we have

$$
h_{m}(D) \sim * 2 H_{m}(D) \quad \text { as } D \rightarrow \infty
$$

Theorem 2. Let m be a natural number; then

$$
H_{m}(D) \sim 2 \sum \frac{1}{E(S)} \quad \text { as } D \rightarrow \infty
$$

Received October 30, 1972.
Revised February 12, 1973.
*) $f(x) \sim g(x)$ as $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
where S runs over a set of representatives of different equivalence classes in positive definite integral matrices of degree m and determinant D.

Corollary. Let m be an odd natural number. Then we have

$$
\lim _{\substack{D \rightarrow \infty \\ D: \text { odd } \\ \text { square-free }}} \frac{H_{m}(D)}{D^{(m-1) / 2}}=\pi^{-m(m+1) / 4} \prod_{k=1}^{m} \Gamma\left(\frac{k}{2}\right) \prod_{k=1}^{(m-1) / 2} \zeta(2 k),
$$

where $\zeta(s)$ is the Riemann zeta-function.
Remark. It is possible that we obtain the similar result to Theorem 2 for the number of classes in a genus on some assumptions (for example, on the assumption that D is square-free).
2. Lemma 1. The number of groups of finite order in $G L(m, Z)$ is finite up to conjugacy.

Proof. Let G be a group of finite order in $G L(m, Z)$ and S be the positive definite matrix $\sum_{A \in G}{ }^{t} A A$. Then there exists an element U in $G L(m, Z)$ such that ${ }^{t} U S U$ is reduced in the sense of Minkowski and the integral orthogonal group of ${ }^{t} U S U$ contains $U^{-1} G U$. From Satz 4 in [8], absolute values of all entries of $U^{-1} M U(M \in G)$ are not larger than some constant depending on m.
3. Proof of Theorem 1.

Let S be a positive definite integral matrix of degree m and determinant D. Then the mass $M(S)$ of S is by definition

$$
\sum \frac{1}{E\left(S_{k}\right)}
$$

where S_{k} runs over the representatives of equivalence classes in the genus of S, and it is well known ([7])

$$
M(S)=\frac{2 \Gamma(1 / 2) \Gamma(2 / 2) \cdots \Gamma(m / 2)}{\pi^{m(m+1) / 4} \Pi_{p} \alpha_{p}} \cdot D^{(m+1) / 2} \quad(m>1)
$$

where $\alpha_{p}=\alpha_{p}(S)$ is the density of S at the prime p and it is defined by

$$
\frac{1}{2} \lim _{\ell \rightarrow \infty}\left(p^{\ell}\right)^{-m(m-1) / 2} M\left(S ; p^{\ell}\right),
$$

where $M\left(S ; p^{\ell}\right)$ is the number of integral matrices $T \bmod p^{\ell}$ such that ${ }^{t} T S T \equiv S \bmod p^{\ell}$.

If p does not divide $2 D$, then we have ([3], [7])

$$
\alpha_{p}= \begin{cases}\prod_{k=1}^{(m-1) / 2}\left(1-p^{-2 k}\right) & m: \text { odd } \\ \left(1-\left(\frac{(-1)^{m / 2} D}{p}\right) p^{-m / 2}\right) \prod_{k=1}^{(m / 2)-1}\left(1-p^{-2 k}\right) & m: \text { even }\end{cases}
$$

If

$$
S \cong\left(\begin{array}{cc}
1_{m-2} & \tag{1}\\
& \varepsilon_{p} \\
& D \varepsilon_{p}^{-1}
\end{array}\right) \text { over } Z_{p} \text { for } p \mid D \text { and } p \neq 2
$$

where ε_{p} is a unit of \boldsymbol{Z}_{p},
then we have ([3])

$$
\alpha_{p}=2 D^{(p)} \begin{cases}\left(1-\left(\frac{(-1)^{(m-1) / 2} \varepsilon_{p}}{p}\right) p^{-(m-1) / 2}\right) \prod_{k=1}^{(m-1) / 2-1}\left(1-p^{-2 k}\right) & m: \text { odd } \\ \prod_{k=1}^{(m / 2)-1}\left(1-p^{-2 k}\right) & m: \text { even }\end{cases}
$$

where $D^{(p)}$ represents the p-part of D.
If $8 \mid D$, and

$$
S \cong\left(\begin{array}{ll}
A & \tag{2}\\
& D
\end{array}\right) \text { over } Z_{2}
$$

where A is unimodular over Z_{2} with determinant 1 , then by the similar proof to Hilfssatz 10, 11 in [3] we have

$$
M\left(S ; 2^{\ell}\right)=2^{\ell(m-1)} M\left(A ; 2^{\ell}\right) M\left(D ; 2^{\ell}\right),
$$

and so

$$
\alpha_{2}(S)=4 D^{(2)} \alpha_{2}(A),
$$

where $D^{(2)}$ represents the 2-part of D. Thus, on the assumption (2) if $8 \mid D$, we have

$$
\alpha_{2}(S) / D^{(2)} \leq c_{1},
$$

where c_{1} depends on only m. From now on, c_{i} represents a positive constant depending on only m, and $c_{i}(\varepsilon)$ depends on m and ε.

If S satisfies the above condition (1) for any odd prime p, then we have

$$
\prod_{p \neq 2} \alpha_{p}^{-1}= \begin{cases}\frac{D^{(2)}}{D} \prod_{k=1}^{(m-1) / 2} \zeta(2 k) \prod_{k=1}^{(m-1) / 2}\left(1-2^{-2 k}\right) \prod_{\substack{p \mid D \\
p \neq 2}} 2^{-1}\left(1-p^{-(m-1)}\right) & \\
\times\left(1-\left(\frac{(-1)^{(m-1) / 2} \varepsilon_{p}}{p}\right) p^{-(m-1) / 2}\right)^{-1} & m: \text { odd } \\
\frac{D^{(2)}}{D} \frac{1}{\prod_{\substack{p>D \\
p \neq 2}} \prod_{k=1}^{(m / 2)-1} \zeta(2 k) \cdot L\left(\frac{m}{2},\left(\frac{(-1)^{m / 2} D}{*}\right)\right)^{\left(\prod_{k=1}^{(m / 2)-1}\left(1-2^{-2 k}\right)\right.}} \begin{array}{ll}
& \times\left(1-\left(\frac{(-1)^{m / 2} D}{2}\right) 2^{-m / 2}\right)
\end{array} & m: \text { even } .\end{cases}
$$

Thus on the assumptions (1), and (2) if $8 \mid D$, the mass $M(S)$ satisfies

$$
M(S) \geq c_{2} D^{(m-1) / 2} \prod_{\substack{p \mid D \\ p \neq 2}} 2^{-1} \begin{cases}\prod_{\substack{p \mid D \\ p \neq 2}}\left(1+\left(\frac{-\varepsilon_{p}}{p}\right) p^{-1}\right) & m=3, \\ 1 & m \geq 4 .\end{cases}
$$

Therefore if the number of odd primes dividing D is zero or one, and S satisfies above conditions (1) and (2) if $8 \mid D$ (for example, $S=\left(\begin{array}{l}1_{m-1} \\ \\ \\ D\end{array}\right)$), then

$$
H_{m}(D) \geq M(S) \geq c_{3} D^{(m-1) / 2} \quad \text { for } m \geq 3
$$

Suppose that odd primes dividing D are $p_{1}, p_{2}, \cdots, p_{t}(t \geq 2)$, and put the p-part of $D=p^{u_{p}}$. If there exists j such that $u_{p_{j}}$ is odd, then for any given unit $\varepsilon_{p_{i}}$ of $Z_{p_{i}}(i \neq j)$ there exist a unit $\varepsilon_{p_{j}}$ of $Z_{p_{j}}$ and a positive definite integral matrix S with $|S|=D$ such that S satisfies the condition (1) and

$$
S \cong\left(\begin{array}{l}
1_{m-1} \\
\\
\\
\end{array}\right) \quad \text { over } Z_{2}
$$

If any $u_{p_{i}}$ is even, then for any given unit $\varepsilon_{p_{i}}$ of $Z_{p_{i}}$ there exist a unit ε_{2} of Z_{2} and a positive definite integral matrix S with $|S|=D$ such that S satisfies the condition (1) and

$$
S \cong\left(\begin{array}{cccc}
\mathbf{1}_{m-3} & & & \\
& \varepsilon_{2} & & \\
& & \varepsilon_{2}^{-1} & \\
& & & D
\end{array}\right) \text { over } \boldsymbol{Z}_{2}
$$

Hence we obtain

$$
H_{m}(D) \geq \sum_{\substack{\left(\frac{c_{p}}{p_{i}}\right)= \pm 1 \\ i \neq j}} M(S) \geq \frac{1}{2} c_{2} D^{(m-1) / 2} \quad \text { for } m \geq 4
$$

and for $m=3$

$$
\begin{aligned}
H_{m}(D) & \geq \sum_{\substack{\left(\frac{p_{p}}{p_{i}}\right)= \pm 1 \\
i \neq j}} M(S) \geq c_{2} D 2^{-t} \sum \prod_{i=1}^{t}\left(1+\left(\frac{-\varepsilon_{p_{i}}}{p_{i}}\right) p_{i}^{-1}\right) \\
& \geq c_{2} D 2^{-t-1} \sum \prod_{\substack{i=1 \\
i \neq j}}^{t}\left(1+\left(\frac{-\varepsilon_{p_{i}}}{p_{i}}\right) p_{i}^{-1}\right) \\
& =2^{-2} c_{2} D
\end{aligned}
$$

Thus, we have proved $H_{m}(D) \geq c_{4} D^{(m-1) / 2}$.
Let c_{5} be the maximal order of groups of finite order in $G L(m, \boldsymbol{Z})$. Then we have

$$
H_{m}(D) \leq c_{5} \sum M(S)
$$

where S runs over the representatives of genera of positive definite integral matrices of degree m and determinant D. This implies

$$
\begin{equation*}
H_{m}(D) \leq c_{6} D^{(m+1) / 2} \prod_{p \nmid 2 D} \alpha_{p}^{-1} \prod_{p \mid 2 D}\left(\sum \alpha_{p}^{-1}\right), \tag{3}
\end{equation*}
$$

where $\sum \alpha_{p}^{-1}$ is the sum of the inverses of densities of matrices, up to equivalence, over \boldsymbol{Z}_{p} of degree m and determinant D. On the other hand, we have

$$
\begin{aligned}
\prod_{p \nmid 2 D} \alpha_{p}^{-1}= & \begin{cases}\prod_{p \nmid 2 D} \prod_{k=1}^{(m-1) / 2}\left(1-p^{-2 k}\right)^{-1} & m: \text { odd }, \\
\prod_{p \nmid 2 D}\left(1-\left(\frac{(-1)^{m / 2} D}{p}\right) p^{-m / 2}\right)^{-1} \prod_{k=1}^{(m / 2)-1}\left(1-p^{-2 k}\right)^{-1} & m: \text { even }, \\
& \leq c_{7}\end{cases}
\end{aligned}
$$

Let

$$
S \cong\left(\begin{array}{lll}
p^{t_{1}} S_{1} & & \\
& \ddots & \\
& & \ddots \\
& & \\
p^{t_{s} S_{s}}
\end{array}\right) \text { over } Z_{p}, \quad(p \neq 2)
$$

where S_{i} are unimodular and $0 \leq t_{1}<t_{2}<\cdots<t_{s}$, and put $n_{i}=$ degree of $S_{i}, m_{i}=\sum_{k=i}^{s} n_{k}$. Then we get

$$
\alpha_{p}(S)=2^{s-1} p^{\alpha\left(t_{i}, n_{i}\right)} \prod_{i=1}^{s} \alpha_{p}\left(S_{i}\right) \quad \text { for odd prime } p
$$

where $\omega\left(t_{i}, n_{i}\right)=\sum_{k=1}^{s} t_{k} n_{k}\left(m_{k}-\left(n_{k}-1\right) / 2\right)$, and the sum $\sum \alpha_{p}^{-1}$ in (3) is

$$
\begin{aligned}
\sum: \alpha_{p}^{-1} & =\sum_{n_{k}, t_{k}} \sum_{\substack{\operatorname{deg} \sum_{i}=n_{k}\left(S_{i}\right) \\
i \\
i S_{i}|=D| D(p)}} \alpha_{p}^{-1} \\
& =\sum_{n_{k}, t_{k}} \frac{2^{1-s}}{p^{\omega\left(t t_{k}, n_{k}\right)}} \sum \prod_{k=1}^{s} \alpha_{p}\left(S_{k}\right)^{-1}
\end{aligned}
$$

We, now, estimate $\sum_{\hat{y}} \prod_{k=1}^{s} \alpha_{p}\left(S_{k}\right)^{-1}$:

$$
\begin{aligned}
& \sum \prod_{k=1}^{s} \alpha_{p}\left(S_{k}\right)^{-1} \\
& \quad=\sum_{n_{k}=2} \alpha_{p}\left(S_{k}\right)^{-1} \prod_{n_{k} \neq 2} \alpha_{p}\left(S_{k}\right)^{-1} \\
& =\sum_{n_{k}=2}\left(1-\left(\frac{-\left|S_{k}\right|}{p}\right) p^{-1}\right)^{-1} \prod_{n_{k} \neq 2} \alpha_{p}\left(S_{k}\right)^{-1} \\
& =\sum_{n_{k}=2}\left(1+\left(\frac{-\left|S_{k}\right|}{p}\right) p^{-1}\right)_{n_{k}=2}\left(1-p^{-2}\right)^{-1} \prod_{n_{n} \neq 2} \alpha_{p}\left(S_{k}\right)^{-1} \\
& \quad \leq\left\{\prod_{k=2}^{m}\left(1-p^{-k}\right)^{-1}\right\}^{c_{8}} \sum_{n_{k}=2}\left(1+\left(\frac{-\left|S_{k}\right|}{p}\right) p^{-1}\right) .
\end{aligned}
$$

If some n_{k} is not 2 , then we can take any unit of Z_{p} as $\left|S_{k}\right|$ for k satisfying $n_{k}=2$, and $\sum \prod_{n_{k}=2}\left(1+\left(\frac{-\left|S_{k}\right|}{p}\right) p^{-1}\right)=2^{s-1}$. If all n_{k} are 2 , then $\sum \prod_{k=1}^{s}\left(1+\left(\frac{-\left|S_{k}\right|}{p}\right) p^{-1}\right)=2^{s-1}\left(1+\left(\frac{(-1)^{m / 2} D / D^{(p)}}{p}\right) p^{-m / 2}\right)$. This implies

$$
\sum \alpha_{p}^{-1} \leq\left\{\prod_{k=2}^{m}\left(1-p^{-k}\right)^{-1}\right\}^{c_{9}} \sum_{n_{k}, t_{k}} \frac{1}{p^{\omega\left(t_{k}, n_{k}\right)}} \quad \text { for odd } p
$$

Put $D^{(p)}=p^{u_{p}}$, then $u_{p}=\sum n_{k} t_{k}$ and $\omega\left(t_{k}, n_{k}\right) \geq u_{p}$ and the equality arises if and only if $n_{1}=m-1, n_{2}=1, t_{1}=0$ and $t_{2}=u_{p}$.

If we confine ourselves to the case of square-free D, then we have $n_{1}=m-1, n_{2}=1, t_{1}=0$ and $t_{2}=u_{p}(=1)$. Hence in this case, we have

$$
\prod_{\substack{p \mid D \\ p \neq 2}} \sum \alpha_{p}^{-1} \leq c_{10} D^{(2)} / D
$$

We come back to the case of general D. Let β_{s} be the number of partitions $m=\sum_{i=1}^{s} n_{i}, n_{i}>0$, and put $\ell=\omega\left(t_{k}, n_{k}\right)-u_{p}=t_{s} n_{s}\left(n_{s}-1\right) / 2$ $+\sum_{k=1}^{s-1} t_{k} n_{k}\left(m_{k}-\left(n_{k}+1\right) / 2\right)$; then in case of $s>1$, we have $t_{s-1} \leq \ell$ and $0 \leq t_{s-i} \leq \ell-i+1$. This implies that the number of systems $\left\{t_{k}\right\}_{k=1}^{s}$ such that $\ell=\omega\left(t_{k}, n_{k}\right)-u_{p}$ for some n_{k} satisfying $\sum_{k=1}^{s} n_{k}=m, n_{k}>0$, $\sum n_{k} t_{k}=u_{p}$, and $0 \leq t_{1}<t_{2}<\cdots<t_{s}$ is at most $(\ell+1) \ell(\ell-1) \cdots$ $(\ell-s+3)$. Therefore we get

$$
\begin{aligned}
\sum_{n_{k}, l_{k}} p^{-\omega\left(t_{k}, n_{k}\right)} & \leq \frac{1}{D^{(p)}}\left\{\sum_{s=2}^{m} \beta_{s} \sum_{\ell=s-2}^{\infty} \frac{(\ell+1) \ell \cdots(\ell-s+3)}{p^{\ell}}\right\}+p^{-u_{p}(m+1) / 2} \\
& =\frac{1}{D^{(p)}}\left\{\sum_{s=2}^{m} \beta_{s} \frac{(s-1)!}{(p-1)^{s}} p^{2}+p^{-u_{p}(m-1) / 2}\right\},
\end{aligned}
$$

and finally we have

$$
\prod_{\substack{p \mid D \\ p \neq 2}} \sum \alpha_{p}^{-1} \leq c_{10}(\varepsilon)\left(\frac{D^{(2)}}{D}\right)^{1-s}
$$

Now we estimate $\sum \alpha_{2}^{-1}$:
Let $S \cong\binom{S_{1}}{S_{2}}$ over Z_{2} and S_{1} is unimodular of degree n and $S_{2} \equiv 0(2)$; then from the similar proof of Hilfssatz 10, 11 in [3] it follows that

$$
M\left(S ; 2^{\ell}\right) \geq\left(2^{\ell-1}\right)^{(m-n) n} M\left(S_{1} ; 2^{\ell}\right) M\left(S_{2} ; 2^{\ell}\right)
$$

and so $\alpha_{2}(S) \geq 2^{1-(m-n) n} \alpha_{2}\left(S_{1}\right) \alpha_{2}\left(S_{2}\right)$. Let

$$
S \cong\left(\begin{array}{llll}
2^{t_{1}} S_{1} & & & \\
& \ddots & \\
& & \ddots & \\
& & & 2^{t_{s} S_{s}}
\end{array}\right) \text { over } Z_{2}
$$

where S_{i} are unimodular and $0 \leq t_{1}<\cdots<t_{s}$ and put $n_{i}=$ degree of S_{i} and $m_{i}=\sum_{k=i}^{s} n_{k} ;$ then we get

$$
\alpha_{2}(S)^{-1} \leq 2^{-(s-1)-\omega\left(t k_{k}, n_{k}\right)+{ }_{k=1}^{s}{ }_{k=1}^{-1} n_{k} m_{k+1}} \prod \alpha_{2}\left(S_{i}\right)^{-1}
$$

The number of unimodular matrices, up to equivalence, of degree $\leq m$, and the number of partitions $\sum_{i=1}^{s} n_{i}=m$, are finite, hence we get

$$
\begin{aligned}
\sum \alpha_{2}(S)^{-1} & \leq c_{11} \sum 2^{-\omega\left(t_{k}, n_{k}\right)} \\
& \leq c_{12} \frac{1}{D^{(2)}}
\end{aligned}
$$

From these we have

$$
H_{m}(D) \leq c_{13}(\varepsilon) D^{(m-1) / 2+\varepsilon} .
$$

4. Lemma 2. Let L be a positive definite quadratic lattice over \boldsymbol{Z}, and suppose that there is a non-trivial isometry σ of L such that σ has 1 as an eigenvalue of σ. Then there exist non-zero two sublattices L_{1}, L_{2} such that

$$
L \supset L_{1} \perp L_{2} \supset c_{14} L,
$$

where c_{14} is a natural number depending on the rank of L.
Proof. Let n be the order of σ. Then n is not larger than some constant depending on the rank of L. The assumption implies $\sum_{i=1}^{n} \sigma^{i}$ $\neq 0$. Put $L_{0}=\{x \in L ; \sigma x=x\}$. Then $L_{0} \neq 0$, since there exists some x in L such that $\sum_{i=1}^{n} \sigma^{i} x \neq 0$, and the rank of L_{0} is not equal to the rank of L. For any element x in $L, \sum_{i=1}^{n} \sigma^{i} x$ is in L_{0}, and $n x-\sum_{i=1}^{n} \sigma^{i} x$ is in L_{0}^{\perp}. This means

$$
L \supset L_{0} \perp L_{0}^{\perp} \supset n L
$$

Remark. $L \supset L_{1} \perp L_{2} \supset c_{14} L$ is equivalent to

$$
L_{1} \perp L_{2} \supset c_{14} L \supset c_{14}\left(L_{1} \perp L_{2}\right) .
$$

5. Lemma 3. By $H_{m}^{0}(D)$ we denote the number of equivalence classes of positive definite integral matrices of degree m and determinant D which have a non-trivial unit with 1 as an eigenvalue. Then we have

$$
H_{m}^{0}(D) \leq c_{15}(\varepsilon) D^{(m-2) / 2+\varepsilon} \quad \text { for any } \varepsilon>0
$$

Proof. For $m=2, c_{16}(\varepsilon) D^{1 / 2-\varepsilon} \leq H_{2}(D) \leq c_{17}(\varepsilon) D^{1 / 2+\varepsilon}$ for any $\varepsilon>0$ is proved by Siegel. From Lemma 2 it follows

$$
\begin{aligned}
& H_{m}^{0}(D) \leq c_{14}^{m} \sum_{a=1}^{c_{14}^{2 m}} \sum_{b=1}^{[m / 2]} \sum_{c \mid a D} H_{b}(c) H_{m-b}(a D / c) \\
& \leq c_{18}(\varepsilon) \sum_{a=1}^{c_{1}^{2 m}[m / 2]} \sum_{b=1}^{c_{1}}(a D)^{(m-b-1) / 2+\varepsilon} \sum_{c \mid a D} c^{(2 b \cdot m) / 2} \\
& \leq c_{19}(\varepsilon) \sum_{a=1}^{c_{12}^{2 m}} a^{(m-2) / 2+2 \varepsilon} D^{(m-2) / 2+2 \epsilon} \\
& \leq c_{20}(\varepsilon) D^{(m-2) / 2+2 \epsilon} .
\end{aligned}
$$

6. Proof of Corollary of Theorem 1.

Let S be a positive definite integral matrix of even degree m and
determinant D. Suppose that any matrix which is equivalent to S is always equivalent to S in the narrow sense; then the unit group of S contains a unit of whose determinant is -1 . This implies that the difference $2 H_{m}(D)-h_{m}(D)$ is at most the number of equivalence classes which have a unit of determinant -1. From Lemma 3 and Theorem 1 follows our corollary.

7. Proof of Theorem 2

In case of $m=2$, let $S=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ and $D=a c-b^{2}$ and $c \geq a \geq 2|b|$. Since $E(S)>2$ implies $c=a$ or $a=|2 b|$, the number of equivalence classes which have a non-trivial unit is at most $c_{21}(\varepsilon) D^{\varepsilon}$ for any $\varepsilon>0$. This completes the proof in case of $m=2$. From Lemma 3 it is sufficient to prove Theorem 2 that we estimate the number of equivalence classes such that they have a non-trivial unit and any non-trivial unit has not 1 as an eigenvalue. Let S be such a matrix, and L be a lattice over Z corresponding to S. We denote the orthogonal group of L (= the unit group of S) by G. From the assumption, we see that G contains a unit σ such that σ has not 1 as an eigenvalue and the order q of σ is an odd prime or 4 . If $q=4$, then $\sigma^{2}=-1$. If $q \neq 4$, then $\sigma+\cdots$ $+\sigma^{q}=0$. Hence the ring $Z[\sigma]$ is isomorphic to the maximal order O of $Q(\sqrt[q]{1})$. Since, then, L is a torsion-free O-module, from the theory of modules over Dedekind domain it follows that L is O-isomorphic to a direct sum of ideals of $Q(\sqrt[q]{1})$:

$$
L \cong A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}
$$

where $A_{1}=\cdots=A_{n-1}=O$, and the ideal A_{n} is a (fixed) representative of some ideal class. (This ideal class is uniquely determined by L.) This identification transforms S to a totally positive definite Hermitian matrix $H(S)=\left(h_{i j}\right)$ with $h_{i j}$ in $\left(A_{i} \bar{A}_{j} \theta\right)^{-1}$, where the bar denotes the complex conjugate and θ is the different of $Q(\sqrt[q]{1})$. Moreover if S_{1}, S_{2} are equivalent and have σ as a unit and $S_{1}=S_{2}[T]$ for some T in $G L(m, Z)$ satisfying $\sigma T=\sigma T$, then for corresponding Hermitian forms $H\left(S_{1}\right), H\left(S_{2}\right)$ there exists a matrix $X=\left(x_{i j}\right)$ such that

$$
H\left(S_{1}\right)=X H\left(S_{2}\right)^{t} \bar{X}, \quad \text { and } \quad x_{i j}, x_{i j}^{\prime} \in A_{i}^{-1} A_{j}
$$

where $\left(x_{i j}^{\prime}\right)=X^{-1}$. We remark that there is a natural number c such that all entries of $c H(S)$ are integers in $Q(\sqrt[q]{1})$, and the group $G=\{X$
$=\left(x_{i j}\right) ; x_{i j}, x_{i j}^{\prime} \in A_{i}^{-1} A_{j}$, where $\left.\left(x_{i j}^{\prime}\right)=X^{-1}\right\}$ and $G L(n, O)$ are commensurable. On the other hand, any totally positive definite Hermitian matrix is equivalent (with respect to $G L(n, O)$) to some element in $\bigcup_{i=1}^{d} S\left\{X_{i}\right\}$, where S is a sufficiently large Siegel domain and X_{i} is a non-singular integral matrix. (S, X_{i}, d depend on only q and n.) This implies that the class number of positive definite Hermitian forms with the norm of determinant $\leq D$ is at most $c(q) D^{n / 2}$, where the constant $c(q)$ depends on only q. From these it follows that the number of equivalence classes in which there is some positive definite matrix S such that S has σ as a unit and $|S| \leq D$ is at most $c_{22} D^{n / 2}$. Since $m>2$ implies $n<m-1$, we have proved Theorem 2.

7. Proof of Corollary of Theorem 2.

It is easy to calculate the mass of square-free and odd determinant by using [3], [6]:

$$
\begin{aligned}
\sum_{S} \frac{1}{E(S)}= & \frac{D^{(m-1) / 2}}{4 \pi^{m(m+1) / 4}} \prod_{k=1}^{m} \Gamma\left(\frac{k}{2}\right) \prod_{k=1}^{(m-1) / 2} \zeta(2 k) \\
& \times\left\{\left(1+2^{-(m-1) / 2}\right)\left(1+\delta\left(\frac{-1}{D}\right)^{\frac{m+1}{2}} D^{-(m-1) / 2}\right)\right. \\
& \left.+\left(1-2^{-(m-1) / 2}\right)\left(1-\delta\left(\frac{-1}{D}\right)^{\frac{m+1}{2}} D^{-(m-1) / 2}\right)\right\}
\end{aligned}
$$

where S runs over a set of representatives of classes of positive definite integral matricies of odd degree $m \geq 3$ and of square-free and odd determinant D, and $\delta=(-1)^{(n+1)(n+2) / 2+((D-1) / 2) n}(n=(m-3) / 2)$. Corollary follows from this.

References

[1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Pub., 1962.
[2] M. Kneser, Klassenzahlen quadratischer Formen, Jahresbericht d. DMV, 61 (1958), 76-88.
[3] O. Körner, Die Maße der Geschlechter quadratischer Formen vom Range ≤ 3 in quadratischen Zahlkörpern, Math. Ann., 193 (1971), 279-314.
[4] H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, J. reine angew. Math., 129 (1905), 220-274.
[5] O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
[6] H. Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern, Jour. number theory 3 (1971), 371-411.
[7] C. L. Siegel, Über die añalytische Theorie der quadratischen Formen, Ann. Math., 36 (1935), 527-606.
[8] C. L. Siegel, Einheiten quadratischer Formen, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 209-239.
[9] A. Weil, Discontinuous subgroups of classical groups, Lecture at the University of Chicago, 1958.

Nagoya University

