TWISTED HILBERT SPACES

Félix Cabello Sánchez

Abstract

A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y such that the corresponding quotient is isomorphic to Z. A twisted Hilbert space is a twisted sum of Hilbert spaces. We prove the following tongue-twister: there exists a twisted sum of two subspaces of a twisted Hilbert space that is not isomorphic to a subspace of a twisted Hilbert space. In other words, being a subspace of a twisted Hilbert space is not a three-space property.

Introduction

A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y whose corresponding quotient is isomorphic to Z, or else, if there exists an exact sequence

$$
0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0
$$

where the arrows represent bounded linear operators. This note is about "twisted" Hilbert spaces (that is, twisted sums of Hilbert spaces). We construct a twisted sum of two subspaces of twisted Hilbert spaces that cannot be embedded in a twisted Hilbert space, thus answering in part to a question of Castillo, González and Yost [1, p.95].

The example

The example is based on the space Z_{2} of Kalton and Peck [4] whose construction we briefly sketch. Consider the homogeneous map $F: l_{2} \rightarrow l_{2}$ defined as

$$
F\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n}\left(\log \|x\|-\log \left|x_{i}\right|\right) x_{i} e_{i}
$$

It can be proved that for $x, y \in l_{2}$ one has

$$
\|F(x+y)-F x-F y\| \leqslant K(\|x\|+\|y\|)
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.
so that F is quasi-linear. Observe that F is only defined for finitely supported sequences. It can be extended to the whole of l_{2} keeping quasi-linearity ($[4]$, [1, p.90]). The space Z_{2} is $l_{2} \oplus_{F} l_{2}$, that is, the product space $l_{2} \times l_{2}$ equipped with the quasi-norm

$$
\|(y, z)\|_{F}=\|y-F z\|_{2}+\|z\|_{2}
$$

Actually this is only a quasi-norm, but it is equivalent to a norm by results of Kalton ($[3],\left[1\right.$, p.19]). Observe that Z_{2} contains an isometric copy of l_{2} (the subspace $\{(y, 0)$: $\left.y \in l_{2}\right\}$) whose corresponding quotient is also isometric to l_{2}, so that there is an exact sequence

$$
0 \rightarrow l_{2} \rightarrow Z_{2} \rightarrow l_{2} \rightarrow 0
$$

Kalton and Peck proved that this sequence does not split and therefore Z_{2} is a twisted Hilbert space but not itself a Hilbert space. (An earlier example was given by Enflo, Lindenstrauss and Pisier [2], [1, p.82].)

Consider now the subspace Z of Z_{2} spanned by the sequence $\left\{\left(0, e_{i}\right)\right\}$, where $\left\{e_{i}\right\}$ is the standard basis of l_{2}. (This space is isomorphic to the Orlicz sequence space l_{M}, being $M(t)=(t \log t)^{2},[4$, Lemma 5.3$]$ but the following description of Z will simplify the exposition.) We want to see that $\left(0, e_{i}\right)$ is a symmetric basis. That $\left\{\left(0, e_{i}\right)\right\}$ is a basic sequence is an immediate consequence of Nikolskii's criterion since, for $n<m$, one has

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} x_{i}\left(0, e_{i}\right)\right\|_{F} & =\left\|F\left(\sum_{i=1}^{n} x_{i} e_{i}\right)\right\|_{2}+\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{2} \\
& \leqslant\left\|F\left(\sum_{i=1}^{m} x_{i} e_{i}\right)\right\|_{2}+\left\|\sum_{i=1}^{m} x_{i} e_{i}\right\|_{2} \\
& =\left\|\sum_{i=1}^{m} x_{i}\left(0, e_{i}\right)\right\|_{F}
\end{aligned}
$$

Moreover, for every permutation π of the integers and every choice of signs $\sigma_{i}= \pm 1$, one has

$$
\left\|\sum_{i=1}^{n} x_{i}\left(0, e_{i}\right)\right\|_{F}=\left\|\sum_{i=1}^{n} \sigma_{i} x_{i}\left(0, e_{\pi(i)}\right)\right\|_{F}
$$

since l_{2} has symmetric norm:

$$
\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{2}=\left\|\sum_{i=1}^{n} \sigma_{i} x_{i} e_{\pi(i)}\right\|_{2}
$$

and also

$$
\left\|F\left(\sum_{i=1}^{n} x_{i} e_{i}\right)\right\|_{2}=\left\|F\left(\sum_{i=1}^{n} \sigma_{i} x_{i} e_{\pi(i)}\right)\right\|_{2}
$$

Hence $\left\{\left(0, e_{i}\right)\right\}$ is a symmetric basis (even with symmetric norm). We identify Z with a sequence space via the basis which we denote by $\left\{\nu_{n}\right\}$ (instead of $\left\{\left(0, e_{n}\right)\right\}$). The (quasi)-norm of Z will be denoted by $\|\cdot\|_{Z}$. It is not hard to verify that Z satisfies the following three conditions:
(a) $\left\|\nu_{n}\right\|_{Z}=1$ for all n;
(b) $\|z\|_{\infty} \leqslant C\|z\|_{z}$ for some C and all $z \in Z$;
(c) $\|s z\|_{Z} \leqslant M\|s\|_{\infty}\|z\|_{Z}$ for some M and all $s \in l_{\infty}, z \in Z$,
so that the method of [4] still works. Define for $z=\sum_{i=1}^{n} z_{i} \nu_{i}$

$$
G(z)=\sum_{i=1}^{n}\left(\log \|z\|_{Z}-\log \left|z_{i}\right|\right) z_{i} \nu_{i}
$$

Then G is quasi-linear on the finitely supported sequences of Z and can be extended to a quasi-linear map $G: Z \rightarrow Z$. Let $Z \oplus_{G} Z$ be the twisted sum induced by G, that is, the algebraic product space $Z \times Z$ endowed with the quasi-norm

$$
\|(y, z)\|_{B}=\|y-G z\|_{Z}+\|z\|_{Z}
$$

which is always equivalent to a norm.

Claim. The space $Z \oplus_{G} Z$ cannot be embedded in a twisted Hilbert space.
Proof: Let us estimate the cotype 2 constants which are the least numbers $a_{n, 2}$ such that, for x_{1}, \ldots, x_{n} in $Z \oplus_{G} Z$,

$$
\left[\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\|^{2} d t\right]^{1 / 2} \leqslant a_{n, 2}\left[\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right]^{1 / 2}
$$

where r_{i} is the sequence of Rademacher functions. Take $x_{i}=\left(0, \nu_{i}\right)$. Then

$$
\sum_{i=1}^{n}\left\|x_{i}\right\|_{G}^{2}=n
$$

while

$$
\begin{aligned}
\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\|_{G}^{2} d t & =\int_{0}^{1}\left\|\left(0, \sum_{i=1}^{n} r_{i}(t) \nu_{i}\right)\right\|_{G}^{2} d t \\
& \geqslant \int_{0}^{1}\left\|G\left(\sum_{i=1}^{n} r_{i}(t) \nu_{i}\right)\right\|_{Z}^{2} d t \\
& =\int_{0}^{1}\left\|\sum_{i=1}^{n}\left\{\log \left\|\sum_{j=1}^{n} r_{j}(t) \nu_{j}\right\|_{Z}\right\} r_{i}(t) \nu_{i}\right\|_{Z}^{2} d t \\
& =\int_{0}^{1}\left[\left\|\sum_{i=1}^{n} r_{i}(t) \nu_{i}\right\|_{Z} \log \left\|\sum_{j=1}^{n} r_{j}(t) \nu_{j}\right\|_{Z}\right]^{2} d t \\
& =\left[\left\|\sum_{i=1}^{n} \nu_{i}\right\|_{Z} \log \left\|\sum_{i=1}^{n} \nu_{i}\right\|_{Z}\right]^{2} \\
& \geqslant \frac{1}{16} n \log ^{4}(n)
\end{aligned}
$$

since a straightforward computation shows that $\left\|\sum_{i=1}^{n} \nu_{i}\right\|_{Z} \geqslant\left(n^{1 / 2} \log n\right) / 2$. This obviously implies that $a_{n, 2}\left(Z \oplus_{G} Z\right) \geqslant c \log ^{2} n$. But Kalton and Peck proved in [4, Theorem 6.2 (a)] that for a twisted Hilbert space T one has $a_{n, 2}(T) \leqslant C \log n$. Hence $Z \oplus_{G} Z$ is not a subspace of a twisted Hilbert space and the proof is complete.

References

[1] J.M.F. Castillo and M. Gonzáles, Three-space problems in Banach space theory, Lecture Notes in Mathematics 1667 (Springer Verlag, Berlin, Heidelberg, New York, 1997).
[2] P. Enflo, J. Lindenstrauss and G. Pisier, 'On the "three-space" problem', Math. Scand. 36 (1975), 199-210.
[3] N.J. Kalton, 'The three space problem for locally bounded F-spaces', Compositio Math. 37 (1978), 243-276.
[4] N.J. Kalton and N.T. Peck, 'Twisted sums of sequence spaces and the three space problem', Trans. Amer. Math. Soc. 255 (1979), 1-30.

Departamento de Matemáticas
Universidad de Extremadura
Avda de Elvas s/n
06071 Badajoz
Spain
e-mail: fcabello@unex.es

[^0]: Received 20th April, 1998
 The author was supported in part by DGICYT project PB94-1052-C02-02.

