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MORE ON FATOU'S LEMMA IN SEVERAL DIMENSIONS 

BY 

ERIK J. BALDER 

ABSTRACT. Recently, Balder proved a version of FatoiTs lemma in 
several dimensions which, inter alia, generalizes a version of this lemma 
due to Artstein. Here we show how the latter result can be used to derive 
the former, by using Chacon's biting lemma. 

1. Introduction. Let (O, 3% |x) be a finite measure space and let i£™ = (!£\(fl))m 

stand for the space of all jx-integrable functions from fl into Um. For any / = 
( / ' , . . . ,/m) in iC7 w e denote b y / - E i£'," the function consisting of the negative parts 
(coordinatewise) off, i.e., ( /") ' = ( / ' )" = max(-/ ' ,0) , 1 ^ / ^ m\ similarly, we 
define / + = (—/)". Unless mentioned otherwise, all operations and relations in lRm 

(such as limits, integration, inequalities, etc.) are understood to take place or hold 
coordinatewise. 

Recently, the present author gave the following result [3], [4, Cor. 3.9]: 

THEOREM 1. Suppose that {fk} is a sequence in i£7 sucn tnat 

(1) lim \ fk d\k exists (in Um), 

(2) {/7} is uniformly integrable. 

Then there exists a function f* in !£" such that 

(3) f /* d\i ^ lim f fkdii, 

(4) /*(w) is a limit point of{fk((ù)} a.e. in il. 

This version of Fatou's lemma in several dimensions, as it is called, generalizes the 
original result due to Schmeidler [12], as well as later versions of Hildenbrand-Mertens 
[9], [10], Artstein [1], and Cesari-Suryanarayana [8]. As can be learned from the case 
m — 1, when Theorem 1 is equivalent to Fatou's classical lemma [2, Thm. 7.5.2], 
Theorem 1 is the sharpest possible result of its kind. We refer the interested reader to 
[9] and [3], [5] for some applications of this result to existence problems in mathe
matical economics and optimal control theory. 
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The method of proof introduced in [3], [4] constitutes a departure from the earlier 
lines of approach. Thus it is a very natural question (posed to the author by Zvi Artstein) 
to ask how the earlier methods can be strengthened so as to yield the same result. The 
purpose of this note is to provide an answer to this question: we show that Artstein's 
version of the multidimensional Fatou lemma (cf. Theorem 2 below) implies 
Theorem 1, its more general counterpart, by using Chacon's biting lemma [7]: 

BITING LEMMA. Suppose that {gk} is a sequence in i£,(ft) such that 

sup \gk\d\i < +°°. 
* Jn 

Then there exist a function g* in $£l (fî), a subsequence {kj} of{k}, and a nonincreasing 
sequence {Bp} of sets in 3% |x(Dj=, Bp) = 0, such that for every p 

(5) lim [ gk.hd[i = \ g*hd\L for all h G ^„(ft). 
; Jn\Bp

 J Jn\Bp 

In the Appendix to this note we present an elegant proof of Chacon's biting lemma, 
due to W. Thomsen and D. Plachky [11, pp. 201 —202], which is entirely based on the 
Yosida-Hewitt decomposition theorem. It is reproduced here, in the English language, 
with their kind permission. 

As we have mentioned above, our starting point for proving Theorem 1 in this note 
is the following multidimensional Fatou lemma, due to Artstein [1], which generalizes 
a similar result of Hildenbrand-Mertens [10]. 

THEOREM 2. Suppose that {4>J is a sequence in i£7 sucn tnat 

lim $kd[L exists, 
k Jn 

{<\>k} is uniformly integrable. 

Then there exists a function $* E i£7 such that 

$*d\L = lim 4>*d|x, 

((^(a)) is a limit point of{$k((û)} a.e. in 12. 

As we noted in [3] for the converse direction of proof, Theorem 1 immediately 
implies Theorem 2 by taking/* = ($k, — <$>k). 

2. Proof of Theorem 1 by Theorem 2. First we note that by (1) for every /, 
1 ^ i ^ m, 

sup f (ft)ld\L < +oo. 
k Jn 

By m-fold application of the biting lemma, there exist a function g* in !£™, a sub
sequence {kj} of {k}, and a nonincreasing sequence {Bp} of sets in 9% |x(Hp Bp) = 0, 
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such that for every i, I ^ i ^ m, and p 

(6) lim f (ftydiL = f s i du for all AE&. 
i J r n A J r n A j JCnHA 

Here Cp = £l\Bp; we shall also write Dp = Cp+l\Cp. In particular, it follows from (6) 
that for every p 

(7) lim ftd\L = g*d\x. 
j JDp

 JDp 

Also, (6) implies by the Dunford-Pettis criterion that for every p 

(8) {ft) is uniformly integrable over Dp. 

By (2) the sequence {/*".} is uniformly integrable (over 1Î). Hence, by the Dunford-
Pettis criterion there exist a function g** in t£'" and a subsequence {kj}—which we may 
take to be {kj} itself without any loss of generality—such that {/*"} converges weakly 
in the topology CT(^7(^)>^»(^))

 t o £**• A fortiori, for every p 

m fkd\i = g***/|i, 
7 JD„ •/D„ 

(9) lim 
j 

(10) {/*.} is uniformly integrable over Dp 

By (7)-(10) we can apply Theorem 2 for every p to the domain Dp and the sequence 
{<(>;}, with <(>,• = (/*,/*"). It thus follows that for every/? there exists a function (fp,fp) 
in # f ( D p ) such that ' 

(11) fPd\y<= g*d[L, fPd[L= g**d\x,, 
JDp

 JDp
 JDp

 JDp 

(12) (fp(u)Jp(o))) is a limit point if {(/^(co),/*~(o)))} a.e. in Dp. 

By (12) it follows that for every p 

(13) 7P(co) 2* 0, /.(a)) ^ a.e. in/) , . 

Clearly, we thus have, by the monotone convergence theorem, for the functions / , / , 
defined by setting /(o>) = 7P(<*>) and /(o>) = /p(a>) if co E Dp, and /(co) = 7(o>) = 0 
if (o G flp fip = ft\(flp Dp), the following: 

(14) f /rffJi = 2 f /„dp.= f S * ^ 

(15) 7^|x = 2 fPd\i = g**d[L. 
Jn p

 JDP
 Jn 

Therefore it follows that / , f, we well as/*, defined by/* = f - f, belong to if 7- By 
(12) we obviously have now 

/*(co) is a limit point of {/t (co)} a.e. in H, 
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and this implies (4). Also, by (5) and weak convergence of {fk} to g**, established 
above, we have for any /, 1 ^ i ^ m, for every p 

lim fkd\L = lim I fkd\i + fkd\x) & al
p + ($ ; - gU)d\i, 

* Jn j KJBn
 J Jcn

 J ' Jcn 

where 

a'p = lim inf f'kd[i ^ -lim sup (fkjYd\x. 
j JBp j JBp 

Since we know that lim ,̂ \x(Bp) — 0, it follows from (2) that for every e > 0 

lim fkd\i ^ - e + (^i - g^)d\i for/? large enough. 
* Jn Jcp 

Consequently, by the dominated convergence theorem it follows that 

lim fkd\L s* (g* - g**)d\x. 

By the definition of/* and (14)—(15) this implies (3). QED 

3. Conclusions. Let us briefly review the relations existing between the various 
versions of Fatou's lemma in several dimensions that have appeared in the literature 
([1], [3], [8], [10], [12]). On the one hand, Artstein's result generalizes that of 
Hildenbrandt-Mertens; on the other, Balder's result generalizes those of Schmeidler 
and Cesari-Suryanarayana. Further, as indicated in the introduction, Balder's result 
immediately implies Artstein's result. Conversely, as we have seen in this note, 
Artstein's result plus the biting lemma imply Balder's (and a fortiori Schmeidler's) 
result. To this author it is an open question how to derive his or Artstein's result from 
the original result given by Schmeidler. 

ACKNOWLEDGEMENTS. I am indebted to Zvi Artstein for asking me the question that 
led to this note, and I thank D. Plachky and W. Thomsen for giving me permission to 
reproduce their proof of the biting lemma. 

Appendix. Here we present a simple, elegant proof of Chacon's biting lemma. This 
proof appears in [11, pp. 201-202], and is due to W. Thomsen and D. Plachky. 

Without loss of generality we may suppose that all functions gk are nonnegative 
(otherwise, consider positive and negative parts separately). Let 3 0̂ be the a-algebra 
generated by all functions of the sequence {gk}\ then 3 0̂ is countably generated. Hence, 
3̂ 0 is also generated by a countable algebra, say s£0 = {An:n E N}. By a standard 
diagonal argument there is a subsequence {kj} of {k} such that for every n 

(al) v{An) = lim gk d\i exists. 
J An J 

Obviously, we also know that for every |x-null set N in 2F0 
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v(N) = lim f gkd\L = 0. 

Let si be the algebra generated by siQ and the p,-null sets in 9 v Clearly, the extension 
of v to si is finitely additive. By the Yosida-Hewitt decomposition theorem [6, Thm. 
10.2.1] v can be decomposed as 

v — vf • + vc> 

where v/is a purely finitely additive set function and vc a a-additive measure on si. Let 
pc be the uniquely determined measure on ^ 0 extending vc (apply Carathéodory's 
extension theorem [2]). Then pc is evidently absolutely continuous on 3^0 with respect 
to |x. Let g* be the associated Radon-Nikodym derivative; then 

(a2) p,(A) = f #* for all A G 3v 
JA 

Since v/ is purely finitely additive and |x is a-additive on 6$, there must exist for every 
p a set Bp in si with 

vf(Cl\B'p) < 2~p, p.{B'p) < 2~p. 

ForBp = UwSS/,B'„ it follows elementarily that the sequence {Bp} in 3^ is nonincreasing, 
with [L(DP Bp) = 0. Let pf denote any finitely additive positive extension of vf from 
si to 3?0 (apply [6, Thm. 3.2.10]). For Cp = Cl\Bp we have 

0 ^ pf(Cp) ^ p/(ft\5i) - vf(ft\B
f
n) < Tn for all n ^ p; 

hence p/C^) = 0 for every p. 
Next, we define for every j the measure p7 on 8F0 by 

p,(A) s J g dp, A G 3v 
•M 

By hypothesis, sup, py(il) < +00; thus, by Tychonov's theorem, there exists a subfzef 
{p7} of {pj} such that 

T(A) = lim p7(A) exists for all si G 3 v 

Clearly, the pointwise limit T is finitely additive on 3^0, and by (al) 

(a3) T(A) = v(A) for all A G si. 

Applying the Yosida-Hewitt decomposition theorem once more, we find that T can be 
decomposed as 

T = Ty + Tc 

into a purely finitely additive part y and a a-additive part TC on 9^. When restricted to 
si, TC must coincide with vc, as a consequence of (a3) and the uniqueness of the 
Yosida-Hewitt decomposition. By Carathéodory's theorem it follows that TC = pc on 
9 v For the same reasons the restrictions of T/to s# coincides with v/, hence, for every 
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p we have y(Cp) = 0, since 0 ^ if{Cp) ^ y(ft\Bf
n) = VjiCl\B'n) < 2~" for every 

n ^ p. This means that for every p 

(a4) lim p7(A Pi Cp) = T(A D CP) = T,(A n g + 0 = pc(A H Cp) 
y for all A G 3?0. 

independently from the choice of the subnet {p7}. Thus, we conclude that every subnet 
of {pj} will have a sub-subnet {p-J satisfying (a4), which means that for every p 

lim ç)j(A H Cp) = pc(A H C„) for all A G 9v 

By (a2) this amounts to saying that for every p 

lim gk d\x = g*d\x. for all A G cF0, 
j ^Ancp

 J JAHCP 

and this obviously implies that (5) holds for all Svmeasurable h in 56»(fl). By 
taking the conditional expectation with respect to 2F0 for al h in i£»(ft), the proof is 
finished. Q.E.D. 

Note added in proof: 
The open question in section 3 has been answered affirmatively by Professor Czeslaw Olech in his paper "On 
«-dimensional extensions of Fatou's lemma", Preprint CRM-1355, Centre de Recherches Mathématiques, 
Université de Montréal, Montréal, 1986. 
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