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The environmental factors limiting the distribution of
shallow-water terebratulid brachiopods

Diego A. García-Ramos , StjepanĆorić , MichaelM. Joachimski , andMartin Zuschin

Abstract.—The Cenozoic genus Terebratula seems to be an exception to the post-Permian trend in brachio-
pod retreat to offshore habitats, because it was species rich and numerically abundant in warm-temperate
shallow-water environments in theMediterranean and the Paratethys realms. This was so despite the gen-
eral dominance of bivalves and the pervasive bioturbation and predation pressure during the Neogene.
Terebratula, however, went extinct in the Calabrian (Pleistocene). The optimal environmental conditions
for Terebratula during its prime are poorly known. The Águilas Basin (SE Spain) is an ideal study area
to investigate the habitat of Terebratula, because shell beds of this brachiopod occur there cyclically in
early Pliocene deposits. We evaluate the paleoecological boundary conditions controlling the distribution
of Terebratula by estimating its environmental tolerances using benthic and planktic foraminiferal and
nannoplanktic assemblages and oxygen isotopes of the secondary layer brachiopod calcite. Our results
suggest that Terebratula in the Águilas Basin favored oligotrophic to mesotrophic, well-oxygenated envir-
onments at water depths of 60–90m. Planktic foraminiferal assemblages and oxygen isotopes point to sea-
surface temperatures between ∼16°C and 22°C, and bottom-water temperatures between 17°C and 24°C.
The analyzed proxies indicate that Terebratula tolerated local variations in water depth, bottom tempera-
ture, oxygenation, productivity, and organic enrichment. Terebratula was probably excluded by grazing
pressure from well-lit environments and preferentially occupied sediment-starved, current-swept upper
offshore habitats where coralline red algae were absent. Narrow temperature ranges of Terebratula species
might have been a disadvantage during the high-amplitude seawater temperature fluctuations that started
about 1 Ma, when the genus went extinct.
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Introduction

Brachiopods were the most successful ben-
thic marine animals during the Paleozoic
(Thayer 1986), with about 400 species remain-
ing today (Emig et al. 2013). In Recent seas, ter-
ebratulids are by far the most successful of all
brachiopod clades (Lee 2008). Like other repre-
sentatives of the subfamily Terebratulinae, such
as Pliothyrina and Maltaia, some species of
“Terebratula” appear to stand as an exception
to the general progressive trend of brachiopod
retreat to deep and/or cryptic habitats after
the Permian–Triassic mass extinction (Tomašo-
vých 2006). This is because Terebratulinae
were numerically abundant above the storm-

weather wave base (Kroh et al. 2003; Gramigna
et al. 2008; Pervesler et al. 2011), much like other
Terebratulida can dominate in present-day,
shallow-water hard-bottom environments
(Logan and Noble 1971; Richardson 1981; För-
sterra et al. 2008; Tomašových 2008). European
Terebratulinae, however, went extinct in the
Calabrian (approximately during or shortly
after the Jaramillo Subchron), not surviving
beyond the Sicilian (D’Alessandro et al. 2004;
Taddei Ruggiero and Taddei 2006; La Perna
and Vazzana 2016; Crippa et al. 2019), with
the last species being Terebratula terebratula
and Terebratula scillae. Although Neogene and
Pleistocene Terebratula had to cope with specia-
lized predators, niche competitors (bivalves),
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and bulldozing and grazing marine organisms
(Thayer 1983), it thrived mainly in warm-
temperate shallow-water detritic-bottom habi-
tats in the Paratethys and the Mediterranean
realms (Pedley 1976; Bitner and Pisera 2000;
Reolid et al. 2012). There are also reports from
subtropical environments, where species of Ter-
ebratula infilled cavities in Porites–Tarbellastraea
reefs during the Tortonian (Barbera et al. 1995)
orwere present on the distal slope of Porites frin-
ging reefs during the lowerMessinian (Llompart
and Calzada 1982; Obrador et al. 1983; Videt
2003). Little is known, however, about the paleo-
ecology of Terebratula (Benigni and Robba 1990;
Pavia and Zunino 2008). Narrowing down the
factors that led European Terebratulinae to
extinction calls for improving our knowledge
about the habitats and the ecological niche occu-
pied by these terebratulids in their prime. This
study is designed to helpfill this gap by evaluat-
ing the environmental conditions in the suben-
vironments where the Terebratula populations
were at their optimum in the Pliocene outcrops
of the Águilas Basin (SE Spain), as well as the
paleoecological boundary conditions onshore
and offshore of this optimum.More specifically,
we estimate environmental tolerances of this
brachiopod with respect to water depth, bottom
oxygenation, bottom temperature, productivity,
and organic enrichment. This study area is
among the most suitable for this purpose,
because abundant and almost monospecific
shell beds of Terebratula occur here cyclically in
amixed temperate carbonate–siliciclastic system
(García-Ramos and Zuschin 2019).

Study Area and Paleoenvironmental Setting

The Águilas Basin (SE Spain) is located in
the southwestern inner sector of the tectonic
Águilas Arc (Fig. 1A,B), in the Internal Betic
Zone (Coppier et al. 1989). The Águilas Basin
was a small embayment (about 14 km wide)
during the early Pliocene (Fig. 1C) (García-
Ramos and Zuschin 2019).
The studied brachiopods belong to a

sequence of late Zanclean age (MPl3 planktic
foraminiferal biozone of the Mediterranean
Pliocene; for the biozonation, see Iaccarino
et al. [2007] and Corbí and Soria [2016]). The
present study also yielded scarce specimens of
the nannoplankton species Reticulofenestra cf.
cisnerosi at the base of the sequence. This occur-
rence, together with the absence of Discoaster
tamalis and the association with Globorotalia
puncticulata and Globorotalia margaritae, con-
strains the age of the base of the sequence to
the older part of Subchron C3n.1r (between
4.52 and 4.42 Ma), according to the biostrati-
graphic scheme of Lancis et al. (2015).
The studied strata define originally inclined

units that were deposited on a slope (termed
“clinobeds”), which were interpreted to reflect
high-frequency and low-amplitude relative
sea-level changes (García-Ramos and Zuschin
2019). Sedimentologically, these clinobedded
units are consistent with sand-prone subaque-
ous delta-scale clinoforms (sensu Patruno
et al. 2015), which developed entirely below
sea level. The most proximal deposits are bio-
turbated coarse sands, followed distally by

FIGURE 1. A, Location of the Águilas Arc in southeast Spain (adapted from Bardají et al. 2001). B, Location of the Cabezo
Alto–Cañada Brusca area in the Águilas Basin. C, Paleogeographic map of the Águilas Basin during the Zanclean (adapted
from García-Ramos and Zuschin 2019).
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rhodolith-rich finer-grained sediments (rhodal-
gal facies). Both facies correspond to the topset
of the clinoforms (Fig. 2A). Following a bio-
logical benthic zonation (i.e., Gili et al. 2014),
these environments were interpreted as medio-
littoral to infralittoral (foreshore to upper
shoreface) and lower infralittoral to upper cir-
calittoral (lower shoreface) (García-Ramos and
Zuschin 2019). The rhodolith debris disappears
gradually toward the basin, giving way to fine-
grained sands rich in the polychaete Ditrupa
arietina along with benthic and planktic

foraminifera. The disappearance of the rhodo-
liths distally can be interpreted as a transition
zone from the upper circalittoral to the lower
circalittoral (Basso 1998; Cameron and Askew
2011; Gili et al. 2014). This facies transition
between rhodalgal and Ditrupa-rich deposits
was also interpreted as the offshore transition
zone (OTZ) based on sedimentological evi-
dence; it coincides with the topset–foreset tran-
sition (i.e., upper rollover) of the clinoforms
(García-Ramos and Zuschin 2019). The Ditrupa
facies in this transition zone to the lower

FIGURE 2. A, Depositional setting of the late Zanclean sediments in the studyarea and the paleoenvironmental distribution
of Terebratula across the depositional profile. Included are a biological benthic zonation slightly modified from Gili et al.
(2014) and a sedimentological zonation based on Pomar and Tropeano (2001) and García-Ramos and Zuschin (2019).
The depositional profile is adapted from Pomar et al. (2015). B, Field photo of subaqueous delta-scale clinoforms, with out-
crop photos of biofacies along a proximal–distal gradient: Schizoretepora-rhodolith debris, Schizoterepora and Terebratula bio-
facies (adapted from García-Ramos and Zuschin 2019).

SHALLOW‐WATER TEREBRATULID BRACHIOPODS 195

https://doi.org/10.1017/pab.2020.11 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2020.11


circalittoral corresponds to the foreset of the
clinoforms (Fig. 2A). The most distal facies in
our area is fine-grained muddy sands with
the characteristic pectinid Costellamussiopecten
cristatum occurring as dispersed, disarticulated
shells (Fig. 2A, bottomset of the clinoforms).
These deposits can be interpreted as formed

in upper offshore environments, also within
the transition zone to the lower circalittoral.
In the above facies, 5- to 20-cm-thick mono-

specific pavements of Terebratula calabra
(Figs. 2B and 3A,B) are interspersed cyclically
(Fig. 2A). Locally the pavements also yield
rare specimens of the rhynchonellid Aphelesia

FIGURE 3. Paleoenvironmental features ofTerebratula calabra outcrops in theÁguilas Basin.A, An articulated specimen ofT.
calabra. B, Densely packed pavement TP1 at the toeset subenvironment. C, Loosely packed biofabrics on a plane bed at the
bottomset. D, E, isolated Terebratula specimens in the rhodolithic hybrid floatstone facies. The arrows in D pinpoint typical
shoreface taxa: Gigantopecten latissimus, Spondylus crassicosta, and Aequipecten opercularis, while the circle in D highlights a
Terebratula specimen. F–J, Densely packed biofabrics from the Terebratula biostrome. K–R, Macrobioerosion traces on speci-
mens from the biostrome: Entobia isp. (K), Gnathichnus pentax (L), Caulostrepsis taeniola (M), Renichnus arcuatus (N), Podich-
nus obliquus (O), same ichnospecies with abrasion marks from the foramen rims (P), Centrichnus eccentricus (Q),
Anellusichnus isp. and Oichnus simplex indicated by arrows (R), specimens of Novocrania anomala from the biostrome (S).
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bipartita. As a rule, the greatest Terebratula con-
centrations occur in the transition between the
foreset and the bottomset (the lower rollover
zone) (Fig. 2A,B), where the Terebratula pave-
ments show loosely to densely packed
biofabrics (Figs. 2B and 3B). The density of
Terebratula decreases toward more proximal
(foreset) and more distal positions (bottomset)
(Figs. 2A and 3C) in the depositional profile.
The rhodalgal facies (lower shoreface) also
contains rare, isolated specimens of Terebratula
(Fig. 3D,E). The shells in the pavements are
mostly complete, articulated, and minimally
encrusted by epizoans or bioeroded (recording
rare traces of Podichnus obliquus produced by
conspecifics). These concentrations were inter-
preted as parautochthonous assemblages in
relatively shallow-water but offshore (circalit-
toral) environments during stages of reduced
sedimentation rates (for details, see García-
Ramos and Zuschin 2019). A recognizable
1.5- to 2-m-thick bed dominated by Terebratula
in the study area shows loose to densely packed
biofabrics (Fig. 3F–J). The taxonomic richness
in this bed is distinctly higher than in the
pavements. In this bed, the “Terebratula bios-
trome,” highly altered shells occur admixed
with clusters of well-preserved terebratulids,
some of which can be interpreted as biological
clumps (sensu Kidwell et al. 1986). This sug-
gests that the terebratulids were autochthonous
(García-Ramos and Zuschin 2019). Many shells
in the biostrome are bioeroded by clionaid
sponges (Fig. 3K), although other traces also
occur in low abundance (Fig. 3L–R). The rasp-
ing trace Gnathichnus pentax (Fig. 3L) is repre-
sented, whereas the rasping trace Radulichnus
isp. is absent (García-Ramos and Zuschin
2019). Molinu et al. (2013), who studied
microbioerosion traces affecting Terebratula
specimens from the biostrome at the Cañada
Brusca E-2 section, reported that the traces
produced by fungi were dominant, although
the microendolith trace Rhopalia clavigera (the
product of chlorophytes) is also represented.
The Terebratula biostrome, compared with the
pavements, yields additional brachiopod taxa:
the craniid Novocrania anomala (Fig. 3S), often
encrusting disarticulated shells of Terebratula,
is relatively common. In contrast, Megathiris
detruncata, Megerlia truncata, Terebratulina

retusa, A. bipartita, and Maltaia moysae are rare
or very rare.
From a morpho-sedimentary viewpoint,

these clinoform systems have also been referred
to as “infralittoral prograding wedges”
(Hernández-Molina et al. 2000; Pomar and
Tropeano 2001). Assuming the latter genetic
model, the transition between the topset and
the foreset of the clinoforms (i.e., the upper
rollover) is coincident with the storm-weather
wave base (lower shoreface–offshore transition)
(Fig. 2A). A minimum water depth for this
environment was probably about 25–30m, in
line with data from Recent examples from the
Western Mediterranean (Hernández-Molina
et al. 2000; Betzler et al. 2011) and the coralline
algal assemblage (García-Ramos and Zuschin
2019). The vertical distance between the lower
and upper rollover in the clinoform between
clinothems 5 and 6 (García-Ramos and Zuschin
2019) is 29 m (Fig. 2B). This suggests a water
depth of 54–59m for the foreset–bottomset
transition of the clinoforms (i.e., the lower roll-
over), without considering lithostatic compac-
tion. During stages of low-amplitude (∼15–20
m) relative sea-level rise pulses (García-Ramos
and Zuschin 2019), the water depth of the
lower rollover and bottomset was an estimated
70–80m (Fig. 2A).

Material and Methods

Brachiopod assemblages are well repre-
sented, and crop out cyclically, in the Águilas
Basin (SE Spain) (Fig. 1A,B). To evaluate the
range of paleoenvironmental conditions, we
studied the micropaleontological content of 26
bulk samples of friable sediment from the
Cabezo Alto (CA) section (Fig. 4). The CA sec-
tion was chosen because it records a vertical
succession continuously exposing the main
facies in the study area (including two Terebra-
tula pavements: samples CA10 and CA15)
(Fig. 4). The CA section is a suitable template
for comparison with other Terebratula outcrops
from the same stratigraphic sequence (three
additional samples from Terebratula pavements
[TP1, TP2, and TP3] and one from the Terebra-
tula biostrome [sample TB]). Comparison
between CA and other outcrops helps assess
the variability of the environmental conditions
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associated with the presence and absence of
Terebratula in the studied localities.
The samples were screened to study benthic

and planktic foraminifera and calcareous
nannoplankton. Each of the three taxonomic
groups was studied and analyzed as separate
data sets. For each sample, >200 specimens of

benthic foraminifera (>100 in the case of plank-
tics) in the 125–500 μm fraction (Weinkauf and
Milker 2018) were identified to species level
whenever possible and counted. Only tests
>50% complete, which included diagnostic fea-
tures, were considered. For calcareous nanno-
plankton, smear slides were prepared using

FIGURE 4. Synthetic sections from the CabezoAlto, Cañada Brusca, andCañada Blanca areas (adapted fromGarcía-Ramos
and Zuschin 2019). The Cabezo Alto section, the focus of this study, is also indicated as CA.1. The studied Terebratula sam-
ples are indicated with black stars. fs = fine sand; ms =medium sand; cs = coarse sand; g = gravel.
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standard procedures and examined under the
light microscope (cross and parallel nicols) at
1000× magnification. The occurrence of ascid-
ian spicules was noted. Quantitative data
were obtained by counting at least 300 speci-
mens from each smear slide. A further 100
view squares were checked for important
species to interpret the biostratigraphy and
paleoecology of the calcareous nannoplankton.
Among reticulofenestrids, we followed the
general distinction based on size (Young 1998):
Reticulofenestra minuta (<3 μm), Reticulofenestra
haqii (3–5 μm), Reticulofenestra pseudoumbilica
(5–7 μm), and R. pseudoumbilica (>7 μm).
Before subsequent analyses, differences in

sample size were accounted for by rarefying
the Q × R matrix with count abundance data
of benthic foraminifera so that each sample con-
tained 200 specimens (100 specimens in the
planktic foraminiferal data set). This was
accomplished using the function rrarefy of the
package vegan (Oksanen et al. 2018). All subse-
quent analyses were conducted in the R statis-
tical environment, v. 3.5 (R Development Core
Team 2018). The resampling process was
repeated 100 times, and the mean data set
was used for further analysis. For benthic
foraminifera, species with relative abundances
below 3% were discarded. The variability of
the environmental parameters is shown in
box plots by comparing samples where
Terebratula was abundant, rare, or formed the
biostrome. Samples lacking Terebratula were
segregated between bottomset and foreset sub-
environments (both in the transition zone from
upper to lower circalittoral) (Fig. 2A) based on
facies analysis conducted byGarcía-Ramos and
Zuschin (2019).

Benthic Foraminiferal Assemblages and
Bathymetry
We used a Q-mode nonmetrical multidimen-

sional scaling (NMDS) as an ordinationmethod
to visualize in the Bray-Curtis multivariate
space the position of the samples containing
Terebratula along the environmental gradient
encompassing bottomset and foreset subenvir-
onments at the CA section. Differences in the
composition of benthic foraminiferal assem-
blages among bottomset, foreset, and Terebra-
tula samples were additionally evaluated with

a test of permutational multivariate analysis
of variance (PERMANOVA, function adonis in
package vegan). The variation in composition
of such assemblages was examined with a per-
mutational analysis of multivariate dispersions
(PERMDISP, function betadisper in package
vegan). Facies occurring in shallower environ-
ments (e.g., the rhodalgal facies) were excluded
from the analysis, because this facies consists of
hardened rock that hampers the extraction of
foraminiferal tests. The composition of benthic
foraminifera in the samples containing Terebra-
tula is shown in bar plots. The composition of
the remaining samples can be checked in a two-
way cluster analysis (Supplementary Fig. 1).
Additionally, we provide estimates for

bathymetry using the transfer function pro-
posed by Báldi and Hohenegger (2008). This
approach was applied using benthic foraminif-
eral species with both non-overlapping and
overlapping depth ranges. The depth ranges
of benthic foraminifera were mainly compiled
from Sgarrella and Moncharmont Zei (1993),
Altenbach et al. (2003), Hohenegger (2005),
Rasmussen (2005), Spezzaferri and Tamburini
(2007), Sen Gupta et al. (2009), Phipps et al.
(2010), and Milker and Schmiedl (2012). The
same transfer function, weighted by the
mean, was applied on the vertical distribution
range of planktic foraminiferal species to esti-
mate minimum water-column depth. The
depth ranges of planktic foraminifera were
compiled from Rebotim et al. (2017). For com-
parison, we also computed depth estimates
based on the plankton/benthic ratio (P/B)
using the regression function by van der
Zwaan et al. (1990).

Ecological Groups of Benthic Foraminifera as
Proxies for Oxygenation and Organic
Enrichment
Changes in organic matter content are often

coupled with reduced oxygen concentrations
at the seafloor (Jorissen et al. 1995; Koho et al.
2008). An increase in organic matter is evalu-
ated by analyzing changes in the proportional
abundance of foraminiferal species assigned
to five ecological groups (EG1 to EG5). These
groups were proposed based on different
degrees of opportunistic species’ response to
varying levels of organic matter enrichment
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(Alve et al. 2016; Jorissen et al. 2018). We used
only species whose proportional abundance
was >3%, because ecological information on
rare species is often not available. For visualiza-
tion in box plots, percentages were recalculated
after discarding rare species (Dominici et al.
2008). For some quantitatively important spe-
cies (e.g., Planulina ariminensis) not listed by
Alve et al. (2016) and Jorissen et al. (2018), a
tentative attribution to a category of EG was
attempted based on literature evidence (e.g.,
Rasmussen 2005). In this study, for each EG,
we report the proportion of taxa, including
unlisted species that were tentatively attributed
to a corresponding group. We denoted this as
the “aggregated ecological group” (AEG). To
visualize the results, we used the conceptual
TROXmodel (Jorissen et al. 1995), representing
the Terebratula samples in a scheme adapted
from Koho et al. (2008) by incorporating the
main benthic foraminiferal species found in
our samples.

Productivity and Water Temperature
The ecological and environmental distribu-

tion of extant species of planktic foraminifera
is associatedwith levels of primary productivity
and temperature (roughly warm-oligotrophic
vs. cold-eutrophic species) (Hemleben et al.
1989; Sierro et al. 2003). The taxonomy generally
follows the concepts of Kennett and Srinivasan
(1983) with consideration of other sources
(e.g., Poore and Berggren 1975; Malgrem and
Kennett 1977; Darling et al. 2006; Schiebel and
Hemleben 2017). Productivity based on planktic
foraminiferal assemblages was assessed by
comparing samples containing Terebratula
with those where it was absent. The attribution
of the planktic species to a category (warm-
oligotrophic vs. cold-eutrophic) was based on
information provided by Spezzaferri et al.
(2002), Sierro et al. (2003), and Incarbona et al.
(2013). We performed a modern analogue tech-
nique (MAT) with the packages analogue and
analogueExtra (Simpson 2007) to estimate sea-
surface temperature (SST) from the Águilas
Zanclean samples. As a training data set, we
used themodernNorthAtlantic planktic foram-
iniferal data set from Kucera et al. (2005), avail-
able at the Pangaea repository. The fossil species
were standardized with the closest extant

relatives using the morphogroups proposed by
Serrano et al. (2007). The exception was that
we included Globorotalia hirsuta as a proxy for
G. margaritae (e.g., Globoturborotalita rubescens
was taken as a proxy for Globoturborotalita gr.
apertura; Globorotalia inflata for G. puncticulata;
Globigerinoides ruber [lumping pink and white
types] for Globigerinoides obliquus and Globigeri-
noides extremus).We computed anNMDS ordin-
ation of the modern data set and the Águilas
samples, and we superimposed the calculated
SST isotherms on the ordination plot using the
function ordisurf from vegan. The variance of
the Kucera et al. (2005) data set explained by
SST was calculated with canonical correspond-
ence analysis (CCA).
To evaluate bottom-water temperatures, we

selected 12 specimens of Terebratula calabra
collected from different stratigraphic intervals
and shell beds from the Águilas Basin for
oxygen isotope analysis. The specimens were
embedded in resin and cut along a longitudinal
axis to produce thin sections, which were
subsequently screened for diagenetic alteration
with the cathodoluminescence microscope
Technosyn 8200 MK II at the GeoZentrum
Nordbayern, University Erlangen–Nuremberg.
Selected samples of nonluminescent Terebratula
shells were polished, etched in 5%HCl solution
for 15 seconds (Crippa et al. 2016), sputtered
with gold, and photographed under a scanning
electron microscope (Jeol JSM 6400) at the
University of Vienna. Carbonate powders
extracted with a microdrill from the secondary
layer somewhat posterior to the middle part of
the shell were reacted with 100% phosphoric
acid at 70°C using a Gasbench II connected to
a Thermo Fisher Delta V Plus mass spectrom-
eter at the GeoZentrum Nordbayern, Univer-
sity Erlangen–Nuremberg. All values are
reported in per mil relative to VPDB. Reprodu-
cibility and accuracy were monitored by repli-
cate analysis of laboratory standards calibrated
by assigning δ13C values of + 1.95‰ to NBS19
and −47.3‰ to IAEA-CO9 and δ18O values of
−2.20‰ to NBS19 and −23.2‰ to NBS18.
Reproducibility for δ13C and δ18O was ± 0.09
and ± 0.08 (1 SD), respectively. To estimate tem-
peratures from oxygen isotopes, we used the
equation from O’Neil et al. (1969). We assumed
a seawater δ18Osw = +1.5‰ VSMOW for the
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western Mediterranean in the late Zanclean,
based on Recent seawater composition in the
eastern Mediterranean (Schmidt 1999; Rohling
2013). Sample S104 was identified as an outlier
and was excluded from analysis.

Results

Benthic Foraminiferal Assemblages and
Bathymetry of the Terebratula Samples
The Q-modeNMDS ordination plot (Fig. 5A)

shows that the samples with Terebratula occupy
a transitional position between Terebratula-
barren bottomset and foreset samples, as was
already observed from lateral facies variations
in the field (Fig. 2B). The exceptions are CA10
(a bottomset sample with rare Terebratula)
and TB (Terebratula biostrome), which shows
affinity with the samples at the base of the
CA section. PERMANOVA finds a significant
difference among bottomset, foreset, and Tereb-
ratula samples, but only ∼19% of the total vari-
ance is explained by these groups. Permutation

tests applied on PERMDISP find a significant
although moderate compositional variation
between the bottomset and foreset samples
(permutest: F = 4.77, df = 2, p = 0.022), whereas
a post hoc Tukey’s honest significant difference
test for multiple comparisons among groups
indicates a significant compositional difference
only between bottomset and foreset samples
( p = 0.013). The benthic foraminiferal compos-
ition of the samples containing Terebratula is
characterized, in general, by the dominance of
Bolivina gr. dilatata and Cassidulina carinata,
followed by cibicidids and asterigerinids
(Fig. 6). The TB sample is dominated by cibici-
dids. The equation of Báldi and Hohenegger
(2008) yielded depth estimates of ∼50 to 90m
for the Terebratula samples when including
non-overlapping shallow-water species and
the vertical distribution range of planktic for-
aminifera (Fig. 5B). These values are consistent
with estimates based on sedimentologicalmod-
els. Removing non-overlapping shallow-water
species yielded bathymetric estimates of ∼90

FIGURE 5. A, Q-mode nonmetrical multidimensional scaling (NMDS) ordination. Samples containing Terebratula mostly
occur at the transition from foreset to bottomset. B, Box plots of depth estimates using the transfer function from Báldi
andHohenegger (2008) and the regression equation for planktic/benthic ratio from van der Zwaan et al. (1990). BF, benthic
foraminifera; PF, planktic foraminifera.
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to 125m. The regression function by van der
Zwaan et al. (1990) returned unrealistic
depth estimates for the Terebratula samples
(50–200m), most probably because of onshore
transportation of planktic foraminifera by
currents (Murray 1976).

Organic Carbon Enrichment and Oxygenation
The box plots show that samples with Tereb-

ratula contain a slightly higher proportion of
benthic foraminifera belonging to the EG of
“sensitive species” (AEG1) comparedwith sam-
ples where Terebratula is absent (Fig. 7). The
Terebratula-containing samples vary between
∼35% to ∼60% of AEG1 (in the TB sample),
the latter being the maximum value in the
data set. All these samples fall within the
range shown by samples devoid of Terebratula
with regard to the proportion of benthic species
belonging to the EGs of “indifferent species”

(AEG2), “tolerant” (AEG3), and “second-order
opportunists” (EG4). Most Terebratula samples,
however, display low proportions (∼10%) of
benthic species of EG4 (Fig. 7). The exception
is sample CA10, a bottomset sample, which
contains ∼20% of EG4 species and rare Terebra-
tula. In the whole data set, “first-order opportu-
nists” (EG5) were absent.

Productivity
The Terebratula samples fall within the ranges

of cold-eutrophic and warm-oligotrophic spe-
cies contained in the Terebratula-barren samples
(Fig. 8A). Sample CA10 displays the maximum
proportion of cold-eutrophic species (∼60%),
whereas TB yields a relatively low proportion
(∼30%) (Fig. 8A). Overall, the Terebratula
samples are dominated by warm-oligotrophic
species, except for sample CA10 (Fig. 8A). The
NMDS ordination of the nannoplankton

FIGURE 6. Relative abundance of benthic foraminiferal species in the Terebratula samples with 95% confidence intervals
(percentile method). Only species with relative abundance higher than ∼3% are shown. CA, Cabezo Alto; TP, Terebratula
pavement.
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FIGURE 7. Relative abundance of aggregate ecological groups (AEG) of benthic foraminifera, partitioned into Terebratula-
barren bottomset and foreset samples and those samples with rare, abundant, or biostrome-forming Terebratula. The con-
ceptual scheme regarding the faunal response of benthic foraminiferal ecological groups (EG) to organic enrichment is
based on Alve et al. (2016) and Jorissen et al. (2018).

FIGURE 8. A, Relative abundance of cold-eutrophic and warm-oligotrophic species of planktonic foraminifera, partitioned
into Terebratula-barren bottomset and foreset samples and those samples with rare, abundant, or biostrome-forming
Terebratula. B, Q-mode nonmetric multidimensional scaling (NMDS) of the Cabezo Alto (CA) section nannoplankton
samples.
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(Fig. 8B) shows that the sample with rare Tereb-
ratula is associatedwith aCalcidiscus leptoporus–
Coccolithus pelagicus assemblage, whereas the
sample with abundant Terebratula is included
in the Reticulofenestra small assemblage. In six
additional Terebratula outcrops, nannoplankton
were rare in four samples and absent in the
other two. The samples with rare nannoplank-
ton, however, contain the Calcidiscus lepto-
porus–Coccolithus pelagicus assemblage.

Seawater Temperature
The MAT analysis using data from Kucera

et al. (2005) shows that SST ranges from ∼16°C
(for sample CA10) to ∼22°C (samples TP1,
TP3, and Terebratula biostrome) (Fig. 9). The
Terebratula samples CA15 and TP2 fall within
the range of 17°C to 19°C. CCA estimates that
SST explains 39% of the variance (permutation
test: F = 540.46, df = 1, p = 0.001) in the Kucera
et al. (2005) data set.

Regarding the oxygen isotopes, the Terebra-
tula samples displayed a good preservation of
the secondary layer fibers (Fig. 10A–C). The
exception is sample S86, which shows cracks
in the fibers. All analyzed Terebratula samples
were nonluminescent, except for the punctae
in some specimens (Fig. 10D–F). The volume
of nonluminescent shell material is far greater
than that of the sediment infilling the punctae.
We therefore assume that the oxygen isotopic
signal represents primary, diagenetically
unaltered values. The δ18Ocalc of the 12 Terebra-
tula samples varies between −0.32 and 1.16,
with a mean value of 0.71 (Table 1). Assuming
that the seawater δ18O in the Águilas Basin dur-
ing the late Zanclean was + 1.5‰ by analogy
with the warmer Recent eastern Mediterranean
(Schmidt 1999; Rohling 2013), then the δ18Ocalc

values translate into temperatures between
17.1°C and 23.8°C (mean: 19.1°C). Three mea-
surements, done along the posterior–anterior
axis of an isolated Terebratula shell from the

FIGURE 9. Nonmetric multidimensional scaling (NMDS) of planktonic foraminifera performed on the standardized Plio-
cene samples from theÁguilas Basin (squares, diamonds, and triangles) and the Kucera et al. (2005) extant data set (circles).
The calculated sea-surface temperature (SST) for the Pliocene samples is based on themodern analogue technique. SST iso-
therms are superimposed on the NMDS plot with the ordisurf function in R. Black line: the range of SST covered by the
Pliocene samples.
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foreset facies (sample CA28) (measurements
S81, S102, S103), yield δ18Ocalc values of 0.71,
0.91, and 0.57 VPDB. The calculated tempera-
tures are 19.1°C, 18.2°C, and 19.7°C, respect-
ively. A fourth measurement from the anterior
part of the shell (S104) is considered to be an out-
lier (Table 1).

Discussion

Bathymetric Distribution
Terebratula calabra in the studied sequence of

the Águilas Basin is very rare or absent in the
rhodalgal facies (lower shoreface; ∼25–30m
depth) (Figs. 2A and 4D,E) and in the deepest

FIGURE 10. A–C, Scanning electron microscope (SEM) images of ultrastructural details of Terebratula from the study area.
The shells display good preservation of the fibers in the secondary layer. D–F, Nonluminescent shells of Terebratula,
although some of the punctae are luminescent.

TABLE 1. Oxygen isotope values from the secondary layer of Terebratula specimens from the study area, with estimation of
the temperature. S104 is an outlier and not considered for the interpretation.

Sample Outcrop
δ18Ocalc

(‰ VPDB)

δ18Ow
(‰ VSMOW)
(Rohling 2013)

Tcalc °C
(O’Neil et al. 1969)

δ18Ow
(‰VSMOW)

Tcalc °C
(O’Neil et al. 1969)

S74 CBl.Tereb.Biost. 1.16 1.5 17.1 0 10.7
S75 CBl.Tereb.Biost. 0.83 1.5 18.6 0 12.1
S77 TP2 0.97 1.5 17.9 0 11.5
S78 CBrE1.Tere.Biost. 0.43 1.5 20.4 0 13.8
S79 Tere.pav.Balsa 1.16 1.5 17.1 0 10.7
S80 TP1 0.92 1.5 18.2 0 11.7
S81 CA.28 0.71 1.5 19.1 0 12.6
S83 Ter.pav.Balsa 0.91 1.5 18.2 0 11.7
S85 TP3 0.53 1.5 19.9 0 13.3
S86 TP2 0.36 1.5 20.7 0 14.1
S87 CA.15 0.84 1.5 18.5 0 12
S88 CBl.Tereb.Biost −0.32 1.5 23.8 0 17
S102 CA.28 0.91 1.5 18.2 0 11.7
S103 CA.28 0.57 1.5 19.7 0 13.2
S104 CA.28 −1.91 1.5 31.6 0 24.3
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fine-grained sandy facies (offshore) (Figs. 2A,
4C, and 5). The maximum population density
occurs close to (but notably below) the
shoreface–offshore transition in fine-grained
sands at estimated paleodepths of about 60 to
90m (Figs. 2A,B, 4B, and 5B). The benthic for-
aminiferal assemblage of the Terebratula sam-
ples (Fig. 6) characterizes an offshore
environment (e.g., Sgarrella andMoncharmont
Zei 1993; Rasmussen 2005; Milker et al. 2009;
Frezza et al. 2010; Mojtahid et al. 2010).

Substrate
Modern Terebratulida bathymetrically

equivalent to Terebratula mostly occur in shal-
low rocky habitats in bays and fjords (Supple-
mentary Table 1). Terebratula species, instead,
were abundant in soft sediments: coarse to
muddy sands (e.g., Gaetani 1986; Barrier et al.
1987; Dominici 2001; Gramigna et al. 2008).
Terebratula, like certain other brachiopods
(Rudwick 1961; Richardson 1981; Llompart
and Calzada 1982), was potentially attached
to ascidians, whose spicules are pervasive in
section CA.We did not quantify the percentage
of Terebratula shells affected by pedicle attach-
ment traces (P. obliquus), but this trace is rare.
This matches previous reports on several spe-
cies of Terebratula, in which 1% or less were
affected by P. obliquus (Taddei Ruggiero and
Bitner 2008). Other members of Terebratulinae
are known to facultatively form clusters, such
as Pliothyrina (Bell and Bell 1872; Rudwick
1961) and Liothyrella (Foster 1974; Richardson
1981; Peck et al. 1997). A cluster of Terebratula
calabra from the Águilas Basin was illustrated
by García-Ramos and Zuschin (2019).

Oxygenation, Organic Enrichment, and
Productivity
Among the dominant benthic foraminifera in

the Terebratula samples, a first group of species
(B. gr. dilatata, Bulimina aculeata, C. carinata) sug-
gests that Terebratula in this basin was subject to
seasonal inputs of labile organic matter, pos-
sibly associated with episodes of dysoxia at
the seafloor (Barmawidjaja et al. 1992; Fontanier
et al. 2003; Langezaal et al. 2006; Abu-Zied et al.
2008; Mendes et al. 2012). This interpretation is
reinforced by the presence of the Calcidiscus
leptoporus–Coccolithus pelagicus nannoplankton

assemblage in several Terebratula samples, sug-
gesting productivity pulses triggered by coastal
upwelling (Silva et al. 2009; Auer et al. 2014).
In contrast, the “Reticulofenestra small” nanno-
plankton assemblage in sample CA15 points
to an opportunistic response to increased
eutrophic levels, environmental disturbance,
or water stratification related to continental run-
off or riverine input (Wade and Bown 2006;
Ćorić and Hohenegger 2008; Auer et al. 2014).
This latter assemblage correlates with warmer-
water SST indicated by planktic foraminiferal
assemblages (Supplementary Fig. 2). A second
group of benthic foraminifera (Heterolepa dutem-
plei, P. ariminensis, Cibicides gr. refulgens, Discor-
binella bertheloti, Cibicidoides gr. pachyderma,
Biasterigerina planorbis, and Cibicidoides lobatu-
lus) suggests oligotrophic, well-oxygenated
background conditions under the influence of
strong bottom currents (Donnici and Barbero
2002; Schönfeld 2002; Szarek et al. 2006; Fonta-
nier et al. 2008; Koho et al. 2008; Schweizer
et al. 2009; Frezza et al. 2010; Buosi et al.
2012). Background oligotrophism and high oxy-
gen levels are suggested by the proportional
dominance of the “sensitive” and “indifferent”
EGs of benthic foraminifera (Fig. 7) and warm-
oligotrophic planktic foraminifera (Fig. 8A).
Note here that the sample from the Terebratula
biostrome (TB), however, ismostly characterized
by oxiphylic species such as C. gr. pachyderma
and C. gr. refulgens, which are suspension-feed-
ing epizoans (Koho et al. 2008; Schweizer et al.
2009). Our data from the Águilas Basin suggest,
overall, that Terebratula preferred oligotrophic
and well-oxygenated habitats, under moderate
to strong currents, but tolerated mesotrophic
conditions and fluctuating concentrations of
oxygen levels at the seafloor (Fig. 11).

Seawater Temperature
Modern (1981–2010) water temperatures off

Águilas (SE Spain) range from 13.5°C to 28°C
(range = 14.5°C). The monthly averages are
between 17°C and 22°C, and the annual mean
is 19.4°C (Guijarro et al. 2015) (Fig. 12A). The
temperatures calculated from the oxygen isotope
ratios (min = 17.1°C; max = 23.8°C; mean =
19.1°C; Table 1), as well as MAT (min = 16.3°C;
max = 21.9°C; mean = 19.7°C), are consistent
with the modern average temperatures. The
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MAT results are similar for the Terebratula-barren
and Terebratula-bearing samples (Fig. 12B). This
suggests that temperature alone does not explain
the presence/absence distribution patterns of
Terebratula during the Zanclean. Given that
Terebratula lived in offshore environments, the

temperatures derived from oxygen isotope ratios
would not be representative of sea-surface condi-
tions. The assumption is that, for the Zanclean,
Mediterranean SST was higher than today
(Templado 2014; Tindall and Haywood 2015).
In the Águilas Basin, during the late Zanclean,

FIGURE 11. TROXmodel (adapted fromKoho et al. 2008) conceptually representing the range of conditions interpreted for
the Terebratula samples, marked by an inset. CA, Cabezo Alto; TP, Terebratula pavement.
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other paleoclimatic proxies are the species Cly-
peaster cf. aegyptiacus, Echinolampas spp.,Hyotissa
sp., Talochlamys ercolaniana, Hinnites crispus,
Spondylus crassicosta, andGigantopecten latissimus
(García-Ramos and Zuschin 2019). These species
are considered to bewarm-temperate to subtrop-
ical taxa (Brébion et al. 1978; Ávila et al. 2015).
For these species,Monegatti andRaffi (2001) pro-
posed monthly average SST of 24°C–25°C for at
least five to six months. The relatively narrow
range of temperatures obtained from oxygen
isotopes (6.7°C; 3.6 °C without the 23.8 outlier;
Fig. 12B) suggests that Terebratula either prefer-
entially lived below the thermocline (cf. Hou-
pert et al. [2015] for the seasonal thermoclines
in the modern Mediterranean) or grew during
particular seasons of the year. “Terebratula” sp.
from Styria (Langhian, Austria), T. cf. calabra
from Guadix (Tortonian, Spain), and T. scillae
from Gallina (Calabrian, Italy) (Bojar et al.
2004; Clark et al. 2016; Rollion-Bard et al. 2016)
also display relatively narrow temperature
ranges: 4.9°C, 3.9°C, and 2.4°C, respectively.

An exception is Pliothyrina maxima, another
member of Terebratulinae, from the Coralline
Crag (Zanclean, UK), showing a large range of
11.1°C (Vignols et al. 2018). Importantly, how-
ever, the data in those studies are derived from
a sclerochronological approach on one or two
specimens, sometimes mixing signals from the
primary and secondary brachiopod shell layers.
Oxygen isotope ratios measured on the primary
shell layer and posterior and anterior parts of
the shell should be interpreted with caution,
because they are likely affected by nonequili-
brium isotope fractionation (e.g., Romanin
et al. 2018). The similar brachiopod species
Liothyrella uva from Antarctic waters is subject
to temperature ranges of only 2°C–3°C, not
surviving above 4.5 °C (Peck 2005). In contrast,
the cool-temperate Liothyrella neozelanica experi-
ences values between 8°C and 18°C (Lee 1991).
The relatively narrow temperature ranges of
different Terebratula species should be further
investigated as a possible cause for their extinc-
tion during the dramatic climate changes of the

FIGURE 12. A,Monthly sea-surface temperatures (SST) off Águilas for the period 1981–2010 (data fromGuijarro et al. 2015).
B, Comparison between SST estimated from modern analogue technique using the Kucera et al. (2005) data set of plank-
tonic foraminifera and bottom temperatures from oxygen isotopes of Terebratula shells from the Águilas Basin. Terebratula
oxygen isotopes from Styria, Guadix, andGallina and Pliothyrina from the Coralline Crag are included for comparison. The
data were taken from Bojar et al. (2004), Clark et al. (2016), Rollion-Bard et al. (2016), and Vignols et al. (2018). All tempera-
tures were calculated using the equation given by O’Neil et al. (1969). δ18Osw was assumed based on the values proposed
by Lear et al. (2000) for the Styria and Guadix samples. For the Pliothyrina samples, δ18Osw was assumed as 0‰ VSMOW.
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late Pleistocene, which would have left them
insufficient time to adapt (Peck 2007). Note
also that Terebratula not surviving beyond the
Jaramillo Subchron coincides with the onset of
the strongest glacial–interglacial shifts during
the Pleistocene (e.g., Rohling et al. 2014).

Environmental Factors Limiting the
Distribution of Terebratula in the Águilas Basin
Terebratula had an optimum close to the OTZ,

but why was the genus rare or absent in the
shoreface and basinward beyond the OTZ?
Our data suggest that oxygenation levels,
food availability, or temperature—which have
been invoked to explain the distribution of
some brachiopod species (e.g., Tunnicliffe and
Wilson 1988; Kowalewski et al. 2002; Tomašo-
vých et al. 2006; Peck 2007)—might not have
acted as limiting factors in the Águilas Basin.
This is because Terebratula appeared to be fairly
tolerant to local variations in these parameters.

Preferred Habitat of Terebratula: Upper Off-
shore.—The consistent pattern in the Águilas
Basin is the peak abundance of Terebratula in
sediments devoid of coralline algae. Accord-
ingly, light penetration might have exerted an
important influence on the distribution of Ter-
ebratula in relation to grazing pressure (Noble
et al. 1976; Witman and Cooper 1983; Asgaard
and Stenthoft 1984; Asgaard and Bromley 1991;
Tomašových 2008; Zuschin and Mayrhofer
2009; Radley 2010). The bioerosion assem-
blages in the Terebratula biostrome are interest-
ing because they display affinity with the
Gnathichnus ichnofacies (Bromley and Asgaard
1993; De Gibert et al. 2007). Bromley and
Asgaard (1993) proposed the Entobia ichnofa-
cies for deep tier–dwelling borings in littoral
rocky substrates subject to long exposure. The
Gnathichnus ichnofacies, instead, characterizes
shallow-tier structures on briefly exposed sub-
strates (i.e., shells) in deeper water (De Gibert
et al. 2007). The outcrop from the Pliocene
Roussillon Basin (De Gibert et al. 2007), for
example, was a shoreface environment whose
shell beds are mostly composed of ostreids
and pectinids. There, the dominant traces are
G. pentax (rasping traces produced by regular
echinoids feeding on algae) and Radulichnus
inopinatus (produced by the radular grazing
activity of gastropods or polyplacophorans)

(De Gibert et al. 2007). In contrast, the domin-
ant macrobioerosion trace in the Terebratula
biostrome is Entobia isp., whereas other traces
such as G. pentax (Fig. 4L) are rare (Molinu
et al. 2013). García-Ramos and Zuschin (2019)
argued that the rare occurrence of the bioero-
sion trace Gnathichnus on Terebratula shells,
coupled with the absence of Radulichnus, may
indicate dim light or aphotic conditions, in
line with interpretations elsewhere (Bromley
2005). This interpretation is consistent with
the microendolith assemblages reported by
Molinu et al. (2013) from the Terebratula bios-
trome. That assemblage is dominated by fungal
traces (Saccomorpha clava, Orthogonum lineare,
Flagrichnus isp.), whose producers are more
common in relatively deep aphotic environ-
ments (e.g., Glaub 2004; Wisshak 2012). The
microendolith trace R. clavigera is also present
in the Terebratula biostrome. The producer of
this trace characterizes the euphotic zone
(Golubić and Radtke 2008), but can also be
common in deep euphotic habitats (Wisshak
2012). Overall, the microendolith assemblages
suggest irradiances around 0.01% or less (Wis-
shak 2012), which classifies the habitat from the
Terebratula biostrome as a transition from upper
to lower circalittoral (Cameron and Askew
2011). Such microendolith ichnoassemblages
pointing to dim light are consistent with the
absence of coralline algae in the Terebratula
samples. The dysphotic zone (1–0.01% irradi-
ance) can occur at depths between 40 and 120
m in some Mediterranean localities (Ballesteros
2006). Recent shells of the brachiopod Gryphus
vitreus are affected by the endolithic green
alga Ostreobium queketti (which is adapted to
extremely low light conditions) to a depth of
130–135m off Corsica (Emig 2018). Similar ben-
thic foraminiferal assemblages as in the Terebra-
tula biostrome (Fig. 6) occur at 70–80mdepth in
the Strait of Bonifaccio (Buosi et al. 2012), which
supports the above interpretation based on
microendolith ichnoassemblages.

Exclusion of Terebratula Offshore: The Upper
Foreset.—The rarity or absence of Terebratula in
shoreface environments was discussed earlier,
but in the Águilas Basin the distribution of
this brachiopod in upper offshore (circalittoral)
environments is not homogeneous (Fig. 2A).
The peak density occurs in the foreset–
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bottomset transition (i.e., the lower rollover of
the clinoforms). Why was Terebratula rare or
absent in the upper foreset? The rhodalgal
facies disappears basinward beyond the OTZ
(coincident with the topset–foreset transition;
i.e., upper rollover zone) (Fig. 2A). This sug-
gests that the upper foreset was already under
poorly lit conditions or other excluding envir-
onmental factors for coralline algae were
present. Terebratula could have potentially colo-
nized this habitat, which was safe from high
grazing pressure, but it was absent. This pat-
tern can be explained by peak sedimentation
rates at the upper foreset (upper offshore, circa-
littoral) due to its proximity to the upper roll-
over, which is a threshold between high and
low hydrodynamic conditions (from sediment
advection and bypass at the topset to sedimen-
tation at the foreset) (Driscoll and Karner 1999;
Cattaneo et al. 2007; Mitchell 2012). Thus, the
environmental conditions at the upper foreset
likely surpassed the physiological capacity of
Terebratula to cope with sedimentation (Wil-
liams et al. 2018). Sedimentation rates decrease
gradually down the foreset (Mitchell 2012).
Accordingly, the facies belt at the foreset–
bottomset transition marks the threshold of
sedimentation rates tolerated by Terebratula.

Exclusion of Terebratula Offshore: Beyond the
Lower Rollover.—Terebratula density rapidly
decreases beyond the lower rollover basinward
(Figs. 2A and 3C). This is coincident with Gae-
tani (1986) and Barrier et al. (1987), who report
T. calabra as being restricted to proximal circalit-
toral environments, whereas other Terebratuli-
dina such as T. scillae,G. vitreus, and Stenosarina
sphenoidea display a deeper optimum in the
lower circalittoral and bathyal (Gaetani and
Saccà 1985). A common pattern of subaqueous
delta-scale clinoform systems is the association
with offshore currents running parallel to the
shoreline along the foreset–bottomset transi-
tion (e.g., Pomar et al. 2002; Cattaneo et al.
2007; Patruno and Helland-Hansen 2018). The
occurrence of aggrading sandwave fields
migrating basinward at the localities of Ter-
reros and La Carolina (García-Ramos and
Zuschin 2019) demonstrates the sustained
development of cyclonic current systems dur-
ing the late Zanclean in the Águilas Basin
(Fig. 1C). This interpretation is supported by

the dominance in the benthic foraminiferal
assemblages of suspension-feeding species
that favor vigorous currents and by the abun-
dance in the Terebratula biostrome of clionaid
sponges, which cannot cope with high levels
of turbidity (Carballo et al. 1994; Taylor et al.
2003). This pattern does not seem unique to
the Águilas Basin, because records of Terebra-
tula at the lower rollover and adjacent bottom-
set of delta-scale clinoforms are described
elsewhere (e.g., Llompart and Calzada 1982;
Pomar and Tropeano 2001; Soria et al. 2003;
Videt 2003; Gramigna et al. 2012; Massari and
D’Alessandro 2012; Reolid et al. 2012). As bra-
chiopods are facultatively active suspension
feeders (La Barbera 1977; Wildish and Krist-
manson 1997), the attenuation or disappear-
ance of the along-slope currents basinward
possibly affected the Terebratula paleocommu-
nity; this reflects the physiological cost of
shifting from passive to permanently active
suspension feeding (La Barbera 1977; James
et al. 1992). An analogous case of offshore
and onshore decrease in population density as
a function of bottom current velocity has been
described for extant communities of the tereb-
ratulidine G. vitreus (Emig 1989; Emig and
García-Carrascosa 1991).

Environmental Distribution of Terebratulinae
in Other Studies
Cenozoic to Quaternary Terebratulinae have

often been found in relatively shallow-water
environments, from boulders at the toe of
beach cliffs (Aigner 1983; Dixon 2011; Betancort
et al. 2014) to intertidal and very shallow subti-
dal gravelly bottoms (Diedrich 2012). Theyoften
occur adjacent to sandwave fields where tidal
or other types of currents are present but attenu-
ated (Barrier et al. 1987; Roetzel et al. 1999;
Pomar and Tropeano 2001; Courville and
Crônier 2003; Kroh et al. 2003; Bosselaers et al.
2004; Calvo et al. 2012; Reolid et al. 2012).
Such conditions prevent burial of the brachio-
pod paleocommunity bymigrating subaqueous
sandwaves. These brachiopods have also been
found close to submarine hard-bottom struc-
tures that they possibly colonized, including
shallow-water submarine cliffs (Kroh et al.
2003; Pervesler et al. 2011). Smaller species,
such as Maltaia maltensis and “Terebratula”
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styriaca, were able to inhabit crevices and shel-
tered microenvironments in coralline algal
buildups (e.g., Bianucci et al. 2011;
M. Harzhauser personal communication 2019),
cavities in coral reefs (Barbera et al. 1995), or in
parareefal environments (Conesa et al. 2007).
In the Pleistocene, some species colonized
dykes in seamounts and walls on paleocliffs at
bathyal depths (Ietto and Bernasconi 2005;
Titschack et al. 2005). Other species have also
been reported from muddy bottoms at bathyal
depths (Thomsen et al. 2005; Rögl et al. 2008),
but it remains to be determined whether these
assemblages were transported. Most occur-
rences, however, are associated with environ-
ments close to the lower shoreface–offshore
transition and upper offshore settings, often
co-occurring with bryozoans and/or acorn bar-
nacles (De Porta et al. 1979; D’Alessandro and
Iannone 1982; Gaetani 1986; Studencki 1988;
Taddei Ruggiero 1996; Bitner and Pisera 2000;
Montenat et al. 2000; Gramigna et al. 2008;
Pavia and Zunino 2008; Puga-Bernabéu et al.
2008; Di Stefano and Longhitano 2009; Messina
et al. 2009; Long and Zalasiewicz 2011; Gian-
netti et al. 2018, 2019; Crippa et al. 2019). Tere-
bratulid colonization of the photic zone and
their co-occurrence with coralline algae have
sometimes been explained by the onset of
eutrophic conditions triggered by upwelling,
which can be deleterious for phototrophic and
mixotrophic organisms (Brandano et al. 2016).
Other authors interpreted that Terebratula,
which is often typical ofmonospecific to paucis-
pecific assemblages, was an opportunist able
to colonize environments subject to disturbance
associated with mesotrophic conditions (Mas-
sari and D’Alessandro 2012). Overall, the avail-
able evidence points to Terebratula preferring
habitatswhere grazing disturbancewas reduced
because of poorly lit environments (e.g., Pedley
and Grasso 2002; Brandano et al. 2015).

Conclusions

The late Zanclean deposits of the Águilas
Basin record cycles of Terebratula paleocommu-
nities that developed offshore (circalittoral) on
fine-grained sediments deposited at the fore-
set–bottomset transition of subaqueous
delta-scale clinoforms. These deposits therefore

provide a good scenario to understand the
paleoenvironmental distribution of this taxon
in space and time. The analysis of benthic and
planktic foraminiferal and nannoplankton
assemblages suggests that, overall, Terebratula
thrived in relatively warm, oligotrophic to
mesotrophic, well-oxygenated environments
influenced by strong bottom currents. The oxy-
gen isotopes showed that Terebratula in this
basin lived in a relatively narrow range of tem-
peratures (6.7°C). Such narrow ranges have
also been reported for other species, potentially
helping explain their extinction during the
abrupt climate changes of the late Pleistocene:
these brachiopods may have been unable to
adapt quickly enough to such high-amplitude
seawater temperature fluctuations after the Jar-
amillo Subchron. The consistent occurrence of
terebratulids in sediments devoid of coralline
red algae, combinedwith the bioerosion assem-
blages in the Terebratula biostrome, suggest that
the limiting factor affecting the onshore distri-
bution of Terebratula was light penetration and
the associated high grazing pressure. This
would explain the virtual absence of Terebratula
in shoreface environments. Higher sedimenta-
tion rates at the shoreface–offshore transition
also excluded the Terebratula paleocommunity
in the upper foreset. In contrast, further off-
shore beyond the foreset–bottomset transition,
we conclude that the attenuation or disappear-
ance of along-slope currents was responsible
for the lack of Terebratula populations.
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