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NON-LINEAR ^-PROPER MAPPINGS OF THE 
ANALYTIC TYPE 

A. J. B. POTTER 

Introduction. Let F be a complex Banach space, U an open subset of F, 
/ a mapping of U into F. Then / is said to be complex analytic if for each pair 
of elements x and y of F with x in U} the function f(x + £y) of the single 
complex variable £ is analytic in £ on some neighbourhood of the origin. 

In [5], J. Cronin used the Leray-Schauder degree theory to establish exis­
tence and uniqueness theorems for a class of compact complex analytic 
operators. Her techniques were subsequently systematized and extended to 
general compact analytic operators by J. T. Schwartz in [10]. In [1] 
F. E. Browder introduced analytic type mappings. These were defined to be 
mappings with the same general properties, of a topological and differential 
character, as those that hold for complex analytic mappings if considered as 
operating on the real space X obtained from the complex space F by ignoring 
the complex structure. Using the Leray-Schauder degree theory Browder was 
able to establish various mapping theorems for analytic type compact 
operators and from these deduced various uniqueness theorems for complex 
analytic compact operators. 

A large proportion of the development of non-linear functional analysis in 
the last few years has been concentrated on extending the classical theorems 
of compact operators to non-compact operators. To this end various generalized 
degree theories have been developed. So it is natural to ask whether the results 
on compact analytic operators can be extended to non-compact operators. 
This problem was tackled by Browder and C. P. Gupta in [3]. Using one of 
the generalized degree theories they were able to extend Schwartz's theorems 
to large classes of non-compact operators. 

In [7] W. V. Petryshyn introduced the class of A -proper mappings. It is 
the purpose of this paper to show that Browder's results on analytic type 
compact operators can be extended to analytic type A -proper mappings. We 
use the A -proper degree theory as developed by Browder and Petryshyn in [4] 
in place of the Leray-Schauder degree theory. A consequence of this work is 
a uniqueness theorem for &-ball contractions (k < 1). 

Since this work was completed it has come to our attention that Nussbaum 
has proved a similar theorem for complex analytic $o-maps (see [6, Theorem 6]) 
from which our theorem could be derived. However by using a restrictive 
class of Banach spaces we have avoided the necessity of developing a degree 
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theory for complex analytic $0-maps (as in [6]) and at the same time have 
provided mapping theorems for mappings of a real Banach space. It should 
be noted that our theorems are generalizations of theorems which appear in [1]. 

1. Preliminaries. Throughout this paper X denotes a real I^-space (i.e., X 
is a Banach space with a sequence of finite dimensional subspaces {Xn} and 
a corresponding sequence of projections {Pn\ (linear idempotent mappings) 
such that 

(a) Xn C Xn+1 for all n; 
(b) Pn :X->Xnj Pn(X) = Xn and | |Pn | | = 1 for all n; 
(c) Pnx —» x as n —» co for all x £ X). 

We use the notation D, dD to denote the closure, boundary respectively of a 
subset D of X. 

Definition 1.1. Let G be a bounded open subset of X. A mapping T : G —> X 
is said to be A -proper (with respect to the approximation scheme {Xn, Pn) ) if, 
whenever {xnj} is a bounded sequence such that xnj Ç Xnj P\ G and PnjTxnj —» s 
as j -^ oo, there exists a convergent subsequent {x -̂ao} s u c n that xnj(k) —> x 
as & —> oo and Tx = s. 

Remark. This is the usual definition of ^4-properness (see for instance 
[4, Definition 1.2]). 

Let G be a bounded open subset of X, T : G —> X a continuous A -proper 
mapping and suppose y Ç X\T(dG). In [4] Browder and Petryshyn defined 
Deg(r , G, y) to be the "limit points" of the sequence 

{deg(PnT\Xn, G n Xn, Pny)\ 

(where "deg" denotes is the Brouwer degree). Although "Deg" is possibly 
multivalued, it retains most of the properties associated with a degree function 
(e.g. homotopy invariance and decomposition of domain). We refer the reader 
to [4] for a discussion of the A -proper degree theory. 

Definition 1.2. Let X be a real Ili-space, U an open subset of X, Ta. con­
tinuous mapping of U into X. Then T is said to be a mapping of the analytic 
type (with respect to {Xn, Pn)) if the mappings 

Tn = PnT: UC\Xn-±Xn 

are of the analytic type in the sense of Browder (see [1, Definitions 1, 2, 3]). 

In the next section we generalize the following theorem, which was proved 
by Browder [1, Theorem 1], to A -proper mappings of the analytic type. 

THEOREM 1.3 (Browder). Let Xn be a finite dimensional Banach space, U an 
open subset of Xn, T a continuous mapping of U into Xn which is of the analytic 
type. Suppose G is a bounded open subset of U such that G C U and let 
y Ç Xn\T(dG). Then 
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(a) deg(r,G,;y) ^ 0; 
(b) deg(T, G, y) > 0 if and only if y £ T(G); 
(c) deg(T, G, y) = 1 implies T~1(y) C\ G is connected; 
(d) if T(G) contains a point of a given component C of Xn\T(dG) then 

C C T(G). 

2. On A -proper mappings of the analytic type. The first theorem we 
prove is the extension of Theorem 1.3 to A -proper mappings. 

THEOREM 2.1. Suppose U is an open subset of X, G a bounded open subset 
of U such that G C U. Let T : U —> X be a continuous mapping of the analytic 
type which is A-proper on G. Let y G X\T(dG). Then, 

(a) Deg(T, G, y) contains no negative integers; 
(b) 0 G Deg(7\ G, y) if and only if y t T(G); 
(c) if 1 G Deg(T, G, y) then T~x(y) P G is connected; 
(d) for C a component of X\T(dG) such that T(G) P C ^ 0, we have 

C C T(G). 

Proof, (a) We know that deg{PnT\Xn, G P Xn, Pny) is well-defined for 
large enough n. Hence by Theorem 1.3(a) it must be greater than or equal to 
zero. Thus by definition, Deg(T, G, y) cannot contain negative integers. 

(b) Suppose 0 G Deg(7", G,y). Then by [4, Theorem 1(b)] there exists 
x G G such that Tx = y. 

Suppose on the other hand y G T(G). As T(dG) is closed (see for example 
[8, Lemma 1]) and y G X\T(dG) it follows that 2d = dist(y, T(dG)) > 0. 
Let x G G be such that Tx = y. Hence there exists Xi G G P Xn for all 
n ^ N' (say) such that 

(1) ||P»7x - P„7*i | | ^ | | 7 * - Txx\\ < d. 

(This follows from the continuity of T and the denseness of \Jn=i Xn in X.) 
For all n ^ Nf consider the paths 

(1 - t)PnTx1 + tPny where * G [0, 1]. 

Suppose there is a sequence {w(j)} of integers such that for each n(j) there 
exists tn(j) G [0, 1] such that 

(1 — tn(j))PnU)TXi + tntfiPnifiy = Pn(j)Tzn(j) 

where zn^ G d(G P -Xr
n(^). (To be correct we should make some distinction 

between the boundary of G P Xn^) in Xw(j) and its boundary in X. As we feel 
there can be no confusion in doing so we will use d to denote both boundaries. 
Note also that d(G P XnU)) C dG.) 

We may assume, passing to a subsequence if necessary, that tn^) —> t as 
7 —» oo and thus 

PnU)TznU) -» (1 - J)?*i + ty = ^o (say) as j -» oo. 
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By the A-properness of T, there exists a subsequence {n(k)} of {n(j)\ such 
that zn(k) —>z as k —» oo and 7s = ;y0. As zn(k) G dG and dG is closed, 
yo € T(aG). 

But 

2d g ||y0 - yll = 11(1 - OCv - ^ i ) + t(y - y)\\ 

= (l - 01b - ^ i l l 

= (1 - Oil?* - 7*i|| 
< d by (1). 

This is a contradiction and so there exists an integer N such that 
(1 - t)PnTxx + tPny G PnT(d(G r\ Xn)) for all * G [0, 1] and for all n ^ N. 

By the homotopy property of Brouwer degree we see that 

(2) deg(PnT\Xn} G H Xn, Pny) = deg(PnT\Xn, G r\ Xn, PnTXl) 

for all n^ N. As PnTxx G P n r ( G H X J for all n ^ N (we assume iV ^ iV') 
the right hand side of equation (2) is an integer not less than 1 (see Theorem 
1.3(b)). It then follows from the definition of Deg(T, G, y) that 
0 G Deg(T,G,y). 

(c) Suppose for some point y G X\T(dG) with 1 G Deg(7", G, y) that 
r _ 1 (y ) P\ G is not connected. Since T~l{y) D G — T~l(y) Pi G is compact 
(see for example [8, Lemma 1]) there are two non-empty compact sets H 
and K such that 

T-l(y)C\G=H\JK and H f\ K = 0. 

As dist(77, K) > 0 we may find open neighbourhoods iV, M oi H, K respec­
tively such that N C\ M = 0. But 

Deg(r , G, y) ç Deg(7\ N, y) + Deg(r , M, y), 

(this is a trivial consequence of [4, Theorem 1(d)]) where for two subsets 
DÛ D2 of Z' = Z U j +cx), -oo } we set 

Di + D2 = {7 : Ti + 72 with 71 in D1} y2 in D2} 

and apply the convention that GO + ( — 00) = 7 for all 7 in Z'. 
As Deg(T, N, y) and Deg(T, M, y) contain only strictly positive integers 

(see (a) and (b)) the least integer in Deg(T, G, y) must be greater than or 
equal to 2. This contradicts our hypothesis and so the theorem is proved. 

(d) If y G Cr\ T(G) then 0 G Deg(r , G, y) by (b). If z belongs to the 
same connected component of X\T(dG) as y it is easy to show Deg(7", G, y) — 
Deg(7\ G, z). Hence 0 G Deg(r , G, 2) and so z G T(G). 

This completes the proof of the theorem. 

The next theorem can be deduced from Theorem 2.1 in exactly the same 
manner that Browder deduced Theorem 3 from Theorem 2 in [1]. 
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THEOREM 2.2. Let U, G and T be defined as in Theorem 2.1. Suppose for each 
y £ X\T(dG) that T~l{y) C\G is totally disconnected. Then for any point 
y G X\T(dG) such that 1 6 Deg(T, G, y), T~l{y) C\G is a single point. And 
for the component C of X\T(dG) containing y, T is a homeomorphism of 
T~l(C) r\G onto C. 

This completes the extension of Browder's results to A -proper analytic type 
mappings. In the next section we show how they may be used to prove unique­
ness theorems for operator equations. 

3. A uniqueness theorem. Theorem 2.2 plays an important part in our 
uniqueness theorem. To apply the theorem we must find conditions which 
imply that the solution set of an operator equation is totally disconnected. In 
this direction Browder has proved the following (see [2, Theorems 15.3 and 
15.5]). 

THEOREM 3.1. Let Y be a complex Banach space, G an open subset of Y and 
T : G —> Y a complex analytic Fredholm mapping. Suppose T~l{y) P G is 
compact for some y £ Y. Then T~l{y) P G is totally disconnected. Also, if 
ind(jH) = 0, then T~x{y) P G is finite. 

For a proof of this theorem and precise definitions of "Fredholm" and 
u i n d ( r ) " we refer the reader to [2, Section 15]. An A -proper mapping is 
apparently not necessarily Fredholm. However an important subclass of the 
A -proper mappings have this property. We now define this subclass. 

Definition 3.2. Let F be a Banach space and suppose / : D(f) C F —> Y 
is continuous and satisfies 

jM/ (Q)) ^ kpr($l), 

for all bounded subsets 12 of D ( / ) , where 

jSr(fi) = infjd ^ 0: 12 is contained in the union of a finite number of balls (of F) 
with diameter d\. 

Then we say /3F(12) is the ball measure of non-compactness of 12 and / is a 
&-ball contraction. 

THEOREM 3.3. Let Y be a complex Banach space, U an open subset of Y and 
G an open subset of U such that G C U. Suppose f : U —-> F is complex analytic 
and f : G —» F a k-ball contraction (k < 1). Then I — / : G —> F is a Fredholm 
mapping of index zero. 

Proof. Notice that our definition of &-ball contraction presupposes that / is 
continuous. This together with the complex analyticity assumption implies 
that the Fréchet derivative of / at y (in G ) , / / , is a bounded linear mapping 
of F into F, and also t h a t / is infinitely differentiable, which, a fortiori, implies 
that / is once continuously differentiable. Thus to prove our theorem it is 
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sufficient to show that at any point y G G, I — / / satisfies the Fredholm 
Alternative. It is a routine matter to show that / / is a &-ball contraction 
(same k as for / ) and so [9, Theorem 11] implies that / — / / satisfies the 
Fredholm Alternative. Our theorem is proved. 

Before we prove the main theorem of this section let us make the following 
remarks. Let F be a complex Ili-space and let X be the real Banach space 
obtained from Y by ignoring the complex structure. Obviously X is a Ili-space. 
Iff : D(f) C Y —* F is a &-ball contraction then it is also a &-ball contraction 
when considered as operating in X. Webb proved the following theorem 
[11, Theorem 1]. 

THEOREM 3.4. Let X be a real ïïx-space, G an open subset of X and f : G —» X 
a k-ball contraction (k < 1). Then I — f is A-proper. 

Browder proved that a complex analytic mapping, if considered as operating 
in the real space obtained from the complex space by ignoring the complex 
structure, is of the analytic type [1, Proposition 1] (indeed this was the 
motivation for the name "analytic type"). Thus the results of Section 2 can 
be applied to complex analytic &-ball contractions. In particular we obtain the 
following theorem. 

THEOREM 3.5. Let Y be a complex Ui-space, U an open subset of Y and G an 
open convex bounded subset of U such that G C U. Suppose that f : U —> Y is 
complex analytic, f : G —> Y is a k-ball contraction (k < 1) such that f{dG) C G 
and f has no fixed points on the boundary of G. Then f has one and only one fixed 
point in G. 

Proof. Let X be the real Ili-space obtained from Y by ignoring the complex 
structures. Put T = I — / . Then considering T as operating in X we see that 
T: U —> X is of the analytic type and T : G —> X is A -proper. We have 
assumed that 0 g T(dG) and so Deg(7\ G, 0) is well-defined. Also 0 g T(G) 
implies 2"-1(0) O G is compact and so Theorem 3.1 is applicable. We deduce 
J T - 1 ( 0 ) P\ G is finite and thus totally disconnected. A standard argument 
proves Deg(T, G, 0) = {1} and so our theorem follows from Theorem 2.2. 

This theorem is comparable to [3, Theorem 2] where it was assumed t h a t / 
was of the form H + C, H a &-contraction and C a compact operator. We have 
generalized this result to fe-ball contractions although we have had to restrict 
our attention to Ili-spaces. 

It should be remarked that the conditions uf(dG) C G a n d / has no fixed 
points on the boundary of G" of Theorem 3.5 can be replaced by other well-
known conditions, which imply that Deg(T, G, 0) = {l j , without affecting 
the conclusion of the theorem. 

The author is indebted to Professor D. E. Edmunds for advice and many 
helpful suggestions. 
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