ON SETS OF PP-GENERATORS OF FINITE GROUPS

JAN KREMPA and AGNIESZKA STOCKA ${ }^{\text {® }}$

(Received 11 July 2014; accepted 24 August 2014; first published online 14 October 2014)

Abstract

The classes of finite groups with minimal sets of generators of fixed cardinalities, named \mathcal{B}-groups, and groups with the basis property, in which every subgroup is a \mathcal{B}-group, contain only p-groups and some $\{p, q\}$-groups. Moreover, abelian \mathcal{B}-groups are exactly p-groups. If only generators of prime power orders are considered, then an analogue of property \mathcal{B} is denoted by $\mathcal{B}_{p p}$ and an analogue of the basis property is called the pp-basis property. These classes are larger and contain all nilpotent groups and some cyclic q-extensions of p-groups. In this paper we characterise all finite groups with the pp-basis property as products of p-groups and precisely described $\{p, q\}$-groups.

2010 Mathematics subject classification: primary 20F05; secondary 20D10, 20D60.
Keywords and phrases: finite group, generating set, independent set, soluble group.

1. Preliminaries

All groups considered here are finite. For any group G, let $\Phi(G)$ denote the Frattini subgroup of G. An element $g \in G$ will be called a pp-element if it is of a prime power order, while by a p-element we mean an element whose order is a power of a prime number p. As in [3], groups containing only pp-elements will be called CP-groups. For other notation, terminology and results one can consult, for example, [4, 10].

A subset X of a group G will be called:

- g-independent if $\langle Y, \Phi(G)\rangle \neq\langle X, \Phi(G)\rangle$ for every $Y \subset X$;
- a generating set if $\langle X\rangle=G$ (or equivalently $\langle X, \Phi(G)\rangle=G$);
- a g-base of G if X is a g-independent generating set of G.

In connection with these notions the following invariants are considered (see [2, 5, 8]):

$$
\begin{equation*}
m(G)=\sup _{X}|X| \quad \text { and } \quad d(G)=\inf _{X}|X|, \tag{1.1}
\end{equation*}
$$

where X runs over all g-bases of G. Then the following properties are defined (see $[2,6,9]$): a group G has property \mathcal{B} (is a \mathcal{B}-group) if $d(G)=m(G)$ and G has the basis property if all its subgroups are \mathcal{B}-groups.

[^0]Groups with the basis property and \mathcal{B}-groups are completely described (see $[2,6,9]$). These classes contain only p-groups and some $\{p, q\}$-groups, are homomorphically closed and soluble. Among direct products, they contain only p groups.

In characterisations of \mathcal{B}-groups and groups with the basis property, as in $[2,6,9]$, some cyclic q-extensions of p-groups for $q \neq p$ play an important role. We recall this construction here.

Example $1.1[5,6,9]$. Let $p \neq q$ be primes, m be a nonnegative integer and $\mathbb{K}=\mathbb{F}_{p}[\rho]$ be the field extension of the prime field \mathbb{F}_{p}, where ρ is a primitive q^{m} th root of $1 \in \mathbb{K}^{*}$. Let also $Q=\langle x\rangle$ be a cyclic group of order q^{m} and let V be a vector space over \mathbb{K}. Then we can consider an action $\phi: Q \longrightarrow A u t_{\mathbb{\mathbb { R }}} V$ via multiplication:

$$
x^{j} \phi: v \longrightarrow v \rho^{j} \quad \text { for } j=1, \ldots, q^{m}
$$

We can also construct the semidirect product $G_{\phi}=V \rtimes_{\phi} Q$ with the above-mentioned action. The extension G_{ϕ} will be invoked here as a scalar extension. As in [9], one can check that G_{ϕ} is a group with the basis property, is a CP-group and $\Phi\left(G_{\phi}\right)=1$. Moreover,

$$
\begin{equation*}
d(V)=\left[\mathbb{K}: \mathbb{F}_{p}\right] \cdot \operatorname{dim}_{\mathbb{K}}(V) \quad \text { and } \quad d\left(G_{\phi}\right)=\operatorname{dim}_{\mathbb{K}}(V)+1 \tag{1.2}
\end{equation*}
$$

The classes of \mathcal{B}-groups and groups with the basis property are rather narrow. Thus, we proposed in [6] a modification of these notions. A subset $X \subseteq G$ is said there to be:

- pp-independent if X is a set of pp -elements and is g -independent;
- a pp-generating set if X is a set of pp -elements and is a generating set;
- a pp-base of G if X is a pp-independent generating set of G.

As in formula (1.1), the following invariants can be considered:

$$
m_{\mathrm{pp}}(G)=\sup _{X}|X| \quad \text { and } \quad d_{\mathrm{pp}}(G)=\inf _{X}|X|,
$$

where X runs over all pp-bases of G. Also, from [6], a group G has property $\mathcal{B}_{\mathrm{pp}}$ (is a $\mathcal{B}_{p^{-}}$-group $^{\prime}$) if $d_{\mathrm{pp}}(G)=m_{\mathrm{pp}}(G)$ and G has the pp-basis property if all its subgroups are $\mathcal{B}_{\text {pp }}$-groups.

Proposition 1.2 [6]. A group G has the basis property if and only if it has the pp-basis property and is a CP-group.

Theorem 1.3 [6]. Let G be a group and $H \leq G$ be a normal subgroup.
(1) If G is a $\mathcal{B}_{p p^{-}}$-group, then G / H is also a $\mathcal{B}_{p p}$-group.
(2) If G has the pp-basis property, then G is soluble and G / H has the pp-basis property.

To exhibit a difference between g-notions and pp-notions explicitly, let us consider a modification of Example 1.1, with some data which will be needed later.

Example 1.4 ([6], §5). Let $p \neq q$ be primes, $m \geq l \geq 0$ and \mathbb{K} a field of characteristic p with a primitive q^{l} th root ρ of $1 \in \mathbb{K}^{*}$. Let $Q=\langle x\rangle, V$, the action $\phi: Q \longrightarrow A u t_{\mathbb{K}} V$ and $G_{\phi}=V \rtimes_{\phi} Q$ be as in Example 1.1. The centraliser of V in Q is equal to $\left\langle x^{q^{l}}\right\rangle$ and $G_{\phi} \mid\left\langle x^{q^{l}}\right\rangle$ is a scalar extension and hence a CP-group. The group G_{ϕ} will be named here a generalised scalar extension. As in [6,7] one can check that G_{ϕ} is a group with the pp-basis property, but for $l<m$ it does not have the basis property. Moreover, for $l=0$, we have $G_{\phi}=P \times Q$.

2. Main results

In this section we formulate structure theorems for groups with the pp-basis property. For this purpose a group G will be called (coprimely) indecomposable if it is not a direct product of nontrivial groups with coprime orders. This class of groups contains CP-groups, generalised scalar extensions with $l>0$ and all other $\{p, q\}$-groups with a nonnormal Sylow subgroup. It is also easy to check that every group is a direct product of indecomposable groups with coprime orders, and this decomposition is unique up to the order of factors. We also have the following result.

Theorem 2.1 [6]. Let G_{1} and G_{2} be groups with coprime orders.
(1) $\quad G_{1}$ and G_{2} are $\mathcal{B}_{\mathrm{pp}}$-groups if and only if $G_{1} \times G_{2}$ is a $\mathcal{B}_{\mathrm{pp}}$-group;
(2) G_{1} and G_{2} have the pp-basis property if and only if $G_{1} \times G_{2}$ has the pp-basis property.

Corollary 2.2. Let G be a group. Then G has the pp-basis property if and only if it is a direct product of indecomposable groups with the pp-basis property of coprime orders. This decomposition is unique up to the order of factors.

We quote, after [6, 7], some properties of $\mathcal{B}_{p p}$-groups and groups with the pp-basis property needed here.

Theorem 2.3. Let $G=P \rtimes Q$ be a nontrivial semidirect product, where P is a p-group and Q is a cyclic q-group, for primes $p \neq q$. The following conditions are equivalent:
(1) G is a $\mathcal{B}_{\mathrm{pp}}$-group;
(2) $G / \Phi(P)$ is a generalised scalar extension;
(3) $G / \Phi(G)$ is a scalar extension;
(4) $\quad G$ is a \mathcal{B}-group.

Theorem 2.4. Let $G=P \rtimes Q$ be a semidirect product, where P is a p-group and Q is a cyclic q-group, for primes $p \neq q$. Then the following conditions are equivalent:
(1) G has the pp-basis property;
(2) for every subgroup $H \leq G$, either the group $H / \Phi(H)$ is a scalar extension or $H=P_{H} \times Q_{H}$, where $P_{H}=P \cap H$ and Q_{H} is a Sylow q-subgroup of H.

Our characterisation of indecomposable groups with the pp-basis property is given by the following results.

Theorem 2.5. Let G be an indecomposable group with the pp-basis property. Then G is either a p-group or a $\{p, q\}$-group.

Theorem 2.6. Let G be an indecomposable $\{p, q\}$-group with the pp-basis property. Then G is either a cyclic q-extension of a p-group or a cyclic p-extension of a q-group.

Due to the above theorems, we can have various characterisations of indecomposable $\{p, q\}$-groups with the pp-basis property, by applying Theorems 2.3 and 2.4. With the help of the above theorems, the Burnside basis theorem and Corollary 2.2 we obtain a structure theorem for groups with the pp -basis property.

Theorem 2.7. Let G be a group. Then G has the pp-basis property if and only if it is one of the following groups:
(1) a p-group;
(2) an indecomposable $\{p, q\}$-group with the pp-basis property;
(3) a direct product of groups given in (1) and (2) with pairwise-coprime orders.

As immediate consequences, we obtain the following results.
Corollary 2.8. Every group with the pp-basis property is nilpotent-by-abelian.
Corollary 2.9. Let G be a Frattini-free group. Then G is a group with the pp-basis property if and only if G is a direct product of some elementary abelian p-groups and some scalar extensions, with coprime orders.

3. Proofs

Lemma 3.1. Let G be an indecomposable semidirect product of a normal p-subgroup $P \neq 1$ by a q-subgroup $Q \neq 1$. If G has the pp-basis property, then Q is cyclic.

Proof. From the assumption, we immediately have $\Phi(P) \triangleleft G$. Thus, applying Theorem 1.3, we can suppose that P is an elementary abelian p-group. Let C stand for $C_{Q}(P)$ and $x \in Q \backslash C$. Then $C \triangleleft G$ and, by assumption, $\langle P, x\rangle$ is a $\mathcal{B}_{p p}$-group. Suppose that $C \cap\langle x\rangle=\left\langle x^{k}\right\rangle$. By Theorem 1.3, $G_{x}=\langle P, x\rangle /\left\langle x^{k}\right\rangle \simeq\langle P C, x\rangle / C$ is a $\mathcal{B}_{p p}$-group. It follows from Theorem 2.3 that G_{x} is a scalar extension and so a CPgroup. Thus, G / C is also a CP-group and so Q / C acts regularly on P. Hence, by [4, Theorem 5.4.11], Q / C is either cyclic or generalised quaternion. As G / C is a CP-group, then, by Proposition 1.2, G / C has the basis property. Hence, from [9, Proposition 4.2], $Q / C=\left\langle x_{1} C\right\rangle$ for some $x_{1} \in Q$.

Suppose that Q is not cyclic. Then there exists $x_{2} \in C \backslash \Phi(Q)$. Let a be a nontrivial element of P. Since $x_{2} x_{1}$ acts fixed-point-freely on P, then $o\left(a x_{2} x_{1}\right)=o\left(x_{2} x_{1}\right)$ is a power of q. This implies that the sets $\left\{a x_{2} x_{1}, x_{1}\right\}$ and $\left\{a, x_{1}, x_{2}\right\}$ are pp-bases of $\left\langle a, x_{1}, x_{2}\right\rangle$, contrary to the assumption of the pp-basis property for G. Hence, Q has to be cyclic.

Proof of Theorem 2.6. We proceed by induction on $|G|$. Due to the above lemma, we should only take care about existence of a normal Sylow subgroup in G.

Let $G=P Q$, where P is a Sylow p-subgroup and Q is a Sylow q-subgroup of G. If $|G|=p q$, then the result follows easily. Let $|G|>p q$ and let us consider first the case $\Phi(G) \neq 1$. Then, by the induction assumption applied to $G / \Phi(G)$, we obtain that, for example, $P \Phi(G)$ is normal in G. Since P is a Sylow p-subgroup of $P \Phi(G)$, a Frattini argument yields that $N_{G}(P) \Phi(G)=G$ and hence $G=N_{G}(P)$ and so P is normal in G.

Now let $\Phi(G)=1$. If $F(G)$ denotes the Fitting subgroup of G, then we have $F(G)=R \times S$, where R is a maximal normal p-subgroup of G and S is a maximal normal q-subgroup of G. As G is a soluble group, $F(G) \neq 1$. Obviously, $R \leq P$ and $S \leq Q$. If either P or Q is normal in G, then we are done.

Suppose that neither P nor Q is normal in G. Therefore, we may suppose that $1 \neq R \neq P$. Hence, P / R is not normal in G / R and so P / R is cyclic, by the induction assumption. If $Q \triangleleft Q R$, then Q is a characteristic subgroup in $Q R \triangleleft G$. Thus, Q is normal in G, which is a contradiction. Hence, Q is nonnormal in $Q R$. So, Q is cyclic, by the induction assumption.

Since $\Phi(G)=1, R$ is an elementary abelian p-group. By [10, 5.2.13], it follows that there exists a subgroup H of G satisfying $G=R \rtimes H$. Thus, $H \simeq G / R$ is metacyclic and there exist elements $a \in Q$ and $b \in P \backslash R$ such that $H=\langle a, b\rangle$. If $H=\langle a\rangle \times\langle b\rangle$, then $P=$ $R \rtimes\langle b\rangle$ is normal in G, which is a contradiction. So, by [10, 10.1.10], $H=\langle a, b| a^{q^{m}}=$ $\left.b^{p^{n}}=1, a^{b}=a^{r}\right\rangle$ with $r^{p^{n}} \equiv 1\left(\bmod q^{m}\right)$ and $\left(q^{m}, r-1\right)=1$. Let $1 \neq z \in R \cap Z(P)$. Then we obtain $(z a)^{-1}(z a)^{b}=a^{r-1}$. Since $\left(r-1, q^{m}\right)=1$, we have $\left\langle a^{r-1}\right\rangle=\langle a\rangle$. This implies that $\langle z a, b\rangle=\langle z, a, b\rangle$ and $o(a z)=q^{b}$. So, the sets $\{z a, b\}$ and $\{z, a, b\}$ are pp-bases of the group $\langle z, a, b\rangle$, contrary to our assumption. Thus, either P or Q has to be normal in G.

Lemma 3.2. Let G be a group with the pp-basis property. If $|\pi(G)|=3$, then there exists a Sylow p-subgroup of G which is a direct factor of G.

Proof. Let $\pi(G)=\left\{p_{1}, p_{2}, p_{3}\right\}$. Since G is soluble by Theorem 1.3, there exist Sylow p_{i}-subgroups P_{i} of G, for $i=1,2,3$, such that $G=P_{1} P_{2} P_{3}$ and $P_{i} P_{j}$ are subgroups of G for all $i, j \in\{1,2,3\}$. Furthermore, for all $i \neq j$, either $P_{i} P_{j}=P_{i} \times P_{j}$ or $P_{i} P_{j}$ is indecomposable.

If $P_{1}, P_{2}, P_{3} \triangleleft G$, then $G=P_{1} \times P_{2} \times P_{3}$. If a Sylow subgroup of G, say P_{3}, is not normal in G, then either $P_{3} \not P_{2} P_{3}$ or $P_{3} \notin P_{1} P_{3}$. Hence, by Lemmas 2.6 and 3.1, P_{3} is cyclic. Thus, $[10,10.1 .10]$ implies that G has a normal Sylow p_{i}-subgroup for some $i \in\{1,2,3\}$. So, it is enough to consider the following cases:

$$
\begin{align*}
& P_{1} \triangleleft G \text { and } P_{2}, P_{3} \nexists G ; \tag{1}\\
& P_{1}, P_{2} \triangleleft G \text { and } P_{3} \nexists G .
\end{align*}
$$

Case 1. In view of Theorem 1.3, by passing to the quotient, we can assume that P_{1} is elementary abelian. By arguments as above, P_{2} and P_{3} are cyclic. Let $P_{2}=\langle x\rangle$ and $P_{3}=\langle y\rangle$. By Lemma 2.6, one of the Sylow subgroups of $P_{2} P_{3}$ is normal in $P_{2} P_{3}$; we take $P_{2} \triangleleft P_{2} P_{3}$. In this case $P_{2} \notin P_{1} P_{2}$.

Assume that $P_{3} \subseteq C_{G}\left(P_{1}\right)$. Then $P_{3} \notin P_{2} P_{3}$ and so y acts fixed-point-freely on P_{2}. Let $a \in P_{1}$. Since x acts on P_{1} fixed-point-freely (see [6, Proposition 2.4]), we have $o(a x)=o(x)$. Thus, $\langle a x, y\rangle=\left\langle a x, a x^{y}, y\right\rangle=\left\langle x^{-1} x^{y}, a x, y\right\rangle=\langle a, x, y\rangle$ and the sets $\{a x, y\}$, $\{a, x, y\}$ are pp-bases of $\langle a, x, y\rangle$, which is a contradiction.

So, let $P_{3} \nsubseteq C_{G}\left(P_{1}\right)$. Consider the quotient $\bar{G}=G / C_{P_{2} P_{3}}\left(P_{1}\right)$. Then every ppelement of $\bar{P}_{2} \bar{P}_{3}$ acts on \bar{P}_{1} fixed-point-freely. From [10, 10.5.5], it follows that $\bar{P}_{2} \bar{P}_{3}$ cannot act on \bar{P}_{1} regularly. Hence, $\bar{P}_{2} \bar{P}_{3}$ is not a CP-group. So, there exist elements $\bar{x}_{1} \in P_{2}$ and $\bar{y}_{1} \in P_{3}$ such that $o\left(\bar{x}_{1}\right)=p_{2}, o\left(\bar{y}_{1}\right)=p_{3}$ and $\bar{x}_{1} \bar{y}_{1}=\bar{y}_{1} \bar{x}_{1}$. Let $\bar{a} \in \bar{P}_{1}$. Since \bar{x}_{1}, \bar{y}_{1} act fixed-point-freely on $P_{1}, o\left(\bar{a}_{1}\right)=o\left(\bar{x}_{1}\right)$ and $o\left(\bar{a}_{1}\right)=o\left(\bar{y}_{1}\right)$. Furthermore, $\left\langle\bar{a} \bar{x}_{1}, \bar{a} \bar{y}_{1}\right\rangle=\left\langle\bar{x}_{1} \bar{y}_{1}^{-1}, \bar{a} \bar{y}_{1}\right\rangle=\left\langle\bar{x}_{1}, \bar{y}_{1}, \bar{a}\right\rangle$. It follows that the sets $\left\{\bar{a} \bar{x}_{1}, \bar{a} \bar{y}_{1}\right\}$ and $\left\{\bar{x}_{1}, \bar{y}_{1}, \bar{a}\right\}$ are pp-bases of $\left\langle\bar{x}_{1}, \bar{y}_{1}, \bar{a}\right\rangle$, which is a contradiction.

Case 2. If $P_{3} \subseteq C_{G}\left(P_{1}\right)$ or $P_{3} \subseteq C_{G}\left(P_{2}\right)$, then P_{1} or respectively P_{2} is a direct factor of G. So, assume that $P_{3} \nsubseteq C_{G}\left(P_{1}\right)$ and $P_{3} \nsubseteq C_{G}\left(P_{2}\right)$. Hence, by Lemma 3.1, $P_{1} \rtimes P_{3}$ and $P_{2} \rtimes P_{3}$ are as in Theorem 2.6 and it follows that P_{3} is a cyclic group. Let $P_{3}=\langle y\rangle$. Analogously to the previous case, we may assume that P_{1}, P_{2} are elementary abelian. So, we can take $x_{1} \in P_{1}, x_{2} \in P_{2}$ such that $x_{1}^{y} \neq x_{1}, x_{2}^{y} \neq x_{2}$. Thus, $x_{1} y, x_{2} y$ are pp-elements and further $\left\langle x_{1} y, x_{2} y\right\rangle=\left\langle x_{2} y, x_{1} x_{2}^{-1}\right\rangle=\left\langle x_{1}, x_{2}, y\right\rangle$. This implies that $\left\{x_{1} y, x_{2} y\right\}$ and $\left\{x_{1}, x_{2}, y\right\}$ are pp-bases of $\left\langle x_{1}, x_{2}, y\right\rangle$. Hence, G does not have the ppbasis property.

Proof of Theorem 2.5. By Theorem 1.3, G is a soluble group. From [4, Theorem 6.4.11], there exist Sylow p_{i}-subgroups P_{i}, for $i=1, \ldots, n$, satisfying $G=P_{1} P_{2} \cdot \ldots$. P_{n} and $P_{i} P_{j}$ is a subgroup of G for $i, j \in\{1, \ldots, n\}$. If $n=1$, then G is a p-group. If $n=2$, then G is an indecomposable $\{p, q\}$-group.

Suppose that $n>2$. By assumption, P_{1} is not a direct factor of G. Thus, there exists P_{k} for some $2 \leq k \leq n$ such that $P_{1} \nsubseteq C_{G}\left(P_{k}\right)$. We can take $k=2$. Therefore, $P_{1} P_{2}$ is an indecomposable group with the pp-basis property. Lemma 3.2 asserts that $P_{1} P_{2} \subseteq C_{G}\left(P_{j}\right)$ for every $j=3, \ldots, n$. Thus, $G=\left(P_{1} P_{2}\right) \times\left(P_{3} \cdot \ldots \cdot P_{n}\right)$, which is a contradiction.

4. pp-matroid groups

From the Burnside basis theorem we know that, if G is a p-group, then every g-independent (pp-independent) subset of G can be extended to a g-base (pp-base) of G. However, this need not be true in general, even for CP -groups with the basis property (the pp-basis property).

Example 4.1. Let us follow the notation from Example 1.1. In addition, suppose that q does not divide $p-1$ and let V be the additive group of \mathbb{K}. If we take suitable ϕ and $G_{\phi}=V \rtimes_{\phi} Q$, then, by formula (1.2), $d\left(G_{\phi}\right)=d_{\mathrm{pp}}\left(G_{\phi}\right)=2$ and $d(V)=d_{\mathrm{pp}}(V)=$ $\left[\mathbb{K}: \mathbb{F}_{p}\right] \geq 2$. Thus, for $Q \neq 1$, g-bases (pp-bases) of V cannot be extended to g-bases (pp-bases) of G_{ϕ}.

Recall, as in [11], that G is a matroid group if G has property \mathcal{B} and every gindependent subset of G is contained in a g-base of G. Some characterisations of matroid groups can be found in $[1,2,11]$.

Analogously, we can give a pp-version of the notion of a matroid group: a group G is a pp-matroid group if G has property $\mathcal{B}_{\mathrm{pp}}$ and every pp-independent subset of G is contained in a pp-base of G. We already noted that every p-group is a matroid and a pp-matroid group, but groups from Example 4.1 are neither matroid nor pp-matroid. It is also easy to check that every matroid group is pp-matroid. The converse implication is not true, because every matroid group has to be indecomposable. On the other hand, from Theorem 2.1, one can obtain the following result.

Theorem 4.2. Let G_{1} and G_{2} be groups of coprime orders. Then $G_{1} \times G_{2}$ is a ppmatroid group if and only if both G_{1} and G_{2} are pp-matroid groups.

Based on these definitions, some analogues of properties of matroid groups can be proved for pp-matroid groups.

Theorem 4.3. Let G be a group and $H \leq G$ be a normal subgroup such that $H \leq \Phi(G)$. Then G is a pp-matroid group if and only if G / H is a pp-matroid group.

Proposition 4.4. Let G be a Frattini-free pp-matroid group. If H is a proper subgroup of G, then H is a $\mathcal{B}_{p p^{-}}$group and $d_{\mathrm{pp}}(H)<d_{\mathrm{pp}}(G)$.

Proof. Let X be a pp-base of H. By assumption, $\langle X\rangle \neq G$ and X is a pp-independent subset of G. However, X can be embedded in a pp-base B of G. Hence, we obtain $d_{\mathrm{pp}}(H)<d_{\mathrm{pp}}(G)$. It is easy to check that H is a $\mathcal{B}_{p p^{-}}$-group.

Theorem 4.5. Let G be a group and let $H=G / \Phi(G)$. The group G is a pp-matroid group if and only if one of the following holds:
(1) G is a p-group for some prime p;
(2) $H=P \rtimes Q$ is a scalar extension for primes $p \neq q$, where $q \mid(p-1)$ and Q is cyclic of order q;
(3) G is a direct product of groups given in (1) and (2) with coprime orders.

Proof. Let G be a pp-matroid group. Then, by Theorem 4.3, H has the ppbasis property. Hence, by Theorem 2.7, H is a direct product of p-groups and indecomposable $\{p, q\}$-groups with the pp-basis property. Hence, in view of Theorem 4.2, we can assume that H is a Frattini-free indecomposable $\{p, q\}$-group with the pp-basis property, which is pp-matroid. Then H is a scalar extension of an elementary abelian p-group P by a cyclic q-group $Q=\langle x\rangle$. Suppose that Q has order greater than q. Then a pp-base of $P \rtimes\left\langle x^{q}\right\rangle$ cannot be extended to a pp-base of H. So, $|Q|=q$.

From (1.2),

$$
d(H)=\operatorname{dim}_{\mathbb{K}}(P)+1 \quad \text { and } \quad d(P)=\left[\mathbb{K}: \mathbb{F}_{p}\right] \cdot \operatorname{dim}_{\mathbb{K}}(P) .
$$

On the other hand, by Proposition $4.4, d(P)<d(H)$. Hence, $\left[\mathbb{K}: \mathbb{F}_{p}\right]=1$ and so $q \mid(p-1)$.

Conversely, suppose that H is a group as in (2). Since H is a CP-group, by [2, Theorem 5.1] we know that H is a matroid group and so H is pp-matroid. Hence, with the help of Theorem 4.2, the proof can be completed.

Corollary 4.6. Let G be a Frattini-free group. Then G is a matroid group if and only if G is an indecomposable pp-matroid group.

Example 4.7 [6, Example 3.3]. Let $p \neq q$ be primes such that q is odd and $q \mid(p-1)$. Consider the group

$$
P=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1=[a, c]=[b, c], c=[a, b]\right\rangle .
$$

Let $Q=\langle x\rangle$ be the cyclic group of order q. There exists an element $i \in \mathbb{F}_{p}^{*}$ of order q. Thus, the group Q acts on P in the following way:

$$
a^{x^{j}}=a^{i^{j}} \quad \text { and } \quad b^{x^{j}}=b^{i^{j}} \quad \text { for } 1 \leq j \leq q .
$$

It is easy to observe that G is a CP-group and we have $\Phi(G)=\Phi(P)=\langle c\rangle$. Thus, G is a \mathcal{B}-group and a $\mathcal{B}_{p p^{-}}$-group. However, if $H=\langle a, c, x\rangle$, then $\Phi(H)=1$ and H is not a scalar extension and not a $\mathcal{B}_{p p}$-group. Hence, G is a pp-matroid CP-group, but does not satisfy the pp-basis property, because H is not a $\mathcal{B}_{\text {pp }}$-group and is not pp-matroid. Obviously, G is also a matroid group and H is not a matroid group.

References

[1] A. Aljouiee and F. Alrusaini, 'Matroid groups and basis property', Int. J. Algebra 4 (2010), 535-540.
[2] P. Apisa and B. Klopsch, 'A generalization of the Burnside basis theorem', J. Algebra 400 (2014), 8-16.
[3] A. L. Delgado and Y.-F. Wu, 'On locally finite groups in which every element has prime power order', Illinois J. Math. 46(3) (2002), 885-891.
[4] D. Gorenstein, Finite Groups, 2nd edn (Chelsea, New York, 1980).
[5] J. Krempa and A. Stocka, 'On some invariants of finite groups', Int. J. Group Theory 2(1) (2013), 109-115.
[6] J. Krempa and A. Stocka, 'On some sets of generators of finite groups', J. Algebra 405 (2014), 122-134.
[7] J. Krempa and A. Stocka, 'Corrigendum to 'On some sets of generators of finite groups", J. Algebra, 408 (2014), 61-62.
[8] A. Lucchini, 'The largest size of a minimal generating set of a finite group', Arch. Math. 101 (2013), 1-8.
[9] J. McDougall-Bagnall and M. Quick, 'Groups with the basis property', J. Algebra 346 (2011), 332-339.
[10] D. J. S. Robinson, A Course in the Theory of Groups, 2nd edn (Springer, New York, 1996).
[11] R. Scapellato and L. Verardi, 'Groupes finis qui jouissent d'une propriété analogue au théorème des bases de Burnside’, Boll. Unione Mat. Ital. A (7) 5 (1991), 187-194.

JAN KREMPA, Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland e-mail: jkrempa@mimuw.edu.pl

AGNIESZKA STOCKA, Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland e-mail: stocka@math.uwb.edu.pl

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

