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Abstract

The classes of finite groups with minimal sets of generators of fixed cardinalities, named B-groups, and
groups with the basis property, in which every subgroup is a B-group, contain only p-groups and some
{p,q}-groups. Moreover, abelianB-groups are exactly p-groups. If only generators of prime power orders
are considered, then an analogue of property B is denoted by Bpp and an analogue of the basis property
is called the pp-basis property. These classes are larger and contain all nilpotent groups and some cyclic
q-extensions of p-groups. In this paper we characterise all finite groups with the pp-basis property as
products of p-groups and precisely described {p, q}-groups.
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1. Preliminaries

All groups considered here are finite. For any group G, let Φ(G) denote the Frattini
subgroup of G. An element g ∈ G will be called a pp-element if it is of a prime power
order, while by a p-element we mean an element whose order is a power of a prime
number p. As in [3], groups containing only pp-elements will be called CP-groups.
For other notation, terminology and results one can consult, for example, [4, 10].

A subset X of a group G will be called:

• g-independent if 〈Y,Φ(G)〉 , 〈X,Φ(G)〉 for every Y ⊂ X;
• a generating set if 〈X〉 = G (or equivalently 〈X,Φ(G)〉 = G);
• a g-base of G if X is a g-independent generating set of G.

In connection with these notions the following invariants are considered (see [2, 5, 8]):

m(G) = sup
X
|X| and d(G) = inf

X
|X|, (1.1)

where X runs over all g-bases of G. Then the following properties are defined (see
[2, 6, 9]): a group G has property B (is a B-group) if d(G) = m(G) and G has the basis
property if all its subgroups are B-groups.
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Groups with the basis property and B-groups are completely described
(see [2, 6, 9]). These classes contain only p-groups and some {p, q}-groups, are
homomorphically closed and soluble. Among direct products, they contain only p-
groups.

In characterisations of B-groups and groups with the basis property, as in [2, 6, 9],
some cyclic q-extensions of p-groups for q , p play an important role. We recall this
construction here.

Example 1.1 [5, 6, 9]. Let p , q be primes, m be a nonnegative integer and K = Fp[ρ]
be the field extension of the prime field Fp, where ρ is a primitive qmth root of 1 ∈ K∗.
Let also Q = 〈x〉 be a cyclic group of order qm and let V be a vector space overK. Then
we can consider an action φ : Q −→ AutKV via multiplication:

x jφ : v −→ vρ j for j = 1, . . . , qm.

We can also construct the semidirect product Gφ = V oφ Q with the above-mentioned
action. The extension Gφ will be invoked here as a scalar extension. As in [9], one
can check that Gφ is a group with the basis property, is a CP-group and Φ(Gφ) = 1.
Moreover,

d(V) = [K : Fp] · dimK(V) and d(Gφ) = dimK(V) + 1. (1.2)

The classes ofB-groups and groups with the basis property are rather narrow. Thus,
we proposed in [6] a modification of these notions. A subset X ⊆ G is said there to be:

• pp-independent if X is a set of pp-elements and is g-independent;
• a pp-generating set if X is a set of pp-elements and is a generating set;
• a pp-base of G if X is a pp-independent generating set of G.

As in formula (1.1), the following invariants can be considered:

mpp(G) = sup
X
|X| and dpp(G) = inf

X
|X|,

where X runs over all pp-bases of G. Also, from [6], a group G has property Bpp (is a
Bpp-group) if dpp(G) = mpp(G) and G has the pp-basis property if all its subgroups are
Bpp-groups.

Proposition 1.2 [6]. A group G has the basis property if and only if it has the pp-basis
property and is a CP-group.

Theorem 1.3 [6]. Let G be a group and H ≤ G be a normal subgroup.

(1) If G is a Bpp-group, then G/H is also a Bpp-group.
(2) If G has the pp-basis property, then G is soluble and G/H has the pp-basis

property.

To exhibit a difference between g-notions and pp-notions explicitly, let us consider
a modification of Example 1.1, with some data which will be needed later.
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Example 1.4 ([6], §5). Let p , q be primes, m ≥ l ≥ 0 and K a field of characteristic
p with a primitive qlth root ρ of 1 ∈ K∗. Let Q = 〈x〉, V , the action φ : Q −→ AutKV
and Gφ = V oφ Q be as in Example 1.1. The centraliser of V in Q is equal to 〈xql

〉 and
Gφ/〈xql

〉 is a scalar extension and hence a CP-group. The group Gφ will be named
here a generalised scalar extension. As in [6, 7] one can check that Gφ is a group with
the pp-basis property, but for l < m it does not have the basis property. Moreover, for
l = 0, we have Gφ = P × Q.

2. Main results

In this section we formulate structure theorems for groups with the pp-basis
property. For this purpose a group G will be called (coprimely) indecomposable if
it is not a direct product of nontrivial groups with coprime orders. This class of groups
contains CP-groups, generalised scalar extensions with l > 0 and all other {p,q}-groups
with a nonnormal Sylow subgroup. It is also easy to check that every group is a direct
product of indecomposable groups with coprime orders, and this decomposition is
unique up to the order of factors. We also have the following result.

Theorem 2.1 [6]. Let G1 and G2 be groups with coprime orders.

(1) G1 and G2 are Bpp-groups if and only if G1 ×G2 is a Bpp-group;
(2) G1 and G2 have the pp-basis property if and only if G1 ×G2 has the pp-basis

property.

Corollary 2.2. Let G be a group. Then G has the pp-basis property if and only if it
is a direct product of indecomposable groups with the pp-basis property of coprime
orders. This decomposition is unique up to the order of factors.

We quote, after [6, 7], some properties of Bpp-groups and groups with the pp-basis
property needed here.

Theorem 2.3. Let G = P o Q be a nontrivial semidirect product, where P is a p-group
and Q is a cyclic q-group, for primes p , q. The following conditions are equivalent:

(1) G is a Bpp-group;
(2) G/Φ(P) is a generalised scalar extension;
(3) G/Φ(G) is a scalar extension;
(4) G is a B-group.

Theorem 2.4. Let G = P o Q be a semidirect product, where P is a p-group and Q is
a cyclic q-group, for primes p , q. Then the following conditions are equivalent:

(1) G has the pp-basis property;
(2) for every subgroup H ≤ G, either the group H/Φ(H) is a scalar extension or

H = PH × QH , where PH = P ∩ H and QH is a Sylow q-subgroup of H.

Our characterisation of indecomposable groups with the pp-basis property is given
by the following results.
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Theorem 2.5. Let G be an indecomposable group with the pp-basis property. Then G
is either a p-group or a {p, q}-group.

Theorem 2.6. Let G be an indecomposable {p, q}-group with the pp-basis property.
Then G is either a cyclic q-extension of a p-group or a cyclic p-extension of a q-group.

Due to the above theorems, we can have various characterisations of
indecomposable {p, q}-groups with the pp-basis property, by applying Theorems 2.3
and 2.4. With the help of the above theorems, the Burnside basis theorem and
Corollary 2.2 we obtain a structure theorem for groups with the pp-basis property.

Theorem 2.7. Let G be a group. Then G has the pp-basis property if and only if it is
one of the following groups:

(1) a p-group;
(2) an indecomposable {p, q}-group with the pp-basis property;
(3) a direct product of groups given in (1) and (2) with pairwise-coprime orders.

As immediate consequences, we obtain the following results.

Corollary 2.8. Every group with the pp-basis property is nilpotent-by-abelian.

Corollary 2.9. Let G be a Frattini-free group. Then G is a group with the pp-basis
property if and only if G is a direct product of some elementary abelian p-groups and
some scalar extensions, with coprime orders.

3. Proofs

Lemma 3.1. Let G be an indecomposable semidirect product of a normal p-subgroup
P , 1 by a q-subgroup Q , 1. If G has the pp-basis property, then Q is cyclic.

Proof. From the assumption, we immediately have Φ(P) C G. Thus, applying
Theorem 1.3, we can suppose that P is an elementary abelian p-group. Let C stand
for CQ(P) and x ∈ Q \ C. Then C C G and, by assumption, 〈P, x〉 is a Bpp-group.
Suppose that C ∩ 〈x〉 = 〈xk〉. By Theorem 1.3, Gx = 〈P, x〉/〈xk〉 ' 〈PC, x〉/C is a
Bpp-group. It follows from Theorem 2.3 that Gx is a scalar extension and so a CP-
group. Thus, G/C is also a CP-group and so Q/C acts regularly on P. Hence, by
[4, Theorem 5.4.11], Q/C is either cyclic or generalised quaternion. As G/C is a
CP-group, then, by Proposition 1.2, G/C has the basis property. Hence, from [9,
Proposition 4.2], Q/C = 〈x1C〉 for some x1 ∈ Q.

Suppose that Q is not cyclic. Then there exists x2 ∈ C \ Φ(Q). Let a be a nontrivial
element of P. Since x2x1 acts fixed-point-freely on P, then o(ax2x1) = o(x2x1) is
a power of q. This implies that the sets {ax2x1, x1} and {a, x1, x2} are pp-bases of
〈a, x1, x2〉, contrary to the assumption of the pp-basis property for G. Hence, Q has to
be cyclic. �
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Proof of Theorem 2.6. We proceed by induction on |G|. Due to the above lemma, we
should only take care about existence of a normal Sylow subgroup in G.

Let G = PQ, where P is a Sylow p-subgroup and Q is a Sylow q-subgroup of G. If
|G| = pq, then the result follows easily. Let |G| > pq and let us consider first the case
Φ(G) , 1. Then, by the induction assumption applied to G/Φ(G), we obtain that, for
example, PΦ(G) is normal in G. Since P is a Sylow p-subgroup of PΦ(G), a Frattini
argument yields that NG(P)Φ(G) = G and hence G = NG(P) and so P is normal in G.

Now let Φ(G) = 1. If F(G) denotes the Fitting subgroup of G, then we have
F(G) = R × S , where R is a maximal normal p-subgroup of G and S is a maximal
normal q-subgroup of G. As G is a soluble group, F(G) , 1. Obviously, R ≤ P and
S ≤ Q. If either P or Q is normal in G, then we are done.

Suppose that neither P nor Q is normal in G. Therefore, we may suppose that
1 , R , P. Hence, P/R is not normal in G/R and so P/R is cyclic, by the induction
assumption. If Q C QR, then Q is a characteristic subgroup in QR CG. Thus, Q is
normal in G, which is a contradiction. Hence, Q is nonnormal in QR. So, Q is cyclic,
by the induction assumption.

Since Φ(G) = 1, R is an elementary abelian p-group. By [10, 5.2.13], it follows that
there exists a subgroup H of G satisfying G = R o H. Thus, H 'G/R is metacyclic and
there exist elements a ∈ Q and b ∈ P \ R such that H = 〈a,b〉. If H = 〈a〉 × 〈b〉, then P =

R o 〈b〉 is normal in G, which is a contradiction. So, by [10, 10.1.10], H = 〈a, b | aqm
=

bpn
= 1, ab = ar〉 with rpn

≡ 1 (mod qm) and (qm, r − 1) = 1. Let 1 , z ∈ R ∩ Z(P). Then
we obtain (za)−1(za)b = ar−1. Since (r − 1, qm) = 1, we have 〈ar−1〉 = 〈a〉. This implies
that 〈za, b〉 = 〈z, a, b〉 and o(az) = qb. So, the sets {za, b} and {z, a, b} are pp-bases of
the group 〈z, a, b〉, contrary to our assumption. Thus, either P or Q has to be normal
in G. �

Lemma 3.2. Let G be a group with the pp-basis property. If |π(G)| = 3, then there exists
a Sylow p-subgroup of G which is a direct factor of G.

Proof. Let π(G) = {p1, p2, p3}. Since G is soluble by Theorem 1.3, there exist Sylow
pi-subgroups Pi of G, for i = 1, 2, 3, such that G = P1P2P3 and PiP j are subgroups
of G for all i, j ∈ {1, 2, 3}. Furthermore, for all i , j, either PiP j = Pi × P j or PiP j is
indecomposable.

If P1, P2, P3 CG, then G = P1 × P2 × P3. If a Sylow subgroup of G, say P3, is not
normal in G, then either P3 6 P2P3 or P3 6 P1P3. Hence, by Lemmas 2.6 and 3.1, P3
is cyclic. Thus, [10, 10.1.10] implies that G has a normal Sylow pi-subgroup for some
i ∈ {1, 2, 3}. So, it is enough to consider the following cases:

(1) P1 CG and P2, P3 6 G;
(2) P1, P2 CG and P3 6 G.

Case 1. In view of Theorem 1.3, by passing to the quotient, we can assume that P1
is elementary abelian. By arguments as above, P2 and P3 are cyclic. Let P2 = 〈x〉 and
P3 = 〈y〉. By Lemma 2.6, one of the Sylow subgroups of P2P3 is normal in P2P3; we
take P2 C P2P3. In this case P2 6 P1P2.
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Assume that P3 ⊆ CG(P1). Then P3 6 P2P3 and so y acts fixed-point-freely on P2.
Let a ∈ P1. Since x acts on P1 fixed-point-freely (see [6, Proposition 2.4]), we have
o(ax) = o(x). Thus, 〈ax, y〉 = 〈ax, axy, y〉 = 〈x−1xy, ax, y〉 = 〈a, x, y〉 and the sets {ax, y},
{a, x, y} are pp-bases of 〈a, x, y〉, which is a contradiction.

So, let P3 * CG(P1). Consider the quotient Ḡ = G/CP2P3 (P1). Then every pp-
element of P̄2P̄3 acts on P̄1 fixed-point-freely. From [10, 10.5.5], it follows that P̄2P̄3

cannot act on P̄1 regularly. Hence, P̄2P̄3 is not a CP-group. So, there exist elements
x̄1 ∈ P2 and ȳ1 ∈ P3 such that o(x̄1) = p2, o(ȳ1) = p3 and x̄1ȳ1 = ȳ1 x̄1. Let ā ∈ P̄1. Since
x̄1, ȳ1 act fixed-point-freely on P1, o(āx̄1) = o(x̄1) and o(āȳ1) = o(ȳ1). Furthermore,
〈āx̄1, āȳ1〉 = 〈x̄1ȳ−1

1 , āȳ1〉 = 〈x̄1, ȳ1, ā〉. It follows that the sets {āx̄1, āȳ1} and {x̄1, ȳ1, ā}
are pp-bases of 〈x̄1, ȳ1, ā〉, which is a contradiction.

Case 2. If P3 ⊆ CG(P1) or P3 ⊆ CG(P2), then P1 or respectively P2 is a direct factor
of G. So, assume that P3 * CG(P1) and P3 * CG(P2). Hence, by Lemma 3.1, P1 o P3

and P2 o P3 are as in Theorem 2.6 and it follows that P3 is a cyclic group. Let
P3 = 〈y〉. Analogously to the previous case, we may assume that P1, P2 are elementary
abelian. So, we can take x1 ∈ P1, x2 ∈ P2 such that xy

1 , x1, xy
2 , x2. Thus, x1y, x2y

are pp-elements and further 〈x1y, x2y〉 = 〈x2y, x1x−1
2 〉 = 〈x1, x2, y〉. This implies that

{x1y, x2y} and {x1, x2, y} are pp-bases of 〈x1, x2, y〉. Hence, G does not have the pp-
basis property. �

Proof of Theorem 2.5. By Theorem 1.3, G is a soluble group. From [4, Theorem
6.4.11], there exist Sylow pi-subgroups Pi, for i = 1, . . . , n, satisfying G = P1P2 · . . . ·

Pn and PiP j is a subgroup of G for i, j ∈ {1, . . . , n}. If n = 1, then G is a p-group. If
n = 2, then G is an indecomposable {p, q}-group.

Suppose that n > 2. By assumption, P1 is not a direct factor of G. Thus, there
exists Pk for some 2 ≤ k ≤ n such that P1 * CG(Pk). We can take k = 2. Therefore,
P1P2 is an indecomposable group with the pp-basis property. Lemma 3.2 asserts that
P1P2 ⊆ CG(P j) for every j = 3, . . . , n. Thus, G = (P1P2) × (P3 · . . . · Pn), which is a
contradiction. �

4. pp-matroid groups

From the Burnside basis theorem we know that, if G is a p-group, then every
g-independent (pp-independent) subset of G can be extended to a g-base (pp-base)
of G. However, this need not be true in general, even for CP-groups with the basis
property (the pp-basis property).

Example 4.1. Let us follow the notation from Example 1.1. In addition, suppose that
q does not divide p − 1 and let V be the additive group of K. If we take suitable φ
and Gφ = V oφ Q, then, by formula (1.2), d(Gφ) = dpp(Gφ) = 2 and d(V) = dpp(V) =

[K : Fp] ≥ 2. Thus, for Q , 1, g-bases (pp-bases) of V cannot be extended to g-bases
(pp-bases) of Gφ.
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Recall, as in [11], that G is a matroid group if G has property B and every g-
independent subset of G is contained in a g-base of G. Some characterisations of
matroid groups can be found in [1, 2, 11].

Analogously, we can give a pp-version of the notion of a matroid group: a group G
is a pp-matroid group if G has property Bpp and every pp-independent subset of G is
contained in a pp-base of G. We already noted that every p-group is a matroid and a
pp-matroid group, but groups from Example 4.1 are neither matroid nor pp-matroid. It
is also easy to check that every matroid group is pp-matroid. The converse implication
is not true, because every matroid group has to be indecomposable. On the other hand,
from Theorem 2.1, one can obtain the following result.

Theorem 4.2. Let G1 and G2 be groups of coprime orders. Then G1 × G2 is a pp-
matroid group if and only if both G1 and G2 are pp-matroid groups.

Based on these definitions, some analogues of properties of matroid groups can be
proved for pp-matroid groups.

Theorem 4.3. Let G be a group and H ≤G be a normal subgroup such that H ≤ Φ(G).
Then G is a pp-matroid group if and only if G/H is a pp-matroid group.

Proposition 4.4. Let G be a Frattini-free pp-matroid group. If H is a proper subgroup
of G, then H is a Bpp-group and dpp(H) < dpp(G).

Proof. Let X be a pp-base of H. By assumption, 〈X〉 , G and X is a pp-independent
subset of G. However, X can be embedded in a pp-base B of G. Hence, we obtain
dpp(H) < dpp(G). It is easy to check that H is a Bpp-group. �

Theorem 4.5. Let G be a group and let H = G/Φ(G). The group G is a pp-matroid
group if and only if one of the following holds:

(1) G is a p-group for some prime p;
(2) H = P o Q is a scalar extension for primes p , q, where q|(p − 1) and Q is cyclic

of order q;
(3) G is a direct product of groups given in (1) and (2) with coprime orders.

Proof. Let G be a pp-matroid group. Then, by Theorem 4.3, H has the pp-
basis property. Hence, by Theorem 2.7, H is a direct product of p-groups
and indecomposable {p, q}-groups with the pp-basis property. Hence, in view of
Theorem 4.2, we can assume that H is a Frattini-free indecomposable {p, q}-group
with the pp-basis property, which is pp-matroid. Then H is a scalar extension of an
elementary abelian p-group P by a cyclic q-group Q = 〈x〉. Suppose that Q has order
greater than q. Then a pp-base of P o 〈xq〉 cannot be extended to a pp-base of H. So,
|Q| = q.

From (1.2),

d(H) = dimK(P) + 1 and d(P) = [K : Fp] · dimK(P).
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On the other hand, by Proposition 4.4, d(P) < d(H). Hence, [K : Fp] = 1 and so
q|(p − 1).

Conversely, suppose that H is a group as in (2). Since H is a CP-group, by [2,
Theorem 5.1] we know that H is a matroid group and so H is pp-matroid. Hence, with
the help of Theorem 4.2, the proof can be completed. �

Corollary 4.6. Let G be a Frattini-free group. Then G is a matroid group if and only
if G is an indecomposable pp-matroid group.

Example 4.7 [6, Example 3.3]. Let p , q be primes such that q is odd and q|(p − 1).
Consider the group

P = 〈a, b, c | ap = bp = cp = 1 = [a, c] = [b, c], c = [a, b]〉.

Let Q = 〈x〉 be the cyclic group of order q. There exists an element i ∈ F∗p of order q.
Thus, the group Q acts on P in the following way:

ax j
= ai j

and bx j
= bi j

for 1 ≤ j ≤ q.

It is easy to observe that G is a CP-group and we have Φ(G) = Φ(P) = 〈c〉. Thus, G is
a B-group and a Bpp-group. However, if H = 〈a, c, x〉, then Φ(H) = 1 and H is not a
scalar extension and not a Bpp-group. Hence, G is a pp-matroid CP-group, but does
not satisfy the pp-basis property, because H is not a Bpp-group and is not pp-matroid.
Obviously, G is also a matroid group and H is not a matroid group.
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des bases de Burnside’, Boll. Unione Mat. Ital. A (7) 5 (1991), 187–194.

https://doi.org/10.1017/S0004972714000720 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000720


[9] On sets of pp-generators 249

JAN KREMPA, Institute of Mathematics, University of Warsaw,
Banacha 2, 02-097 Warszawa, Poland
e-mail: jkrempa@mimuw.edu.pl

AGNIESZKA STOCKA, Institute of Mathematics,
University of Białystok, Akademicka 2, 15-267 Białystok, Poland
e-mail: stocka@math.uwb.edu.pl

https://doi.org/10.1017/S0004972714000720 Published online by Cambridge University Press

mailto:jkrempa@mimuw.edu.pl
mailto:stocka@math.uwb.edu.pl
https://doi.org/10.1017/S0004972714000720

	Preliminaries
	Main results
	Proofs
	pp-matroid groups
	References

