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Abstract

In this paper we classify the finite solvable groups in which distinct nonlinear monomial characters have
distinct degrees.
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1. Introduction

Providing a detailed classification of group structures under certain arithmetical
conditions on the character degree set is a classical theme in group representation
theory. Such classification results turn out to have various applications. For example,
finite groups in which all the nonlinear irreducible characters have equal degrees were
described by Isaacs, Passman, and others (see [9, Ch. 12]). At the other extreme,
finite groups in which distinct nonlinear irreducible characters almost have distinct
degrees are studied, for example, in [1–4, 6, 7, 10]. In particular, Berkovich et al. [2]
have classified the finite groups in which distinct nonlinear irreducible characters have
distinct degrees (we call them D-groups) and their result is stated below (Theorem 1.1).
This can be viewed as a generalization of a result of Seitz [11] which showed that if
G has just one nonlinear irreducible character, then either G is an extraspecial 2-group
or else G is a Frobenius group with cyclic complement of order pn − 1 and elementary
abelian kernel of order pn, where p is a prime. The result of Berkovich et al. has many
nice applications including the study of the character degree graph [12] and the Galois
conjugate of the characters [6, 7].
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388 G. Qian and Y. Yang [2]

Theorem 1.1. Let G be a nonabelian D-group. Then one and only one of the following
assertions holds.

(i) G is an extraspecial 2-group.
(ii) G is a 2-transitive Frobenius group with G′ as its kernel.
(iii) G is a 2-transitive Frobenius group of order 72, where a Frobenius complement

is isomorphic to a quaternion group of order 8.

In this paper G always denotes a finite group, p is always a prime, all characters are
complex characters, and we use Isaacs [9] as a source for standard notation and results
from character theory. Recall that χ ∈ Irr(G) is monomial if it is induced from a linear
character of a subgroup of G.

The aim of this paper is to investigate the structure of solvable DM-groups, which
are groups in which distinct nonlinear monomial characters have distinct degrees. We
will provide a detailed and explicit classification of this type of groups. Clearly, if
G is an M-group, that is, all irreducible characters of G are monomial, then G is a
DM-group if and only if G is a D-group.

Remark 1.2. Our result, under the solvable condition, can be viewed as a
generalization of the main result of [2]. Since a nonsolvable group may have no
nonlinear monomial character (see, for example, [5]), it seems impossible to say
something nontrivial for a nonsolvable DM-group.

We denote by C(k), E(k),Q(k) and ES (k), a cyclic group, an elementary abelian
group, a generalized quaternion group and an extraspecial group respectively, and each
of them has order k. We say that a group A acts Frobeniusly on a group N, provided
that A n N is a Frobenius group with the kernel N and a complement A. A p-group P
is called a Camina p-group, provided that |CP(x)| = |P/P′| for all x ∈ P − P′.

Theorem 1.3. Let G be a solvable DM-group but not a D-group. Then one and only
one of the following assertions holds.

(i) G = A n P, where P � ES (33), A � Q(8) acts Frobeniusly on P/P′ and acts
trivially on P′.

(ii) G = A n P, where P is a Camina p-group of order p3m, P′ = Φ(P) = Z(P) �
E(pm), A � C(p2m − 1) acts Frobeniusly on P/P′, CA(P′) � C(pm + 1).

(iii) G = U n F, where U � SL(2, 3) acts Frobeniusly on F � E(52).
(iv) G = U n F, where F � ES (53), U � SL(2, 3) acts Frobeniusly on F/F′ and acts

trivially on F′.

Remark 1.4. The following corollary gives a classification of finite solvable groups
in which distinct imprimitive characters have distinct degrees. Note that if a solvable
group G possesses a primitive character of degree m, then G has at least two primitive
characters with degree m. Indeed, let χ ∈ Irr(G) be primitive and let λ be a nonprincipal
linear character of G such that ker λ is maximal in G; then χ and λχ are distinct
primitive characters of G.
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Corollary 1.5. Let G be a solvable group in which distinct imprimitive characters
have distinct degrees. Then one and only one of the following assertions holds.

(1) G is a D-group.
(2) G � SL(2, 3).
(3) G = U n F, where U � SL(2, 3) acts Frobeniusly on F � E(52).

Let G] = G − {1} and Irr](G) = Irr(G) − {1G}. For a character χ, let Irr(χ) be the set
of irreducible constituents of χ.

Assume that N E G, A ≤ G, λ ∈ Irr(N). Put Irr(G|N) = Irr(G) − Irr(G/N) and
IA(λ) = {a ∈ A | λa = λ}.

2. Lemmas

Lemma 2.1 [8, Ch. 2, Theorem 3.10]. Suppose that an abelian group A acts faithfully
and irreducibly on an elementary abelian group of order pn. Then A is cyclic, and |A|
divides pn − 1 but does not divide pk − 1 for any positive integer k < n.

Lemma 2.2. (1) [8, Ch. 2, Theorem 9.23] Let V be a nondegenerate symplectic space
of degree 2m over a finite field of q elements, and C be a cyclic subgroup of S p(2m, q).
If C acts irreducibly on V, then |C| divides qm + 1.

(2) [8, Ch. 3, Theorem 13.7] Let P be a nonabelian p-group, where P/Z(P) is
elementary abelian and Z(P) is cyclic. Then P′ = 〈c〉 has order p, P/Z(P) � E(p2m);
furthermore, P := P/Z(P) becomes a nondegenerate symplectic space of degree 2m
over a field of p elements, where (x, y) is defined to be a for x, y ∈ P with [x, y] = ca.

We will freely use the following fundamental facts.

• Every quotient group of a DM-group is also a DM-group.
• Let N ≤ Z(G) and λ ∈ Irr(N). Then λG =

∑
χi(1)χi for some χi ∈ Irr(G).

• Let G′ ≤ N ≤G and λ ∈ Irr(N). Then all members in Irr(λG) have the same degree;
see [9, Problem 6.2].

• Let N E G, χ ∈ Irr(G) and λ ∈ Irr( χN ). Write χN = e(λ1 + · · · + λt), where
λ1 = λ, . . . , λt are distinct G-conjugates of λ. Observe that [χN , χN] = e2t, |G :
N| = (λG(1)/λ(1)) ≥ (eχ(1)/λ(1)) = e2t, and χ vanishes on G − N if and only if
[χN , χN] = |G : N|; see [9, Lemma 2.29]. It follows that χ vanishes on G − N if
and only if λG(1) = eχ(1), that is, λG is a multiple of χ.

• A p-group P is a Camina p-group if and only if all nonlinear irreducible characters
of P vanish on P − P′.

Lemma 2.3. Let G = B n P, where P is a p-group and B � C(pa − 1) for some positive
integer a. Suppose that G has a normal subgroup E ≤ Φ(P) ∩ Z(P) such that E is
elementary abelian and B acts Frobeniusly on P/E. Assume that χ ∈ Irr(G) has degree
pe, and assume further that e is even when B � C(3) and p = 2. Then χ is monomial.
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Proof. Write χP = ψ and K = ker χ. Clearly ψ ∈ Irr(P), Z(P) ≤ Z(ψ) = Z( χ) ∩ P; see
[9, Lemma 2.27]. Since all linear characters are monomial, we may assume that χ and
ψ are nonlinear.

Assume that Z( χ) is not a p-group. Take a nonidentity p′-element z ∈ Z( χ) ∩ B.
Since Z( χ)/K = Z(G/K), we have [z, P] ≤ P ∩ K ≤ E(P ∩ K). Thus z centralizes
P/(E(P ∩ K)). As B acts Frobeniusly on P/E, we have P = E(P ∩ K). This implies
that P/ kerψ = P/(P ∩ K) � E/(P ∩ E ∩ K) is abelian, a contradiction. Hence Z( χ) is
a p-group, and it follows that K is a p-group and Z( χ) = Z(ψ).

Assume that K > 1. Clearly EK/K is an elementary abelian subgroup of Z(P/K) ∩
Φ(P/K), and BK/K acts Frobeniusly on (P/K)/(EK/K). Applying the inductive
hypothesis to G/K, we get that χ is monomial. Therefore, we may assume that χ and ψ
are faithful. Now Z(G) = Z( χ) = Z(ψ) = Z(P) is cyclic. Since E ≤ Z(P) is elementary
abelian and B acts Frobeniusly on P/E, it forces that Z(P) = Z(G) = E � C(p).

Suppose that χ is primitive. By [9, Corollary 6.13], E is the unique nonidentity
normal abelian subgroup of G. Let U/E be a p-chief factor of G. Then B � C(pa − 1)
acts faithfully and irreducibly on U/E. Now Lemma 2.1 tells us that U/E � E(pa).
As U is nonabelian, it is easy to see that U � ES (pa+1) where a is even. Considering
the action of B on U and applying Lemma 2.2, we get that (pa − 1) | (pa/2 + 1). This
implies that

pa = 22, B � C(3).

Since B � C(3) acts Frobeniusly on P/E, it follows by [8, Ch. 5, Remark 8.8] that
the class of P/E is at most 2. This implies that [P′, P, P] = 1 and therefore P′ =

P′/[P′, P, P] is an abelian normal subgroup of G. Hence

P′ = E.

Assume that P has a unique involution. Then P is a generalized quaternion group, so
P/P′ = P/E has order 4. This implies that P � Q(8) and χ(1) = 21, a contradiction.
Assume that there is an involution t ∈ P − E. Let V E G be minimal such that
t ∈ V . Since P/E is abelian and C(3) acts Frobeniusly on P/E, it is easy to see that
V/E � E(22) and that V is a dihedral group of order 8. Observe that V has a unique
cyclic subgroup of order 4; it follows that B acts reducibly on V/E, and this contradicts
the minimality of V . Hence χ is imprimitive.

Since χ is imprimitive, there exist a maximal subgroup G1 of G and an irreducible
character χ1 of G1 such that χ = χG

1 . Now we need only show that χ1 is monomial.
Since χ(1) = pe, G1 contains a Hall p′-subgroup of G. Without loss of generality, we
assume that B ≤ G1. Then G1 = B n P1, where P1 is a maximal B-invariant subgroup
of P. Observe that

P1 = P ∩G1 ≥ P ∩ Φ(G) ≥ P ∩ Φ(P) = Φ(P) ≥ E

and that P/P1 is a chief factor of G; it follows by Lemma 2.1 that P/P1 has order
pa. This also implies that χ1(1) = pe−a. Clearly E ≤ Z(P1). Note that if P1 = E, then
χ1 ∈ Irr(B n E) is linear, and the required result follows. Hence we may assume that
P1 > E. Clearly B acts Frobeniusly on P1/E.
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Assume that E � Φ(P1). Clearly EΦ(P1)/Φ(P1) is a proper subgroup of P1/Φ(P1)
because E < P1. Observe that B acts completely reducibly on P1/Φ(P1); it follows
that there exists a proper B-invariant subgroup P2 of P1 such that P1/Φ(P1) =

EΦ(P1)/Φ(P1) × P2/Φ(P1). This implies that

P1 = EΦ(P1)P2 = EP2 = E × P2,G1 = E × (B n P2).

Thus χ1 = λχ2, where λ ∈ Irr(E) and χ2 ∈ Irr(B n P2). Since B acts Frobeniusly on P2

and χ2(1) = χ1(1) is a power of p, we see that χ2 and χ1 are linear, and we are done.
Assume that E ≤ Φ(P1). Observe that if B � C(3) and p = 2, then |P/P1| = 22 and

χ1(1) = 2e−2, where e − 2 is also even. Now induction implies that χ1 is monomial, as
desired. �

Lemma 2.4. Suppose that P is a Camina p-group of class 2. Then |P′| < |P/P′|.

Proof. Let x ∈ P − P′. Since all nonlinear irreducible characters of P vanish on P − P′,
we have that |P′| < |〈x〉P′| ≤ |CP(x)| =

∑
ξ∈Irr(P) |ξ(x)|2 = |P/P′|. �

Lemma 2.5. Let P be a nonabelian p-group. Suppose that P′ = Z(P) and P/P′ has
order p2. Then P � ES (p3).

Proof. Observe that all nonlinear irreducible characters of P have degree p =
√
|P : Z(P)| and so vanish on P − Z(P). It follows that P is a Camina p-group of class 2.

Now P′ � C(p) by Lemma 2.4, and so P � ES (p3). �

Lemma 2.6 [10, Lemma 2.7]. Let H � C(4) act on N � ES (33). If H acts Frobeniusly
on N/Z(N), then H acts trivially on Z(N).

3. DM-groups with Fitting height 2

In order to classify solvable DM-groups, we have to investigate the groups G
satisfying the following hypothesis.

Hypothesis 3.1. Let G = A n P be a DM-group and assume the following hold:

(1) A is either cyclic or isomorphic to Q(8);
(2) P is a nonabelian p-group with P′ = Φ(P);
(3) |A| = pc − 1, P/P′ � E(pc), and we always replace c by 2m if c is even;
(4) A acts Frobeniusly (and irreducibly) on P/P′.

Lemma 3.2. Let G satisfy Hypothesis 3.1 and E ≤ P′ be a minimal normal subgroup of
G. Set B = CA(E). Then the following assertions hold.

(1) B = IA(λ) = CA(e) for all λ ∈ Irr](E) and for all e ∈ E].
(2) If B = 1, then every ψ ∈ Irr(P|E) vanishes on P − E.
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Proof. (1) Assume that a ∈ A fixes some λ ∈ Irr](E) (or some e ∈ E]). By [9,
Theorem 13.24], a centralizes an element of E]. Observe that CE(a) is A-invariant
because 〈a〉 is normal in A. Since E ≤ Z(P), CE(a) EG. Now the minimal normality
of E yields that CE(a) = E, that is, a ∈ CA(E) = B. Thus B = IA(λ) = CA(e).

(2) Assume that B = 1 and let λ ∈ Irr](E). Clearly IG(λ) = P by (1). We need only
show that |Irr(λP)| = 1. Write λP =

∑
1≤i≤s ψi(1)ψi, where Irr(λP) = {ψ1, . . . , ψs}. By

[9, Theorem 6.11], ψG
1 , . . . , ψ

G
s are distinct irreducible characters of G. Observe that

all ψG
i are monomial because ψi are monomial; it follows that ψ1, . . . , ψs have distinct

degrees. Since
∑

1≤i≤s ψi(1)2 is a power of p, we conclude easily that s = 1, and the
required result follows. �

Lemma 3.3. Let G satisfy Hypothesis 3.1 and E E G with E ≤ P′ ∩ Z(P). Assume
that C := CA(E) > 1 acts Frobeniusly on P/E. Let λ ∈ Irr](E) be such that C = IA(λ)
and let P1 E G with E ≤ P1 ≤ P. Then there exist ξ0 ∈ Irr(λP1 ) and ψ0 ∈ Irr((ξ0)P)
such that IA(ξ0) = IA(ψ0) = C, IA(ξ) = IA(ψ) = 1 for all ξ ∈ Irr(λP1 ) − {ξ0} and all
ψ ∈ Irr(λP) − {ψ0}. Furthermore, the following hold.

(1) Ω := Irr(λP) − {ψ0} is a union of some C-orbits of size |C|; ψG is monomial and
of degree |A|ψ(1) for every ψ ∈ Ω; if ψi, ψ j ∈ Ω lie in distinct C-orbits, then ψi

and ψ j have distinct degrees.
(2) If C � C(pa − 1) for some integer a and E is elementary abelian, then |C| = 3,

p = 2, and ψ0(1) = 2e for some odd integer e.
(3) If E = P′ and |Irr(λP)| ≥ 2, then |C| = pa − 1 for some integer a.

Proof. Let 1 < C1 ≤ C. We claim that C1 fixes a unique member of Irr(λP1 ). Since
C1 acts Frobeniusly on P1/E and acts trivially on E, C1 fixes exactly |E| conjugacy
classes of P1. This implies by [9, Theorem 13.24] that C1 fixes exactly |E| irreducible
characters of P1. Since C1 fixes µ for every µ ∈ Irr(E) and thus fixes at least one
irreducible constituent of µP1 (see [9, Theorem 13.28]), C1 fixes a unique member, say
ξ0, of Irr(λP1 ).

By the randomness of C1, C also fixes a unique member ξ∗ in Irr(λP1 ). Since ξ∗

is also C1-invariant, we have that ξ∗ = ξ0 and C ≤ IA(ξ0). Assume that a ∈ A fixes ξ0.
Then a fixes λ because (ξ0)E = ξ0(1)λ. Thus a ∈ IA(λ) = C. So IA(ξ0) = C.

Let ξ ∈ Irr(λP1 ) − {ξ0} and a ∈ IA(ξ). Then a fixes λ and so a ∈ IA(λ) = C. Now 〈a〉
fixes two irreducible constituents ξ0 and ξ of λP1 . This implies by the preceding claim
that a = 1. So IA(ξ) = 1.

Taking P1 = P and applying the established statements, we may find some ψ0 ∈

Irr(λP) such that IA(ψ0) = C and IA(ψ) = 1 for all ψ ∈ Irr(λP) − {ψ0}. Since ξ0 is C-
invariant, C must fix some ψ∗ ∈ Irr(ξP

0 ) by [9, Theorem 13.28]. Now the uniqueness of
ψ0 yields that ψ0 = ψ∗, hence ψ0 ∈ Irr((ξ0)P).

(1) Clearly C acts on Ω, and thus Ω is a union of some C-orbits.
Since IC(ψ) = 1 for all ψ ∈ Ω, all C-orbits of Ω have size |C|. Since IG(λ) = CP

and ψCP is an irreducible constituent of λCP, ψG is irreducible. This implies that ψG is
monomial and of degree |A|ψ(1).
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Assume that ψi, ψ j ∈ Ω lie in different C-orbits. Then (ψi)CP , (ψ j)CP, so (ψi)G and
(ψ j)G are distinct monomial characters of G. Since G is a DM-group, ψi and ψ j have
distinct degrees.

(2) Clearly ψ0 is nonlinear and extends to CP. Let χ1, . . . , χpa−1 be different
extensions of ψ0 to CP; see [9, Corollary 6.17]. Since IG(λ) = CP and χi ∈ Irr(λCP),
we see that ( χ1)G, . . . , ( χpa−1)G are distinct irreducible characters of G. Since G is a
DM-group, all χi are nonmonomial. Now the required result follows by Lemma 2.3.

(3) Assume that E = P′ and |Irr(λP)| ≥ 2. Write λP = pe(ψ0 + ψ1 + · · · + ψk),
where ψ0(1) = ψ1(1) = · · · = ψk(1). Since k = |C| by (1), we have |P/P′| = λP(1) =

pe(1 + |C|)ψ0(1). This implies that |C| = pa − 1 for some integer a. �

Let a,m be positive integers where a ≥ 2. A Zsigmondy prime for am − 1 is a prime
divisor p of am − 1 such that p - ai − 1 for all i = 1, . . . ,m − 1. A well-known theorem
of Zsigmondy asserts that there exists at least one Zsigmondy prime for am − 1 unless
(a,m) = (2, 6) or (2k − 1, 2).

Lemma 3.4. Let G satisfy Hypothesis 3.1 and assume that P′ is minimal normal in G.

(1) Suppose that A � Q(8). Then P � ES (p3) and A centralizes P′.
(2) Suppose that A is cyclic. Then P′ = Φ(P) = Z(P), P/P′ � E(p2m), P is a Camina

p-group, P′ � E(pm), and CA(P′) � C(pm + 1).

Proof. Since P/P′ and P′ are chief factors of G, we have P′ = Φ(P) = Z(P). Suppose
that A � Q(8). Then P/P′ � E(32) and so P � ES (33) by Lemma 2.5. Applying
Lemma 2.6, we get that A centralizes P′. Now suppose that A is cyclic. Write
B = CA(P′) and |P′| = pe.

We claim that P is a Camina p-group. To see this, we need only show that
|Irr(λP)| = 1 for all λ ∈ Irr](P′). Assume this is not true and let λ0 ∈ Irr](P′) be such
that

(λ0)P = p f (ψ0 + ψ1 + · · · + ψk), k ≥ 1, (3.1)

where ψ0, ψ1, . . . , ψk ∈ Irr(P) are distinct and have the same degree p f . Note that

B > 1, B = IA(λ0), (3.2)

by Lemma 3.2. By Lemma 3.3, we may assume that IA(ψ0) = B and IA(ψi) = 1 for all
i ≥ 1; also

|B| = k

by Lemma 3.3(1). Calculating the degrees on both sides of (3.1), we get that

pc = |P/P′| = p2 f (1 + |B|).

Therefore
B � C(pc−2 f − 1). (3.3)

By (3.2), (3.3) and Lemma 3.3(2), we get that

B � C(3), p = 2, |P/P′| = 2c = 22 f +2, ψ0(1) = 2 f where f is odd, (3.4)

and that λG
0 has a monomial constituent χ1 of degree 2 f |A| =

√
2c−2|A|.
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Suppose that {(λ0)g, g ∈ G} = Irr](P′). Then 2e = |P′| = 1 + |G : IG(λ0)| = 1 +

(2c − 1/3). It follows that c = 2, and this contradicts (3.4).
Suppose that there exists λ ∈ Irr](P′) − {(λ0)g, g ∈ G}. Assume that |Irr(λP)| ≥ 2.

Using the same arguments as above, we get that λG has a monomial constituent χ2

of degree
√

2c−2|A|. As χ1 , χ2, we get a contradiction. Assume that |Irr(λP)| = 1.
Then λP = ψ(1)ψ for some ψ ∈ Irr(P), where ψ(1) =

√
|P/P′| = 2 f +1. Note that

IA(λ) = CA(P′) by Lemma 3.2 and that CA(P′) = B � C(pc−2 f − 1) by (3.3). Now
Lemma 3.3(2) yields that f + 1 is odd. However, f is odd by (3.4), a contradiction.

Hence P is a Camina p-group, as claimed. Now it is easy to check that c =

logp |P/P
′| is even. Hence P/P′ � E(p2m) and A � C(p2m − 1).

In what follows, we will show that CA(P′) � C(pm + 1) and P′ � E(pm). Since P is
a Camina p-group, by Lemma 2.4 we see that

|P′| = pe ≤ p2m−1. (3.5)

Clearly if A > B, then A/B acts faithfully and irreducibly on P′. Suppose that B = 1.
Since A � C(p2m − 1) acts faithfully and irreducibly on P′, we get by Lemma 2.1 that
P′ � E(p2m). This contradicts (3.5). Hence B > 1.

Suppose that (p, 2m) = (2r − 1, 2). Then P � ES (p3) by (3.5). We claim that
(p + 1) | |B|. To see this, we may assume that B < A. Since A/B acts faithfully and
irreducibly on P′ � C(p), we have that |A/B| divides p − 1, and the claim follows.
Now B ≥ C(p + 1) acts irreducibly on P/P′ � E(p2). Investigating the action of B on
P and applying Lemma 2.2, we get that |B| | p + 1, therefore B � C(p + 1) as desired.

Suppose that (p, 2m) = (2, 6). Clearly A � C(63) and |B| = 3, 7, 9, 21 or 63. Assume
that |B| ∈ {21, 63}. Then B acts irreducibly on P/P′ (see Lemma 2.1). Let P′/F be a
BP-chief factor. It is easy to see that P′/F � C(2) and P/F � ES (27). Investigating
the action of B on P/F and applying Lemma 2.2, we get that |B| divides 23 + 1, a
contradiction. Assume that |B| ∈ {3, 7}. Considering the action of A/B on P′, we get
by Lemma 2.1 that |P′| = 26, and this contradicts (3.5). Hence |B| = 9. Considering the
action of A/B on P′, we get that P′ � E(23), and the required result follows.

Now let us consider the remaining cases. The set π of Zsigmondy primes for p2m − 1
is nonempty. Let R be a Hall π-subgroup of A. Since A/B acts irreducibly on P′ and
|P′| ≤ p2m−1, we get by Lemma 2.1 that R ≤ B. Applying Lemma 2.1 again, we see
that B acts irreducibly on P/P′. Let P′/F be a BP-chief factor. Investigating the action
of B on P/F, we get that P/F � ES (p2m+1), and that |B| divides pm + 1 by Lemma 2.2.
Set |A/B| = (pm − 1)k, where k divides pm + 1. Investigating the action of A/B on P′,
we conclude that

(pm − 1)k | (pe − 1).

This implies that m | e and thus e = m by (3.5). Thus k = 1 and the required result
follows. �

Lemma 3.5. Let G satisfy Hypothesis 3.1. Then P′ is minimal normal in G.
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Proof. Assume the result is not true and let P′/E be a chief factor of G. To see a
contradiction, we may assume that E is minimal normal in G. Set B = CA(P′/E).
By Lemma 3.4, we have that P/E is a Camina p-group, P′/E = Φ(P/E) = Z(P/E) �
E(pm), P/P′ � E(p2m), that B � C(pm + 1) if A is cyclic and B = A if A � Q(8).

Case 1. Suppose that P′ = Z(P).
Note that if A � Q(8), then P/P′ = P/Z(P) � E(32), and Lemma 2.5 yields |P′| = 3,

a contradiction. Hence A is cyclic, so B � C(pm + 1).
We claim that CA(P′) = B = IA(λ) for all λ ∈ Irr](P′).
Assume first that there is a minimal A-invariant subgroup F of P′ such that

F , E. By Lemma 3.4 we get that CA(P′/F) � C(pm + 1). Therefore CA(P′/E) =

B = CA(P′/F), whence B = CA(P′). Let x ∈ IA(λ). Then x centralizes a nonidentity
element y ∈ P′. We may assume y ∈ P − E. Since CA(yE) = B by Lemma 3.2, we have
x ∈ B. Thus IA(λ) = B, and the claim follows.

Assume that E is the unique minimal A-invariant subgroup of P′. Let x ∈ IA(λ).
Observe that [P′, 〈x〉] and CP′(x) > 1 are G-invariant and that P′ = [P′, 〈x〉] × CP′(x).
Now the uniqueness of E implies that [P′, 〈x〉] = 1. Hence x ∈ CA(P′), and thus
CA(P′) = IA(λ) for all λ ∈ Irr](P′). In particular, CA(P′) = IA(λ0) for some λ0 ∈

Irr](P′/E). Since IA(λ0) = B by Lemma 3.2, we get that CA(P′) = B = IA(λ), and the
claim follows.

By [9, Theorem 13.14], we get by the claim that CA(x) = B for all nonidentity
elements x ∈ P′. This also implies that CA(E) = B. Now A/B � C(pm − 1) acts
faithfully and irreducibly on E; it follows by Lemma 2.1 that E � E(pm).

Suppose that |Irr(λP)| = 1 for all λ ∈ Irr](P′). Then P is a Camina p-group of class 2.
This implies by Lemma 2.4 that |P′| ≤ p2m−1 < p2m = |P′|, a contradiction.

Suppose that |Irr(λP)| ≥ 2 for some λ ∈ Irr](P′). By Lemma 3.3(3), we get that
|B| = pa − 1 for some integer a. Now pm + 1 = pa − 1, and this implies that p = 2,
m = 1 and P/P′ = P/Z(P) � E(22). Then Lemma 2.5 yields |P′| = p, a contradiction.

Case 2. Suppose that P′ , Z(P).
In this case, we have E = Z(P) = [P′,P]. Clearly P′ is abelian because P has class 3.

Let C = CA(E) and |C| = c. We will work toward a contradiction via several steps.

Step 1. B ∩C = 1, C = IA(λ) for all λ ∈ Irr](E), E � E(p2m).
Assume that B ∩C > 1. Observe that B ∩C centralizes P′, C(B∩C)P(P′) E (B ∩C)P,

and Op((B ∩C)P) = (B ∩C)P because B ∩C acts Frobeniusly on P/P′; it follows that
C(B∩C)P(P′) = (B ∩C)P. Then P′ ≤ Z(P), a contradiction, hence B ∩C = 1.

By Lemma 3.2(1), C = IA(λ) for all λ ∈ Irr](E).
Since B ∩ C = 1, A/C has a subgroup isomorphic to B where B � C(pm + 1) or

B = A. Observe that A/C acts faithfully and irreducibly on E; it follows by Lemma 2.1
that E � E(p2m).

Step 2. c ≥ 3, A is cyclic, B � C(pm + 1), C acts Frobeniusly on P/E.
Assume that c = 1 and let x ∈ P − P′. Observe that all ψ ∈ Irr(P|E) vanish on P − E

by Lemma 3.2(2) and that P/E is a Camina p-group. We get that p2m+1 ≤ |〈x〉E| ≤
|CP(x)| = |CP/E(xE)| = |P/P′| = p2m, a contradiction.
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Assume that A is not cyclic. Then A = B � Q(8). Since B ∩C = 1 by Step 1, we get
that c = 1, a contradiction. Hence A is cyclic, so B � C(pm + 1) by Lemma 3.4.

Assume that c = 2. Then p is odd, and thus B and C have even order. Since
A � C(p2m − 1) contains a unique involution, it follows that B∩C > 1, a contradiction.

Assume that y ∈ C] centralizes a nonidentity element of P/E. Then y centralizes
a nonidentity element of P′/E because A acts Frobeniusly on P/P′. This implies by
Lemma 3.2(1) that y ∈ CA(P′/E) = B, and then y ∈ B ∩C = 1, a contradiction. Hence
C acts Frobeniusly on P/E.

Step 3. We fix some notation.
For a given λ ∈ Irr](E), by Lemma 3.3 there exist ξ0 ∈ Irr(λP′), ψ0 ∈ Irr(ξ0)P such

that
IA(ξ0) = IA(ψ0) = C, IA(ξ) = IA(ψ) = 1,

for all ξ ∈ Irr(λP′) − {ξ0} and all ψ ∈ Irr(λP) − {ψ0}. Let γ be a P-orbit which ξ0 lies in
and let ω = Irr(λP′) − {γ}. Clearly P acts on γ and ω. Observe that C also acts on γ
and ω, and thus acts on

⋃
ξ∈γ Irr(ξP) and

⋃
ξ∈ω Irr(ξP). Clearly⋃

ξ∈γ

Irr(ξP) = Irr((ξ0)P),
⋃
ξ∈γ

Irr(ξP) ∩
⋃
ξ∈ω

Irr(ξP) = ∅.

Since P′ is abelian, we have
λP′ =

∑
ξ∈γ

ξ +
∑
ξ∈ω

ξ,

where |γ| + |ω| = |P′/E| = pm. This implies that

λP =
∑
ξ∈γ

ξP +
∑
ξ∈ω

ξP. (3.6)

Write
T = IP(ξ0), |γ| = |P : T | = pd.

Write (ξ0)T = pa( µ0 + µ1 + · · · + µk) where k ≥ 0, and set µP
j = ψ j. We have

pa = µ j(1), (ξ0)P = pa(ψ0 + ψ1 + · · · + ψk).

Observe that ∑
ξ∈γ

ξP = |γ|(ξ0)P = pd(ξ0)P (3.7)

and that [λP, τ] = τ(1) for all τ ∈ Irr(λP); it follows that∑
ξ∈γ

ξP = pa+d(ψ0 + ψ1 + · · · + ψk) where pa+d = ψ0(1) = · · · = ψk(1). (3.8)

Since C acts on
⋃
ξ∈γ Irr(ξP) = {ψ0, ψ1, . . . , ψk}, we conclude by Lemma 3.3(1) that if

k ≥ 1, then {ψ1, . . . , ψk} is a C-orbit of size

k = |C| = c. (3.9)

https://doi.org/10.1017/S1446788719000247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000247


[11] Finite solvable groups with distinct monomial character degrees 397

Let us consider the following cases: (i) ω = ∅ and k = 0; (ii) ω = ∅ and k = c; (iii)
ω , ∅.

Step 4. Assume that case (i) holds. Then ψ0 vanishes on P − E, ψ0(1) =
√

p3m, and if
in addition c = 3, p = 2, then m ≡ 2 mod 4.

Clearly λP = ψ0(1)ψ0. Hence ψ0 has degree
√
|P/E| =

√
p3m and vanishes on P − E.

Assume further that c = 3 and p = 2. Then Lemma 3.3(2) yields that 3m/2 is odd, that
is, m ≡ 2 mod 4.

Step 5. Assume that case (ii) holds. Then c = 3, p = 2, m ≡ 0 mod 4, and λG has a
monomial character of degree (22m − 1)

√
23m−2.

By (3.6), (3.8) and (3.9), we have that λP = pa+d(ψ0 + ψ1 + · · · + ψc). Then p3m =

λP(1) = (1 + c)ψ0(1)2, so c = pa − 1 for some a ∈ Z+. This implies by Lemma 3.3(2)
that c = 3, p = 2, ψ0(1) =

√
(p3m/1 + c) =

√
23m−2 where 3m − 2/2 is odd (that is, m ≡

0 mod 4). Also, Lemma 3.3(1) guarantees that λG possesses a monomial constituent
of degree (22m − 1)

√
23m−2.

Step 6. Assume that case (iii) holds. Then c = 3, p = 2, λG has a monomial constituent
of degree (22m − 1)

√
23m−2, P′ ≤ T := IP(ξ0) < P and each ψ ∈ Irr(λP) vanishes on

P − T .
Let ξ ∈ ω. Since ξ0 is an extension of λ to P′, there exists ν ∈ Irr(P′/E) such

that ξ = νξ0. Observe that ν is P-invariant because P′/E = Z(P/E); it follows that
IP(ξ) = IP(ξ0) = T . If IG(ξ) is not a p-group, then a nonidentity element of A fixes
some P-conjugate ξy of ξ. However, ξy , ξ0 because ξy ∈ ω, and we have IA(ξy) = 1, a
contradiction. Thus

IG(ξ) = IP(ξ) = IP(ξ0) = T. (3.10)

By (3.10), all members in Irr(λP) =
⋃
ξ∈ω Irr(ξP) ∪ Irr(ξP

0 ) vanish on P − T . Assume
T = P, that is, ξ0 ∈ Irr(P′) is P-invariant. Then P′/ ker ξ0 ≤ Z(P/ ker ξ0); this implies
that ker ξ0 ≥ [P′, P] = E. However, (ξ0)E = λ , 1E , a contradiction. Thus P′ ≤ T < P.

By (3.10), all irreducible constituents of ξG are monomial, hence distinct irreducible
constituents of ξT have distinct degrees. Since T/P′ is abelian, all irreducible
constituents of ξT have the same degree. Therefore ξP is a multiple of an irreducible
character ψ of P. This implies that

p2m+d = |P/P′||P : T | = ξP(1)|P : T | = ψ(1)2.

Now all members in
⋃
ξ∈ω Irr(ξP) have the same degree

√
p2m+d. By Lemma 3.3(1),⋃

ξ∈ω Irr(ξP) is a C-orbit of size c. Since [λP, τ] = τ(1) for all τ ∈ Irr(λP), we have∑
ξ∈ω

ξP =

√
p2m+d(ψ1 + · · · + ψc) where

√
p2m+d = ψ1(1) = · · · = ψc(1). (3.11)

By (3.6), (3.7) and (3.11), we have

p3m = λP(1) =
∑
ξ∈γ

ξP(1) +
∑
ξ∈ω

ξP(1) = pd p2m + cpd+2m.
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So
c = pm−d − 1, pd =

pm

1 + c
.

By Lemma 3.3, we get that c = 3, p = 2, and that λG has a monomial character of
degree |A|

√
p2m+d = (22m − 1)

√
23m−2.

Step 7. Final contradiction.
By Step 1, we have that |Irr](E)| = p2m − 1 and that every G-orbit of Irr](E) has size

|A/C| = p2m − 1/c. Thus Irr](E) is a union of c orbits of G. Let λ1, . . . , λc ∈ Irr](E)
belong to different G-orbits. Observe that case (ii) holds for at most one λi by Step 5,
and that case (iii) holds for at most one λ j by Step 6.

Suppose that case (i) does not occur for any λi. Since c ≥ 3 by Step 2, either case (ii)
or case (iii) occurs for different λi and λ j, a contradiction.

Suppose that case (i) holds for some λi, say λ1. By Steps 4 and 5, case (ii) cannot
occur for any λi. Assume that case (iii) does not occur for any i, then let x0 ∈ P − P′.
Assume that case (iii) occurs for some λi, say λ2. Then case (i) occurs for all λi with
i ≥ 3, and let x0 ∈ P − IP(ξ0) where ξ0 corresponds to λ2. By Steps 4 and 6, all ψ ∈
Irr(P|E) vanish on x0. This leads to a contradiction that p2m+1 ≤ |〈x0〉E| ≤ |CP(x0)| =
|CP/E(x0E)| = |CP/P′(x0P′)| = p2m. �

Proposition 3.6. Let G be a solvable DM-group with Fitting height 2. Then one and
only one of the following holds:

(1) G = A n P, where A � C(pn − 1) acts Frobeniusly on P � E(pn);
(2) G = A n P, where A � Q(8) acts Frobeniusly on P � E(32);
(3) G = A n P, where P � ES (33), and A � Q(8) acts Frobeniusly on P/P′ and acts

trivially on P′;
(4) G = A n P, where P′ = Φ(P) = Z(P) � E(pm), P/P′ � E(p2m), P is a Camina

p-group, and A � C(p2m − 1) acts Frobeniusly on P/P′, CA(P′) � C(pm + 1).

Proof. Suppose that G is a solvable DM-group with Fitting height 2. Since G/F(G)′

is an M-group (see [9, Theorems 6.22 and 6.23]), G/F(G)′ is a D-group with Fitting
height 2. If F(G) is abelian, then Theorem 1.1 implies that G is of type (1) or (2). In
particular, F(G)/F(G)′ is a chief factor of G, and F(G) is a normal Sylow p-subgroup
of G for some prime p. If F(G)′ > 1, then G satisfies Hypothesis 3.1, so G is of type
(3) or (4) by Lemmas 3.4 and 3.5.

Suppose conversely that G is of type (1) or (2) or (3). It is easy to see that G is
a solvable DM-group with Fitting height 2. Assume that G is of type (4). To see
that G is a DM-group, we need only show that every χ ∈ Irr(G|P′) is nonmonomial.
Let λ ∈ Irr](P′) and write B := CA(P′) � C(pm + 1). Using the same arguments as in
Lemma 3.2, we get that IA(λ) = B. Now IG(λ) = B n P. Observe that λP = pmφ, where
φ ∈ Irr(P) has degree pm because P is a Camina p-group. We see that φ is B-invariant
and thus extends to BP. This implies that every χ ∈ Irr(G|P′) has degree (pm − 1)pm.
Notice that B acts irreducibly on P/P′ by Lemma 2.1. It is easy to see that G has
no subgroup of order (pm + 1)p2m = |G|/χ(1). Thus χ is nonmonomial, and we are
done. �
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4. Main theorem

Proposition 4.1. Let G be a solvable DM-group with Fitting height 3. Then one and
only one of the following holds:

(i) G = U n F, where U � SL(2, 3) acts Frobeniusly on F � E(52);
(ii) G = U n F, where F � ES (53), and U � SL(2, 3) acts Frobeniusly on F/F′ and

acts trivially on F′.

Proof. Assume that G is of type (i). It is routine to check that G is a solvable
DM-group with Fitting height 3. Assume that G is of type (ii). To see that G is a
solvable DM-group with Fitting height 3, we need only show that every χ ∈ Irr(G|F′)
is nonmonomial. Let ψ be an irreducible constituent of χF . Then ψ has degree 5, and
5ψ = λF for some nonprincipal λ ∈ Irr(F′). Clearly λ is G-invariant because F′ ≤ Z(G).
Since ψ is a unique irreducible constituent of λF , we see that ψ is G-invariant. As ψ is
extendible to G, χ(1) = 5m where m ∈ cd(U) = {1, 2, 3}. It is easy to see that G has no
subgroup with index 5m, and hence χ is nonmonomial.

Suppose conversely that G is a solvable DM-group with Fitting height 3. Let
F E G be minimal such that G/F has Fitting height 2. Clearly F is nilpotent.
By Proposition 3.6, we see that the Fitting subgroup F(G/F) is a p-group and
(G/F)/F(G/F) is a p′-group. Write π = π(G/F) − {p} and let F/E be a chief factor of
G. Then G/E has Fitting height 3 and G/E splits over F/E.

(1) We claim that G/E is of type (i).
To prove the claim, we may assume that E = 1. Now G = (A n P) n F, where A is a

nilpotent π-group, and P is a p-group. Let λ ∈ Irr](F). Clearly λ extends to IG(λ). Let
λ1, . . . , λk be all distinct extensions of λ to IG(λ). By [9, Corollary 6.17], we have

k = |IG(λ)/IG(λ)′F|.

Observe that every λG
i is monomial and of degree |G : IG(λ)|; it follows that either k = 1

or G = IG(λ).
Note that if G = IG(λ) for some λ ∈ Irr](F), then F ≤ Z(G), and this implies that G

and G/F have the same Fitting height, a contradiction. Hence k = 1 and so IG(λ) = F
for all λ ∈ Irr](F). This implies that G is a Frobenius group with F as its kernel.

Assume that P is abelian. Then A acts Frobeniusly on P by Proposition 3.6, and
therefore acts Frobeniusly on PF. This implies that PF is nilpotent, so G has Fitting
height 2, a contradiction. Hence P is nonabelian and thus is a generalized quaternion
group. Applying Proposition 3.6 and investigating the structure of A n P, we get that
P � Q(8), A � C(3), and A n P � SL(2, 3). Since every χ ∈ Irr(G|F) is monomial and
of degree |A n P| = 24, we get that |Irr(G|F)| = 1. So F � E(52), and (i) holds.

(2) We claim that if E > 1, then G is of type (ii).
By (1), we see that F is a 5-group and that G = U n F, where U = A n P � SL(2, 3),

A � C(3),P � Q(8). Now every λ ∈ Irr(F) extends to IG(λ). Using the same arguments
as in (1), we conclude that U acts Frobeniusly on F/F′ and that |F/F′| = 52. Hence

F/F′ � E(52), E = F′ = Φ(F).
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Let D = [F′, F]. By Lemma 2.5, we get that |F′/D| = 5 and F/D � ES (53). Since
U/CU(F′/D) is a cyclic group of order divisible by 4, we conclude that CU(F′/D) = U.
Thus G/D is of type (ii).

Now it suffices to show that D = 1. Suppose that D > 1. To see a contradiction, we
may assume that D is minimal normal in G. Clearly F has class 3 and Z(F) = D =

[F′, F]. Let us consider IU(λ) where λ ∈ Irr](D).
Assume that IU(λ) has even order. Then Z(P) fixes λ because Z(P) is the unique

subgroup of U of order 2. Since CD(Z(P)) is normal in G and Z(P) centralizes an
element of D], we have CD(Z(P)) = D. Now Z(P) centralizes F′/D and D, and so
centralizes F′. If CZ(P)F(F′) < Z(P)F, then O5(Z(P)F) < Z(P)F, which is impossible
because Z(P) acts Frobeniusly on F/F′. If CZ(P)F(F′) = Z(P)F, then F′ ≤ Z(F), and
we get a contradiction.

Assume that IU(λ) = 1. Then IG(λ) = F. Observe that all irreducible constituents
of λF have degree 5 because |F : Z(F)| = 53. We have λF = 5(φ1 + · · · + φ5). Now φG

i ,
i = 1, . . . , 5, are distinct nonlinear monomial characters of G, a contradiction.

Hence IU(λ) is exactly a Sylow 3-subgroup of U for every λ ∈ Irr](D). Let us
consider the action of U on the abelian group Irr(F) � F. We get that

Irr(D) =
⋃

X∈Syl3(U)

CIrr(D)(X),

and that
CIrr(D)(X) ∩CIrr(D)(Y) = {1D}

whenever X,Y ∈ Syl3(U) are different. Set |D| = 5m, |CIrr(D)(A)| = 5e. We get that

5m − 1 = |Irr](D)| = |Syl3(U)|(5e − 1) = 4 · (5e − 1),

which is impossible. Thus D = 1 and the proof is compete. �

Proof of Theorem 1.3. By Propositions 3.6 and 4.1, we need only show that all
solvable DM-groups have Fitting height at most 3. Assume that this is not true and
let G be a counterexample of minimal order. Then G = H n V , where H has Fitting
height 3 and acts faithfully and irreducibly on V . Arguing as in Proposition 4.1, we get
that H acts Frobeniusly on V . In particular, all 5-subgroups of H are cyclic. However,
F(H) � E(52) or ES (53) by Proposition 4.1, we get a contradiction, and the proof is
complete. �

Proof of Corollary 1.5. Note that all linear characters are primitive. It is easy to
verify that if G is one of the groups listed in the corollary, then distinct imprimitive
characters of G have distinct degrees.

Suppose conversely that G is a solvable group in which distinct imprimitive
characters have distinct degrees. Then G is a solvable DM-group and Theorem 1.3
applies.

Assume that G is of type (i) in Theorem 1.3. Then G has two imprimitive characters
of degree 6, a contradiction.

https://doi.org/10.1017/S1446788719000247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000247


[15] Finite solvable groups with distinct monomial character degrees 401

Assume that G is of type (ii) in Theorem 1.3. Observe that if pm − 1 > 1, then
|Irr(G|P′)| > 1 and all members in Irr(G|P′) are imprimitive and have the same degree
pm(pm − 1). This implies that pm − 1 = 1, so G � SL(2, 3).

Assume that G is of type (iv) in Theorem 1.3. Then there are five imprimitive
members in Irr(G|F′) with the same degree 15, a contradiction. Now the proof is
complete. �
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