NOTE ON NON-COMMUTATIVE SEMI-LOCAL RINGS

YUKITOSHI HINOHARA

Our aim in this note is to generalize some topological results of commutative noetherian rings to non-commutative rings. As a supplemental remark of [2] we prove in §1 that any right ideal of a complete right semi-local ring is closed, and that

$$\bigcap_{s=1}^{\infty} MJ^s = (0)$$

for any finitely generated right module M over a complete right semi-local ring Λ where J is the Jacobson radical of Λ .

In §2 we are concerned with the flatness of modules. C. Lech gave in [7] an ideal theoretical criterion of the flatness of modules over a commutative ring. We notice that his criterion of the flatness is valid for non-commutative rings.

§ 1. Non-commutative semi-local rings

DEFINITION. Let Λ be a ring with a unit element 1 and J its Jacobson radical; Λ is said to be right semi-local if the following conditions are satisfied:

- (a) $\bigcap_{s=1}^{\infty} J^s = 0,$
- (b) A is right noetherian,
- (c) A/J satisfies the minimum condition on right ideals.

This definition is due to E. H. Batho who studied the basic property of this class of rings in [2].

By virtue of the condition (a), we may introduce a Hausdorff topology (called the *J*-adic topology) in Λ and construct the completion $\hat{\Lambda}$ of Λ with respect to this topology.

For brevity, we call an ideal I of Λ a nucleus if $\bigcap_{s=1}^{\infty} I^s = 0$ and denote the Jacobson radical of the ring Λ by $J(\Lambda)$.

Lemma 1. Let Λ be a right semi-local ring and $\hat{\Lambda}$ the completion of Λ with respect to the $J(\Lambda)$ -adic topology. Then we have

Received May 18, 1960.

$$J(\hat{A})^{s} = J(A)^{s} \hat{A}, \qquad \bigcap_{s=1}^{\infty} J(\hat{A})^{s} = 0,$$

$$J(\hat{A})^{s} \cap A = J(A)^{s}, \qquad A/J(A)^{s} \cong \hat{A}/J(\hat{A})^{s}$$

for any positive integer s.

For the proof we refer to [Theorem 2.3 of 2] and [Theorem 2 of 3].

Lemma 2. Let Λ be a ring with a unit element 1. Then we have the relation $NJ(\Lambda) = N$ for any finitely generated right Λ -module N(=0).

This is [Proposition 2 of 8, p. 200].

Lemma 3. Let Λ be a ring and J its Jacobson radical. Assume the following conditions for Λ :

- (a) Λ/J satisfies the minimum condition on right ideals,
- (b) J is a nucleus and has a finite number of right Λ -basis,
- (c) Λ is complete with respect to the J-adic topology.

Then we have the relation

$$\bigcap_{s=1}^{\infty} (M + FJ^s) = M$$

for any finitely generated Λ -submodule M of a free right Λ -module F.

We notice that $\bigcap_{s=1}^{\infty} FJ^s = (0)$ since F is a free Λ -module and J is a nucleus. Therefore we can define a Hausdorff topology in F by taking F, FJ, FJ^s , . . . to be neighbourhoods of zero. Then the closure \overline{N} of any submodule N of F is equal to $\bigcap_{s=1}^{\infty} (N+FJ^s)$.

Before proving Lemma 3 we prove

Lemma 4. If a submodule M of F is finitely generated we have $\overline{M} = M + MJ$.

Proof. We consider the residue class module F/MJ of which $(\overline{M}+MJ)/MJ$ is a submodule. Since $\overline{M}J\subseteq \overline{M}J$, we have $((\overline{M}+MJ)/\overline{M}J)J=(0)$. Let \overline{m} be any element of \overline{M} . Then \overline{m} can be written in the following form, for any positive integer t,

$$\overline{m} = \sum_{i=1}^{n} m_i \lambda_i + j_t$$

where $\{m_1, \ldots, m_n\}$ is a Λ -basis of M, $\lambda_i \in \Lambda$ and $j_t \in FJ^t$. Now $\mathfrak{m} = (\overline{m}\Lambda + M + MJ)/\overline{MJ}$ is a finitely generated module and $\mathfrak{m}J = 0$. Therefore \mathfrak{m} is considered

as a finitely generated Λ/J -module. Since Λ/J satisfies the minimum condition on right ideals, the module in satisfies the minimum condition on submodules. Consider the descending sequence of submodules

$$\mathfrak{m} \supseteq \mathfrak{m} \cap (FJ + \overline{MJ})/\overline{MJ} \supseteq \mathfrak{m} \cap (FJ^2 + \overline{MJ})/\overline{MJ} \supseteq \cdots,$$

and there exists an integer u such that

$$\mathfrak{m} \cap (FJ^{u} + MJ)/MJ = \mathfrak{m} \cap (FJ^{u+1} + MJ)/MJ = \cdot \cdot \cdot.$$

The fact that MJ is closed implies

$$\mathfrak{m} \cap (FJ^u + MJ)/MJ = (0).$$

Let $\overline{m} = \sum m_i \lambda_i' + j_u$, $j_u \in FJ^u$. Then we have

$$j_{u} = \overline{m} - \sum m_{i} \lambda'_{i} \in FJ^{u} \cap (\overline{m} \Lambda + M).$$

Therefore $j_u \in MJ$, i.e. $\overline{m} \in M + \overline{M}J$. Thus we have $\overline{M} \subseteq M + MJ$. The converse inclusion is obvious and we completes the proof of Lemma 4.

Proof of Lemma 3. Since M is a finitely generated module and the two-sided ideal J is finitely generated as a right ideal, MJ^s is finitely generated for any positive integer s. Thus we have

$$MJ^i = MJ^i + M\bar{J}^{i+1}.$$

Now we are in a position to prove $\overline{M} = M$. Let \overline{m} be any element of \overline{M} . Then we have, by virtue of the above relation of submodules,

$$\overline{m} = \sum m_i \lambda_i^{(0)} + \overline{m'}, \ \lambda_i^{(0)} \in \Lambda, \ \overline{m'} \in MJ \subseteq FJ,$$

$$\overline{m'} = \sum m_i \lambda_i^{(1)} + \overline{m''}, \ \lambda_i^{(1)} \in J, \ \overline{m''} \in \overline{MJ^2} \subseteq FJ^2,$$

$$\overline{m''} = \cdot \cdot \cdot$$

Let $\overline{\lambda}_i = \sum_{j=0}^{\infty} \lambda_i^{(j)}$. Then we have $\overline{m} = \sum_i m_i \overline{\lambda}_i \in M$. This completes the proof of Lemma 3.

As an immediate consequence of Lemma 1 and Lemma 3, we have

Theorem 1. Let Λ be a right semi-local ring and J its Jacobson radical. Then any finitely generated right ideal of the completion $\hat{\Lambda}$ of Λ is closed, and therefore there holds the relation $I\hat{\Lambda} \cap \Lambda = \bar{I}$ where \bar{I} is the closure in Λ of a right ideal I of Λ .

Theorem 2. Let Λ be a complete right semi-local ring. Then any right ideal of Λ is closed. Further, for any finitely generated right Λ -module M, we have

$$\bigcap_{s=1}^{\infty} MJ^{s} = 0 \text{ where } J = J(\Lambda).$$

Proof. There exists an exact sequence of right A-modules

$$0 \to N \to F \to M \to 0$$

where F is a finitely generated free Λ -module. Since Λ is right noetherian, N is finitely generated. Thus we deduce $\bigcap_{s=1}^{\infty} (N+FJ^s) = N$, i.e. $\bigcap_{s=1}^{\infty} (F/N)J^s = 0$. This is the required result since $F/N \cong M$.

By combining this theorem with [Remark 2 of $\S 4$ in 9] and [Theorem 3.4 of 2], we have

COROLLARY. A complete right semi-local ring A is linearly compact as a right A-module in the discrete topology.

Finally we have the following result:

Theorem 3. Let Λ be a right noetherian ring with a unit element 1, and Q a two-sided ideal of Λ which is a nucleus. If any right ideal I of Λ is closed with respect to the Q-adic topology, then we have $\bigcap_{s=1}^{\infty} MQ^s = (0)$ for any finitely generated right Λ -module M.

Proof. We assume that $\bigcap_{s=1}^{\infty} MQ^s \neq 0$ and deduce a contradiction. We consider the set \mathfrak{S} of all submodules S such that $\bigcap_{i=1}^{\infty} (M/S)Q^i \neq 0$. Let N' be a maximal element of \mathfrak{S} . Then by assumption we have $N = \bigcap_{s=1}^{\infty} (N' + MQ^s) \neq N'$. Let M' be any submodule of M properly containing N'. Then $M' \supseteq N$ by the maximality of N'. Let \overline{m} be any element of M/N'. Then we have $\overline{m}A \cong A/O(\overline{m})$ where $O(\overline{m}) = \{\lambda \in A \mid \overline{m}\lambda = 0\}$. Since any submodule of $\overline{m}A$ contains the unique minimal submodule N/N' of M/N' (this implies that M/N' is sub-directly irreducible), $A/O(\overline{m})$ is subdirectly irreducible. Therefore there exists a positive integer t such that $Q^t \subseteq O(\overline{m})$ since $O(\overline{m})$ is closed by assumption. This implies that $\overline{m}Q^t = 0$. Therefore there exists an integer s such that $(M/N')Q^s = 0$ since M/N' is finitely generated. This contradicts our assumption $N \neq N'$.

§ 2. Flatness of modules

Let \varLambda be a ring with a unit element 1 and M a (unitary) left \varLambda -module. Then the module M is said to be \varLambda -flat if $\operatorname{Tor}_n^{\Lambda}(C, M) = 0$ for all right \varLambda -modules C and all n > 0.

Let λ be an element of Λ , I a right ideal of Λ and M a left Λ -module. Then we use the following notations:

Z for the ring of all integers, IM for the Z-submodule of M generated by the set IM, $(I:\lambda)$ for $\{\mu \in \Lambda \mid \lambda \mu \in I\}$ and $(IM:\lambda)_M$ for $\{m \in M \mid \lambda m \in IM\}$.

THEOREM 4. Let A be a ring with a unit element 1. Then, for each left A-module M, the following conditions are equivalent to each other:

- (a) M is Λ -flat,
- (b) $\operatorname{Tor}_{1}^{\Lambda}(\Lambda/I, M) = 0$ for each right ideal I of Λ ,
- (c) i) For any right ideals I_1 and I_2 of Λ , there holds the relation $(I_1 \cap I_2)M$ = $I_1M \cap I_2M$, and
 - ii) For each element λ of Λ , there holds the relation $(0:\lambda)M = (0:\lambda)_M$.
 - (d) $(I:\lambda)M=(IM:\lambda)_M$ for each right ideal I and each element λ of Λ .

The equivalence of the conditions (a) and (b) is an exercise of 4 (see p. 123 of [4]) and the implication (d) \Rightarrow (a) is proved by the same way as in [7], so we prove only the implications (a) \Rightarrow (c) \Rightarrow (d).

To deduce i) of (c) from (a), it suffices to prove

LEMMA 5. Let I_1 and I_2 be right ideals of A and M a left A-module. If $Tor_1^{\Lambda}(A/I_1+I_2, M)=0$ we have the relation $(I_1\cap I_2)M=I_1M\cap I_2M^{(2)}$.

This lemma follows immediately from the exact sequence:

$$(I_{1} \cap I_{2}) \otimes M \longrightarrow I_{1} \otimes M \rightarrow I_{1}/I_{1} \cap I_{2} \otimes M \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I_{2} \otimes M \longrightarrow A \otimes M \longrightarrow A/I_{2} \otimes M \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \rightarrow I_{2}/I_{1} \cap I_{2} \otimes M \rightarrow A/I_{1} \otimes M \rightarrow A/I_{1} + I_{2} \otimes M \rightarrow 0$$

where \otimes means \otimes_{Λ} .

Proof of the implication $(a) \Rightarrow ii)$ of (c). From the natness of the module M, we deduce a commutative exact diagram;

¹⁾ A. Hattori called this property of a module torsion-free in [6].

 $^{^{2)}}$ The proof of this lemma is a formal generalization of those of [Theorems 5 and 6 in 1, p. 111].

$$0 \to (0:\lambda) \otimes M \to \Lambda \otimes M \to \Lambda/(0:\lambda) \otimes M \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow (0:\lambda)_M \to M \longrightarrow \lambda M \to 0$$

where \otimes means \otimes_{Λ} . From this diagram we have the required result $(0:\lambda)M$ = $(0:\lambda)_M$ by virtue of the well known "five lemma".

Proof of the implication $(c) \Longrightarrow (d)$. It suffices to prove $(I:\lambda)M \supseteq (IM:\lambda)_M$. Let m be any element of $(IM:\lambda)_M$. Then we have $\lambda m \in \lambda(IM:\lambda)_M = IM \cap \lambda M$ $= (I \cap \lambda \Lambda)M = \lambda(I:\lambda)M$. Therefore there exists an element $m' \in (I:\lambda)M$ such that

$$\lambda m = \lambda m'$$
, i.e. $\lambda (m - m') = 0$.

This implies that $m - m' \in (0 : \lambda)_M = (0 : \lambda)M \subseteq (I : \lambda)M$. Thus we have $m \in (I : \lambda)M$, and this completes the proof of Theorem 4.

Remark. As an immediate consequence of Theorem 4, we have the following corollary by combining [Theorem 2 or Corollary of 5]:

A commutative integral domain A is a Prüfer ring if and only if there holds the relation

$$(I_1 \cap I_2)I = I_1I \cap I_2I,$$

for any ideals I_1 , I_2 , and I of $A^{(3)}$

REFERENCES

- [1] Y. Akizuki and M. Nagata, Modern algebra (in Japanese), Ser. of Modern Math., Kyoritsu-Shuppan Co., Tokyo (1957).
- [2] E. H. Batho, Non-commutative semi-local and local rings, Duke Math. J., 24 (1957), pp. 163-172.
- [3] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. of the Amer. Math. Soc., **59** (1946), pp. 54-106.
- [4] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ., (1956).
- [5] A. Hattori, On Prüfer rings, Jour. Math. Soc. Japan, 9 (1957), pp. 381-385.
- [6] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J., this issue.
- [7] C. Lech, Note on multiplicities of ideals, Arkiv för Math., B. 4, H. 1 (1960), pp. 63-86.
- [8] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. XXXVII (1956).
- [9] D. Zelinsky, Linearly compact modules and rings, Amer. J. of Math., 76 (1953), pp. 79-90.

Tokyo Metroporitan University

³⁾ This result was suggested to the writer by T. Ishikawa.