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The movements of some massive (O(100) t) clifftop boulders, once thought to have
been caused by tsunami, have been reattributed to storm waves in several recent papers.
However, the precise wave-impact modes and transport mechanisms are unknown. We
present preliminary linear acceleration, pressure and displacement data recorded by a
1 : 30 scale clifftop boulder impacted by a focused breaking wave in a laboratory flume.
The 8 kg boulder was placed atop a 0.25 m high platform and struck with a breaking
wave of 0.34 m amplitude. Wave focus position was varied from 0.8 m fore of the
platform to 0.27 m aft of the platform to alter the breaking crest shape and wave impact
type while maintaining total wave spectral energy. Pressure and acceleration time series
measurements from within the boulder show distinct impact types across focus positions.
All impacts produced boulder displacement, ranging from 5 mm to 42 mm (0.15 m to
1.3 m at full scale, assuming Froude scaling). The largest boulder pressures were recorded
when the wave crest and trough struck the boulder at the same position (flip-through).
The largest boulder displacements were measured when high pressures and long impact
durations occurred simultaneously and wave focusing was close to flip-through.

Key words: wave breaking, surface gravity waves, wave-structure interactions

1. Introduction

High-energy and repeated wave impacts on coastal cliffs cause hydraulic fractures and
ultimately release large sections of rock to create clifftop boulders (Herterich, Cox & Dias
2018). By virtue of their creation, these clifftop boulders are then exposed to high-energy
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seas and may be transported by the action of the waves (Cox et al. 2012). Kennedy,
Cox & Dias (2021) showed that many assumed tsunami-induced boulder movements are,
more probably, storm-wave induced. Additionally, Cox et al. (2018) gave evidence for
the movement of clifftop boulders as large as 620 t by storm waves on the Irish west
coast during the winter of 2013–2014. Consequent laboratory studies at 1 : 100 scale used
an irregular sea to observe multiple transport and imbrication modes of clifftop boulder
groups, many of them displaced by breaking waves (Cox, O’Boyle & Cytrynbaum 2019).

Breaking waves are characterised by an overturning crest, primarily initiated by reducing
depth (shoaling) (Peregrine 1983), superposition of dispersive wave spectrum components
and the exchange of wave energy between frequency components (nonlinear focusing)
(Banner & Peregrine 1993). The wave-breaking process begins when fluid velocities at
the free surface exceed ≈0.85cp, where cp is the crest velocity (Barthelemy et al. 2018).
Throughout the breaking process, the wave crest drastically changes shape and entrains air
(Deike, Melville & Popinet 2016; Melville & Rapp 1985). The fast velocities, changing
crest shape, fluid mixing and rapid development of breaking waves over a fraction of
a wavelength means that, throughout breaking, the measured pressures at an impacted
structure vary significantly even across globally similar waves (van Meerkerk et al. 2020).
Additionally, third-order wave–wave interactions at a fluid–structure interface can increase
wave run-up height by twice that expected by linear wave theory (Zhao et al. 2017) and
the run-up of long waves can be amplified up to 12 times through nonlinear dispersion,
reflection, interference and abrupt changes in bathymetry (Herterich & Dias 2019; Viotti,
Carbone & Dias 2014). Abrupt changes in bathymetry that can be expected close to the
coast can also trigger the formation of extreme waves through the interaction between
first-order waves and their second-order bound harmonics (Li et al. 2021).

Wave impacts are traditionally categorised as either unbroken, otherwise known as
sloshing and displaying no overturning crest; broken, where the wave has overturned
and become fully aerated; or breaking, where the crest is in the process of overturning
and entraining air between the crest and trough. Within these categories, characteristic
pressure time series elements known as elementary loading processes exist (Lafeber,
Bogaert & Brosset 2012). The three elementary loading processes (ELP) comprise ELP1,
a sharp, high-amplitude pressure peak due to direct impact of water on a solid; ELP2,
also a high-frequency event but due to the run-up of water on a solid, first described
in Wagner (1932); and ELP3, characterised by low-frequency pressure oscillations due
to air enclosure and first described in Bagnold (1939). Multiple ELP are often found
to be combined in the pressure time series of wave-slamming events on vertical walls
(Dias & Ghidaglia 2018). The maximum pressure recorded during high-amplitude ELP
can vary greatly across nominally similar tests. However, the integral of pressure over the
impact duration (pressure impulse) is far more repeatable and therefore used widely to
parameterise impact pressure time series (Cooker & Peregrine 1995). Within ELP2, the
special case of wave flip-through exists in which the trough run-up and crest touch-down
occur at effectively the same position on the structure and the minimum (non-zero) amount
of air is entrained by the crest (Cooker & Peregrine 1991). Flip-through impacts exert
the highest pressures but act over a vanishingly small time scale (Lugni, Brocchini &
Faltinsen 2006) and area (Chan & Melville 1988) when compared with other types of
impact. Pressure oscillations are a common feature of bubble formation during impact
and increase in frequency as entrapped air decreases (Hattori, Arami & Yui 1994). The
bubble’s natural frequency has been related to its equilibrium radius by Minnaert (1933);
Plesset & Prosperetti (1977) and used in previous experiments on plunging breaking waves
to estimate bubble size from pressure oscillations (Wang et al. 2018). When wave run-up
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is higher than the impacted structure, overtopping, including green-water (non-aerated)
overtopping, will occur. Green-water overtopping can result in horizontal velocities across
the platform of 1.5 times the wave phase speed (Ryu, Chang & Mercier 2007).

While laboratory and field experiments of wave impacts on immovable vertical
structures have been widely carried out, detailed experiments of wave impacts on a single
mobile object have been less well investigated. Using embedded instrumentation in order
to obtain the object’s accelerations and external pressures adds geometric constraints to
the object, and therefore experiment. Goseberg et al. (2016) used an embedded inertial
reference system to track a scale model ISO shipping container during tsunami inundation
laboratory experiments. While the aerated, bore-like waves used by Goseberg et al. (2016)
are fundamentally different to the storm-generated wave groups we focus on, their object
tracking techniques have informed the methodology of this work.

The laboratory work reported here took a detailed, isolated impact, approach
to wave–boulder collisions by recording the displacement, linear accelerations and
the pressure felt by an individual boulder during a single breaking-wave impact.
High-frequency instruments were embedded in a 1 : 30 scaled boulder to measure the
impact of a single focused breaking-wave crest. Breaking-wave crest shape was altered
across tests by moving the wave focusing position. In § 2, we describe the experimental
set-up of the laboratory including the internal instrumentation of the clifftop boulder,
the experimental methodology and the data analysis techniques. Section 3 describes
preliminary results from the tests, including boulder displacements, and pressure and
acceleration time series. In § 4, conclusions are drawn and future experiments and data
analysis are detailed.

2. Methodology

2.1. Experimental

2.1.1. Hydrodynamics
Multiple tests, each consisting of a single breaking crest, provide the most appropriate
method of detailed investigation of impact type and crest shape. To achieve a single
breaking crest, wave groups were focused into a single breaking wave through dispersive
focusing that relies on the frequency components within a broad-banded wave spectrum
travelling at different speeds and initial phase offsets such that their crests arrive at the
focus position simultaneously, superimposing to create one large breaking crest. The
focus position can be altered to change the stage of breaking at impact while largely
conserving the other wave characteristics across tests. The Ricker spectrum was used to
create highly repeatable breaking waves (Kimmoun, Ratouis & Brosset 2010). Figure 1
shows the free-surface elevation at two gauges during a typical test and is presented here
as an example of the chirped Ricker spectrum waveform. Wave height (measured from the
preceding trough to the breaking crest) was 0.34 m and the peak period was 2.8 s. At full
scale, this amounts to a 10 m wave with a 15 s peak period using Froude scaling for our
1 : 30 scaled experiment.

2.1.2. Laboratory set-up
The physical set-up of the flume, platform and boulder is presented in figure 1. The flume
has a total length of 16.77 m and a width of 0.65 m. A water depth h = 0.75 m was
used in all tests. At 11.665 m from the wavemaker, a vertical plate made from polymethyl
methacrylate (PMMA) of total height from the bed of 1 m was secured to vertical struts on

929 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.841


J.N. Steer, O. Kimmoun and F. Dias
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Figure 1. Experimental flume set-up (a) showing the black boulder sitting atop the platform, 11.665 m from the
wavemaker. Free-surface elevation, η, data collected during test 11e shows the unfocused chirped wave group
at the first gauge and the quasi-focused wave group recorded at the sixth. Internal boulder instrumentation is
shown (b) with variable names of the measured quantities. The central time t0 is given by (2.1).

the flume wall using silicone and plastic bracing. A horizontal PMMA plate was placed
atop the vertical plate and secured with silicone. The boulder was placed on the horizontal
platform, centred by the flume width, with the boulder front face (containing the pressure
transducer) facing the wavemaker.

2.1.3. Instrumentation
The model boulder design is based on the 210 t prototype scale limestone boulder number
261 in Cox et al. (2018) (7.8 kg at 1 : 30 scale) that was moved 27 m inland by storm waves.
The density of limestone varies between 2100 kg m−3 and 2700 kg m−3 depending on
mineral composition, porosity and compaction (Athy 1930). Samples of limestone taken
on the west coast of Ireland were measured by Jahn (2014) to have an average density
of 2640 kg m−3. The model boulder is made of a nylon outer box lined internally by
six stainless steel plates to give it a weight of 7.9 kg. With its cuboid geometry and
dimensions of 0.105 m × 0.190 m × 0.148 m, it has a density of 2700 kg m−3. The dry
static coefficient of friction between the model boulder and a PMMA plate was measured
in the laboratory at between 0.57 and 0.58 across 10 inclined-plane tests. The static friction
coefficient of Solenhofen limestone with a ground surface has been measured at 0.46 on
a fresh surface (Ohnaka 1975). In reality, the interface between real boulders and cliffs
can be irregular, biofouled and wet to different extents, making the true friction forces
both uncertain and variable. Therefore, this study uses a simple and consistent interface to
focus on the relative differences in boulder displacement across wave-focus locations and
minimise extraneous stochastic influences.

The right-hand side of figure 1 shows the internal instrumentation of the boulder. The
data acquisition (DAQ) has four analogue input connections and transmits data via a
2.4 GHz wireless connection to the laboratory desktop computer. A single nylon boulder
face is removed to access a USB charging port. The antenna protrudes through the
internal steel plates while remaining within the nylon outer casing. Three linear quartz
accelerometers (model PCB353B17) and a pressure transducer (model PCB112A21) were
connected to the DAQ. The accelerometers have a ±5 % frequency response range of 1 Hz
to 10 kHz and acceleration range of ±500 g. The pressure transducer has a maximum
amplitude of 690 kPa, a resonant frequency of >250 kHz and a circular active area with a
diameter of 5.54 mm.
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High-speed movie was used in all tests to record the breaking-wave impact on the
boulder and upper vertical platform. A Photonics Phantom V641 camera recorded at a
frequency of 1000 Hz and a resolution of 2560 × 1600 pixels. For the vast majority of tests,
the camera was placed such that there were 0.34 mm px−1 at the closest boulder face. The
high-speed movie was used to broadly categorise the wave impacts and gain qualitative
insights into the cause of pressure and acceleration time series features. Captured frames
were used to measure the boulder position before and after impact.

2.1.4. Laboratory procedure
Following preliminary tests in which instrumentation was tested and the appropriate
laboratory set-up was finalised, 35 tests were carried out, the results of which will be
presented herein. Each test began by placing the boulder at the front edge of the horizontal
platform. The internal DAQ and wave gauges were then triggered manually and the
wavemaker was started. The high-speed camera was triggered a moment prior to the wave
crest entering the field of view. Following the impact, all instrument sampling was halted
and the flume was allowed to settle for a minimum of 30 min before the next test was
started. During the settling time, the horizontal plate and boulder were removed of water
using a rubber squeegee and paper towels. While the procedure does not perfectly dry the
surfaces, it was maintained consistently across all tests.

2.2. Time series analysis
For each time series measurement, an impact time range was defined and parameterised
using maximum and integrated values within the impact range. The impact time range was
defined by the pressure zero-crossing times, ta and tb, either side of the maximum pressure
time stamp, tmax. The parameters extracted from the impact region were the maxima, Pmax
and ẍmax; the first integrals of pressure, PJ , and acceleration, ẋ, with respect to time
across the impact time range; the central time, t0; and temporal variances, σ 2

P and σ 2
ẍ .

The maximum value was read directly from each time series. The integrals were estimated
using the trapezoidal method. The central time t0 (first standardised pressure moment) was
calculated by integrating the normalised pressure time series P̃ = P(t)/PJ :

t0 =
∫ tb

ta
(t − tmax)P̃(t) dt. (2.1)

The temporal variance of the pressure and acceleration was then calculated:

σ 2 =
∫ tb

ta
(t − t0)2 f̃ (t) dt, (2.2)

where f (t) is used to represent both the pressure and x-axis acceleration time series, and
tilde denotes normalisation of the time series by its integral. In § 3, the pressure temporal
deviation σP is termed the characteristic impact duration.

3. Results and discussion

The results presented in this section are derived from 35 fully complete tests carried out
during a single experimental campaign. A full list of tests and their boulder displacement
values is given in table 1 and shown graphically in figure 2.

Boundaries in xf were established to separate the three main impact types that are
demarcated using the pressure time series parameters, specifically the pressure impulse
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Test no. xf (m) �x (mm) Test no. xf (m) �x (mm) Test no. xf (m) �x (mm)

1 −0.800 5.9 11a 0.000 — 16 0.070 18.9
2 −0.600 12.6 11b 0.000 25.0 17 0.080 20.3
3 −0.400 12.2 11c 0.000 21.0 18 0.085 21.0
4 −0.300 12.4 11d 0.000 18.2 19a 0.090 17.6
5 −0.250 17.2 11e 0.000 28.4 19b 0.090 22.0
6 −0.200 16.4 11f 0.000 24.2 20 0.100 16.9
7 −0.150 17.0 11g 0.000 19.5 21 0.110 15.5
8a −0.100 42.2 11h 0.000 21.9 22 0.150 15.8
8b −0.100 21.7 12 0.020 19.6 23 0.170 16.0
9a −0.050 38.0 13 0.040 17.9 24 0.220 11.0
9b −0.050 19.8 14 0.050 26.3 25 0.270 4.8
10 −0.020 20.3 15 0.060 21.3 — — —

Table 1. All tests with the boulder displacement, �x, ordered by nominal wave focus position, xf .

50

40

30

20

10

0
–0.8 –0.4 0 0.4

�
x 

(m
m

)

xf  (m)

Figure 2. All boulder displacements, �x, as a function of focus position, xf , also give in table 1. Data points
are coloured by boulder displacement and open circles delineate tests presented in figure 4. This figure also
serves to define the colour map for all other relevant figures.

and characteristic impact duration, and inspection of the high-speed movie recordings.
Within the tested range of xf values, the three main impact types, broken/aerated (xf �
−0.6 m), breaking (−0.6 m < xf < 0.15 m) and unbroken/sloshing (xf � 0.15 m), were
each observed at least twice. Figure 3 presents five frames from a typical test within each
impact type.

3.1. Broken (aerated), xf � −0.6 m
Tests in the broken focus range show the boulder being impacted by a wave whose
crest has overturned and impacted the preceding trough prior to the platform (see test
2 of figure 3). Impacts within the broken range are characterised by the slow rise- and
decay-time and low amplitude of the pressure time series, as seen in figure 4 for test 2.
Figure 5(d) shows the maximum pressure to be low but following an upward trend as
xf increases into the breaking xf region. The integrated pressure parameters presented
in figure 5(e,f ) are variable within the broken region. Without distinct zero up- and
down-crossings in the pressure time series, the impact time range is ambiguous and likely
the cause of the high variability in the integrated pressure parameters. The x-acceleration
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Breaking-wave induced pressure and acceleration on a clifftop

(a)

(b)

(c)

Figure 3. Images captured from the high-speed movie recording increasing monotonically in time (�t =
30 ms) from left to right, for three tests representing the most distinct impact types: broken/aerated (test 2),
breaking (test 9a) and sloshing (test 24). (a) Test 2, xf = −0.60 m, �x = 12 mm. (b) Test 9a, xf = −0.05 m,
�x = 38 mm. (c) Test 24, xf = 0.22 m, �x = 11 mm.

time series of the boulder is shown for test 2 in figure 4 and is consistently low enough
to be indistinguishable from the zero-line. The maximum and integrated parameters of
the x-acceleration presented in figure 5(a–c) also show low values. However, these are
non-zero and boulder displacements of 12.6 mm (0.4 m at full scale) and 5.9 mm (0.2 m
at full scale) were recorded.

3.2. Breaking, −0.6 m < xf < 0.15 m
In the breaking xf range, the boulder is impacted by breaking waves that consistently
exhibit a distinct overturning crest preceded by a smooth trough. A movie of test 14
(xf = 0.05 m) can be found in the supplementary material available at https://doi.org/10.
1017/jfm.2021.841. Within this range, the tests carried out at xf = 0 m were repeated seven
times. Additionally, within this xf range, flip-through events on the boulder were observed.

The pressure time history of test 4 in figure 4 shows a short impact duration of
2.9 ms and a low single maximum of 29.0 kPa (870 kPa at full scale assuming Froude
scaling). As xf is increased, the impact duration increases to a maximum at around test 6
(xf = −0.2 m). From the pressure time histories, the increase in impact duration occurs
due to a second pressure peak: it is first seen clearly in test 6. Significant negative pressure
values (i.e. below atmospheric pressure) occur following the second pressure peak in
the range −0.2 m � xf � 0.1 m. From test 7 to test 14 the impact duration decreases
significantly from 4.4 ms to 0.4 ms. During this contraction of impact duration, the second
pressure maximum becomes dominant and the two maxima move closer in time. The
concentration of pressure impulse in time is indicative of crest–trough focusing to the
same point, i.e. a flip-through impact. Across all tests, the highest pressure maximum of
183 kPa (5.5 MPa at full scale) is recorded in test 16 (xf = 0.07 m) when the impact
duration is also one of the shortest σP = 0.29 ms (the shortest being σP = 0.26 ms in
test 19b, xf = 0.09 m). Throughout the breaking xf range, pressure oscillations following
the second pressure maximum can be seen in figure 4. These oscillations become more
pronounced from test 6 to test 20 and increase in frequency from 200 Hz to 600 Hz giving
bubble radii of between 5.6 mm and 15.5 mm as calculated from (4.5) in Wang et al.
(2018). The three-dimensionality of these experiments allows air to escape along the sides
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Test 14
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Test 9a

Test 8b

Test 7

Test 6

Test  5

Test  4

Test  2

1
0
0
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P
a

1
0
0
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2

(
f(

t)/
C

)
+

x f  
(m

)

–5 0 5 10 15

t – t 0 (ms)

Test 22

Figure 4. Selected pressure (grey line accented with black dots with units of kPa) and x-acceleration (black
line with units of m s−2) time series represented generically in the y-axis label by f (t). Time series have been
scaled by C = 2500 and then translated vertically by the wave focus position, xf . A scale key is given to the left
of the y-axis. Each test is centred horizontally about its expected time t0 (see § 2.2 for calculation). Coloured
areas denote the pressure impact time range of the tests defined in § 2.2. Error bars stretch across twice the
impact duration (see § 2.2 for calculation method).

of the boulder following bubble formation, possibly leading to faster oscillation decay than
in vertical wall impact experiments (Bogaert et al. 2010; Hattori et al. 1994). Cessation of
the pressure oscillations at the upper xf boundary is accompanied by a rapid decrease in
the amount of boulder displacement.

The acceleration of the boulder reaches a maximum of 165 m s−2 during test 13 where
xf = 0.04 m, and a flip-through impact occurs. However, the boulder displacement in
test 13 of �x = 17.9 mm (0.5 m at full scale) is relatively low. The largest boulder
displacements of 38 and 42 mm in tests 9a and 8a (black data points), respectively, are
measured when the pressure impulse is highest (0.17 kPa s and 0.18 kPa s) being a
combination of a high maximum pressure and a long impact duration. Although tests
8a and 9a stand out as having the largest displacements and pressure impulse values,
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Figure 5. All data points are coloured by boulder displacement (see figure 2). Open circles delineate tests
presented in figure 4. The grey circle (clearly visible in some plots) indicates an unknown boulder displacement.
(a–c) The x-acceleration maxima and moments. (d–f ) Pressure maxima and moments.

figure 5(e) shows large variability in boulder displacement along the downward trend in
pressure impulse. At xf = 0 m, seven nominally identical tests were carried out where the
boulder was displaced by a mean of 22 mm with a standard deviation of 3.5 mm. Results
are shown in the supplementary material.

3.3. Unbroken (sloshing), xf � 0.15 m
Tests in the unbroken xf range feature overturning crests that are much less distinct, the
wave being unbroken or only marginally breaking at the platform. The images of test 24
in figure 3 show a sloshing impact with little, if any, air entrainment at the boulder face.

The sloshing xf range is characterised by long time scale, low-amplitude pressure time
series, similar to the aerated regime. While very large pressure peaks in tests 22 and 23 at
the boundary of the sloshing region (see test 22 in figure 4) exist, they are not followed by
a distinct zero down-crossing, distinguishing the impact from the previous (breaking) xf
region.

Figure 2 shows that the four tests within this xf region (tests 22, 23, 24 and 25) follow a
largely downward trend to the smallest measured boulder displacement of 4.8 mm (0.1 m
at full scale). While peak pressure values are high in tests 22 and 23, their short duration
does not accelerate the boulder significantly. The lack of pressure oscillations in these tests
artificially extends the impact time range, creating variability in the integrated values of
figure 5(e,f ).

929 R1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.841


J.N. Steer, O. Kimmoun and F. Dias

3.4. Error and uncertainty

3.4.1. Anomalous boulder displacement
In figure 2, the two black markers, test 8a and test 9a, have the highest measured
boulder displacements of 42.2 mm (1.3 m at full scale) and 38.0 mm (1.1 m at full
scale), respectively. In comparison, their repeated counterparts, test 8b and test 9b, have
measured boulder displacements 20.5 and 18.2 mm lower. The standard deviation of
boulder displacement across the seven repeated tests at xf = 0 m was 3.5 mm.

The pressure and acceleration time series parameters presented in figure 5 give no
obvious indication as to the cause of the boulder displacement deviance of test 8a and
test 9a. In addition to the x-axis acceleration and pressure times series, the y- and
z-axis acceleration time series were inspected, neither showing significant or unusual
accelerations. Additionally, the initial positions of the boulder were rechecked using
the first frames from each test’s high-speed movie. In test 8a, the boulder was found
to sit an estimated 2.3 mm fore of the boulder in test 8b. The standard deviation
across initial boulder positions was 0.5 mm, implying that boulder position may have
been a contributing factor to the anomalous results. From tests 8a and 9a, the boulder
displacement’s sensitivity to its initial condition could be very high but a stand-alone study
is required to conclude this.

3.4.2. Pressure measurement limitations
Previous experiments on flip-through-type impacts have shown how maximum pressure
values can be concentrated in very small areas (Lugni et al. 2006; Wang et al. 2018; Chan
& Melville 1988; Cooker 2002). Throughout this experimental campaign, pressure on the
boulder was measured at the boulder’s front face via a single transducer with a 5.54 mm
active area diameter. In § 3.2, the minimum bubble radius (associated with the flip-through
climax) was estimated at 5.6 mm. High-speed recordings of tests appear to show bubble
formation at the transducer location (see the supplementary material for a recording of test
14). However, it is possible for flip-through to focus away from the transducer location,
resulting in the measurement of lower maximum pressures. Additionally, in sloshing or
fully aerated impacts, pressure rise may appear delayed due to the time taken for fluid
to rise up the boulder front face. Such a phenomenon may be the cause of the x-axis
acceleration increasing approximately 2 ms before the pressure in test 4 (seen in the time
series of figure 4).

4. Conclusion

The presented data, obtained by altering the breaking position of a wave impacting a
vertical cliff, have demonstrated the influence of wave-impact mode (aerated, breaking
or sloshing) on the displacement of clifftop boulders. The largest boulder displacement
of 42 mm (1.3 m at full scale) was measured in the breaking xf range and was associated
with two strong pressure peaks spaced at ≈ 4 ms and strong pressure oscillations following
the second peak. The smallest boulder displacements were recorded in the broken and
unbroken xf ranges. Across seven nominally identical tests at xf = 0 (in which the pressure
parameters were very similar) the boulder was displaced by a mean of 22 mm with a
standard deviation of 3.5 mm.

This experimental campaign has shown the range of wave focusing positions most
conducive to boulder movement and the range of displacement values we may expect
in laboratory experiments. The absence of multiple repeated tests and the inability
to fully quantify scaling effects mean that future work will firstly seek to reliably
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extrapolate these laboratory boulder displacement measurements to the real-world scale by
quantifying pressure scaling errors using large scale tests, carrying out a larger number of
repeated tests, and obtaining frictional similarity between prototype and laboratory scales.
Additionally, a comparison between the importance of the wave-breaking position with
the significant wave height and peak wave period should be carried out.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.841.
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