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ENDS OF SPACES RELATED BY A COVERING MAP 

BY 

GEORG PESCHKE 

Introduction. Consider a covering p : X —> B of connected topological spaces. If 
B is a compact polyhedron, a classical result of H. Hopf [4] says that the end space 
E(X) of X is an invariant of the group G of covering transformations. Thus it becomes 
meaningful to define the end space of the finitely generated group G as E(G) := E{X). 

If B is not compact, then E(X) does not depend on G in such a simple way; e.g. 
consider the covering R x R —» R/Z x R. Yet, under certain assumptions, £(X) is 
completely determined by end space data of B and of G, and the main purpose of this 
paper is to make this relation explicit. See Theorem (3.8). 

The key steps towards Theorem (3.8) are the following: 

STEP 1. For every group H we define functorially an end space E(H), which is 
homeomorphic to Hopf's if H is finitely generated. See §1. 

STEP 2. There is a continuous map k : E(G) —> E(X). If B is compact then k is a 
homeomorphism. This is merely a restatement of Hopf's result [4]. In general, k need 
be neither 1 — 1 nor onto. However, if an end of X does not belong to im k, then it 
can be related to an end of B. Thus E(X) is the union (not necessarily disjoint) of im 
k and 'fibers' of ends of X over the ends of B. See §2. 

STEP 3. G also acts on E(X) and the 'fibers' of ends of X over the ends of B are 
invariant subspaces under this action. In many cases, if e G E(B), the 'fiber' X(e) 
of ends of X over e is a single orbit under this action. The isotropy groups of ends 
6 G X(e) are related to the contributions of the fundamental groups of neighbourhoods 
of e to G. In §3 we make this relation explicit and show that it completely determines 
the end space structure of X. See Theorem (3.8). 

We also draw the reader's attention to Theorem (2.8) which gives a relation between 
the end space of a countable group and the distribution of its infinite cyclic subgroups. 

Our results constitute an extension of the pioneering work of H. Hopf [4]. We give 
some applications in §4. 

The author gratefully acknowledges several useful discussions with K. Varadarajan. 

§1. Ends of groups. It is implicit in Hopf's work [4] that assigning to a f.g. group 
H its end space E(H) actually determines a covariant functor E from the category 
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of f.g. groups and homomorphisms with finite kernel to the category of topological 
spaces and continuous maps. For a combinatorial interpretation of this, see also [3] 
and [7]. 

For every group G,G = lim G\, the direct limit of the system of its f.g. subgroups. 

Every homomorphism of this limiting system is a monomorphism. Thus 

DEFINITION 1.1. The end space of an arbitrary group G is 

E(G):= lim £(GA), 

where the limit is taken over the system of all finitely generated subgroups G\ of G. 

REMARKS 1.2. (i) E is a covariant functor from the category of groups and homo
morphisms whose kernel has finite intersection with all f.g. subgroups of the domain 
group to the category of topological spaces and continuous maps. 

(ii) If G is f.g. then the directed system of its f.g. subgroups terminates in G. 
Consequently, E(G) as defined in (1.1) is homeomorphic to Hopf's end space of G. 

(iii) If G is not f.g. then E(G) may not be compact; see 2.11. 
(iv) D. Cohen [1] has used a combinatorial method to define the number of ends of 

an arbitrary group G. If G is f.g. this number corresponds to the cardinality of E(G). 
However, for non f.g. groups this correspondence may fail. E.g. the Cohen invariant 
of the rationals is 1, whereas E(Q) = E(Z) is the 2-element discrete space. Compare 
also Stallings [7]. 

(iv) The end spaces of f.g. groups are completely classified; see [4], [1], [7]. There
fore, the chances of computing end spaces of more general groups are quite good. 
E.g. E(R) = 1-point space; E(G x H) = 1-point space if E(G) and E{H) are both not 
empty, etc. 

§2. Relating E(G) to E(X). The remainder of this paper is dedicated to the inves
tigation of the end space of X, where p : X —+ B is a regular covering with group 
of covering transformations G. We assume throughout that X and B are connected 
topological spaces of one of the following two types: 

TYPE 1. Locally finite simplicial complexes with at most countably many simplices. 
TYPE 2. Locally finite CW -complexes of finite dimension with at most countably 

many cells. 

In this set-up we exhibit a continuous map k : E(G) —> E(X) and study some of its 
properties; see in particular Proposition 2.5 and Theorem 2.8. 

We recall that a proper map / : X —> F has a continuous extension / : X —+Y over 
the Freudenthal compactifications X, Y of X, Y. Further,/ restricts t o / : E(X) —-> E(Y); 
see [2]. 

DEFINITION 2.1. (i) e G E(X) is a vertical end of X :<& there is a sequence (gn) in 
G such that gn.x —• e for some x G X (and, hence, for all x G X); compare Hopf [4]. 
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(ii) e E E(X) is a horizontal end of X :& there is a proper map e : R —> X with 
e(oo) = e and such that the sequence (pe(n)) converges to some end e£E(B). Here, 
R := [0, oo[ is the ray of non-negative real numbers. 

For (2.1 .ii) it is relevant that E(X) is in bijective correspondence with the set of all 
proper maps R —+ X subject to the following equivalence relation. Two proper maps 
ex• : R x {/} —• X, i = 0,1, are equivalent :<=* there is a proper m a p / : L —> X with 
f\Rxyy = a, where L is the infinite ladder R x {0,1} U N0 x [0,1]. 

DEFINITION 2.2. Let e E E(B). The 'fiber X(e) is the set of all horizontal ends e of 
X having a proper map e : R —• X with ê(oo) = e and pe(n) —> e, for n —> oo. 

Writing 'fiber' is a safety indicator for the fact that 'fibers' over distinct ends of B 
need not be disjoint; consider e.g., the covering p : R x R —» (R/Z) x R, where the 
one and only end of the total space belongs to the 'fibers' of both ends of B. 

REMARK 2.3. If e E E(B), then X(e) ^ 0. This follows by considering lifts of proper 
maps e : R—>B with ê(oo) = e. • 

PROPOSITION 2.4. 77zere /s a continuous map k : E(G) —> E(X). 

PROPOSITION 2.5. E(X) is the union ofimk and the horizontal ends ofX. 

PROOF OF 2.4. The map k comes from the defining universal property of E{G)\ 
see 1.1: For each f.g. subgroup G\ of G take a representation of G as the group of 
covering transformations of a regular covering X\—+B\, where X\, B\ are connected 
1-dimensional locally finite CW-complexes, and B\ is compact. Using Hopf's work 
[4], the inclusion G\ —> G induces a proper equivariant map u\ \X\—*X. The map 
u\ : E(G\) = E(X\) —• E(X) depends only on G A and is functorial with respect to the 
homomorphisms in the limiting diagram of f.g. subgroups of G. This implies 2.4. • 

We remark that the image of k consists of all those vertical ends e E E(X) for which 
there exists a f.g. subgroup G\ of G and a sequence (hn) in G\ so that hn.x —• e for 
all x eX. 

PROOF OF 2.5. Suppose e E E(X) is not in im£. Let e : R —» X be a proper map 
with ê(oo) = e. Then /?e(7?) can not be contained in any compact subspace C of 5 . 
For TT\C is finitely generated, implying that e E im/:; contradiction. Consequently, 
there is a proper strictly increasing sequence (tn) in /? such that (pe(tn)) converges to 
some end eofB. Thus e E X(e). • 

REMARK 2.6. If e E E(X) is not vertical, then e is actually a lift of some end 
e E E(B) in the following sense. For any proper map e : R —> X with ê(oo) = e, 
pe : R -^ B is also proper. Further, if e E X(e'), then e = e;. 
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PROOF. If pe is not proper, there is some closed cell c of B such that e(R)C\p~l(c) 
is not compact. Subjecting e to a suitable proper homotopy, if necessary, we see that 
pe is an infinité sequence of based loops in B. These yield an infinite sequence (gn) in 
G satisfying gn. * —> e, for a suitable lift * of the base point of B. Thus e is a vertical 
end; contradiction. 

To see the uniqueness of e, apply a similar argument to a proper map / : L —• X, 
with/(oo) = e. 

For later use, we need the following definition, based on 2.6. 

DEFINITION 2.7. (i) e G E(X) has property (L) :<^ there is a proper map e : R—> B 
with ë(oo) = e,for some lift ë of e. 

(ii) p has property (L) :*> every horizontal end ofX has property (L). 

A monomorphism a : Z —> G induces the map â : £(Z) —• E(G). We call an 
end e G £(G) primitive, if it is in the image of some map a : E(Z) —• E(G), where 
a : Z —• G is a monomorphism. The following theorem relates in some sense the 
distribution of infinite cyclic subgroups of G to the end space of G. 

THEOREM 2.8. If G has an element of infinite order, then the space of primitive 
vertical ends ofX is dense in the space of vertical ends ofX. 

COROLLARY 2.9. If G has an element of infinite order, then 
(i) The image of k : E(G) —• E(X) is dense in the space of vertical ends ofX. 
(ii) If in addition E(G) is compact, then the image of k : E(G) —• E(X) is equal to 

the space of vertical ends of X. D 

PROOF OF 2.8. Let e be a vertical end of X and let (gn) be a sequence in G with 
gn.x —> e, for all x G X. For a neighbourhood V of e in E(X), there is a compact 
connected set C in X such that 

(i) all connected components U\,...,Uk of X — C are unbounded; 
(ii) all ends of the closure Û\ of U\ in X correspond to ends of X in V under the 

inclusion Û\—*X. 
As C is compact, there is N G N with g„.C C f/i, for all n ^ Af. Consequently, 

gN-CnC — 0 = g^1.CflC. As C is connected, g^l.C is contained in precisely one 
of the components f/i , . . . , £/*. 

CASE 1. ^ . C f l f / i = 0. Then C f l ^ . t / i = 0. As U\ is connected, gN. U\ is 
contained in precisely one of the components ( / i , . . . , UK> AS d£/i C C and g#. C C 
f/i, it follows that gN.U\C.U\. 

Now g := gN has infinite order. If not, g r = 1 for some r â 2. As g - 1 = gr~l, 
we get 0 = g - 1 . C H U\ = (gN~l>C) D U\ 7̂  0; contradiction. Thus (gw) determines a 
primitive vertical end of the closure of U\ in X and, hence, one of V. 

CASE 2. gûl.C C £/i. By hypothesis, there is an element t G G of infinite order. 
Now, r determines a primitive vertical end e+ of X. If e+ belongs to V, then we are done. 
Else, e+ is an end of the closure of Ui in X, say. As gûl.C C £/i, g#. Ui n C = 0. 
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Consequently, gN-^2 C U\. In particular, |yv(e+) G V. This means that gutn.x —> 
#v(e+)+ : e\ for all x G I . In particular, gNtn.(g^l.x) —> e', for all x e X. Thus 
# := g^jtg^1 determines a primitive vertical end of V. D 

The following example (2.10) shows that X may have vertical ends which are not 
in the image of k : E(G) —• E(X). 

EXAMPLE 2.10. Let G be the free group with basis gi,g2, Let B denote the 
non-negative real ray with a loop attached at every integer. Take p : X —• # to be 
the universal covering. Choosing 0 G 5 as a base point, there is a representation of 
gw by the path in B that runs from 0 to n, then once around the loop at n (according 
to a chosen orientation), then back from n to 0. Then the sequence (gn) determines a 
vertical end of X which is not in im k. 

As the group G of (2.10) satisfies the hypotheses of (2.9)ii, we get 

REMARK 2.11. E(G) is not always compact. 

§3. The structure of E(X). Given a regular covering p : X —» B, as in §2, we now 
describe the end space E(X) in terms of the end space E(G) of the group of covering 
transformations of X and end data of B. From 2.5, we already know that E(X) is the 
union of the image of k : E(G) —• E(X) and the 'fibers' X(e) over the ends of B. 
Accordingly, we seek to understand the behaviour of the map k and the structure of 
the 'fibers' X(e). We now sketch our approach. 

Corresponding to a neighbourhood bases U\ D Ui D • • •, see [2], of an end e of B, 
there is an inverse sequence p~xU\ D p~xUi D • • •. The path connectedness relation 
yields an inverse system Comp(/?-1£/i) <— Comp(p-1f/2) *— • • • of discrete spaces, 
and there is an equivariant map from the resulting inverse limit A to X(e). We then 
show: 

(1). If the fundamental groups of the sequence (JJn) contribute to G in a stable way, 
then A is homeomorphic to the quotient of G by any of certain conjugate subgroups 
{H,} of G. 

If, in addition, all ends of X(e) have property (L), then (2) and (3) below also hold. 
(2). The map A —• X(e) is onto. 
(3). For e,e' G £(G), k(e) = k(ef) & there is an e G E(B) with k(e) - k(ef) G 

X(e) & for some //, e and e' are in the image of the map £(7/^) —» £(G). 
We also give conditions for the map A —» X(e) to be a bijection. A precise formu

lation of these results is given in Theorem 3.8. 

LEMMA 3.1. Suppose that k(e) — k(ef) for two distinct ends e,e; G E(G). Then k(e) 
is also a horizontal end ofX. 

PROOF. The assumption that k{e) is not a horizontal end of X leads to the existence 
of a f.g. subgroup H of G and an end S of H such that the induced map E(H) —» E(G) 
sends £ to 6 as well as to e'. This is absurd. • 
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As the homeomorphisms by which G acts on X extend to homeomorphisms of the 
Freudenthal compactification of X, G also acts on E(X). Clearly, 

LEMMA 3.2. For every e G E(B), X(e) is invariant under the action of G on 
E(X). D 

In order to exploit further the action of G on X, we need some preparations: If 
a, /3 are composible (homotopy classes of) paths in a space, we write a/3 for the path 
running first along a, then along /3. Associated with the fundamental groupoid of a 
space Y is the fundamental system oY. Its objects are the groups 7Ti(Y,y), y G Y. Its 
(iso-)morphisms a(p : 7ri(F,y) —» TT\(Y',/) are induced by homotopy classes of paths 
a joining y to y'. Thus oY is also a groupoid. The pull back f*aY of oY along a map 
/ : W —> Y has as its objects all pairs (7ri(F,/(w)), w), H> G VF. The (iso-)morphisms 
o f / V F are all (/«)</? • (7n0%/(w)),w>)—> (7Ti(Y,/"(>/)), w'), a joining w to w'. Thus 
f*aY is also a groupoid. 

Using standard covering space theory, we see that our covering p : X —> B deter
mines a 'representation' r : p*aB —> G. The 'image' of r is G. The 'kernel' of r is 
<JX. 

A subspace S of B yields the map ps : /?-1S —* S. By composition we get a 
representation 

TS : /?Jo\S —+ p*aB —* G. 

If S is connected, the 'image' of rs is a class of conjugate subgroups of G. 

DEFINITION 3.3. An end eofB is G-stable : ^ there is a neighbourhood basis (Un) 
of e such that the decreasing sequence G D im T\JX D im Tu2 D • • • of classes of 
conjugate subgroups of G becomes constant. 

Thus e is G-stable if and only if there is a connected open neighbourhood U of e with 
compact frontier such that for any other such neighbourhood U' C U,imru' = imrj/. 
We refer to U as a G-stable neighbourhood of e if it has this property. 

We also remark that if B is semistable at e, then e is G-stable; compare [6]. 
Given a G-stable neighbourhood U of e, consider a connected component V of the 

open subset p~lU of X. Since G acts transitively on the set Comp(p-1£/) of connected 
components of p~lU, we have 

LEMMA 3.4. Comp(p~lU) is in bijective correspondence with G/Gy, where Gy is 
the maximal subgroup of G having V as an invariant subspace. • 

We now relate these facts to the horizontal ends of X. Let e G E(B) be a G-stable end 
with G-stable neighbourhood U. We know, see [5], that E(X) = limComp(X — C\) <— 
Comp(X — C2) <—•••, where C\ C C2 C • • • is an expanding sequence of compact 
connected subspaces of X whose union is X. For large «, dU C p(Cn). Hence, any 
unbounded component of B — p(Cn) is either contained in U or has empty intersection 
with U. Therefore, every connected component of p~l(U— pCn) is contained in exactly 
one component of X — Cn. Thus we get a commuting diagram (V is a connected 
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component of p XU)\ 

3.5 G/Gv = Comp p~\U - pCn) <— Comp p~\U - pCn+l) <-

Comp (X - Cn) <— Comp (X - CB+1) < 

inducing a map À : G/Gy —+ £(X). Note that Gy represents the conjugacy class im 
Tu in G. 

LEMMA 3.6. (i) The map A constructed above takes values in X(e) and is equivariant. 
(ii) If all ends ofX(e) have property (L), then im A = X(e). 

PROOF. This follows straight from the definitions. • 

REMARK 3.7. If Gy has finite index in G, then all ends of X(e) have property (L). 

PROOF. For k è «, let A^ C Comp(X—Q) be the set of connected components which 
are neighbourhoods of some e G X(e). Then im A* = A^. If (Y*) is the neighbourhood 
basis in X of a fixed e G X(e), corresponding to the sequence (Q), let Zk := A^"1^)-
Then Z* D Z +̂i D • • • and, since each Z* is finite and not empty, HZk ^ 0. If z belongs 
to that intersection, A(z) = e, by commutativity of (3.5). This implies 3.7. • 

We are now ready to state the main result of this chapter. 

THEOREM 3.8. Let p : X —• B be a regular covering of the kind described in the 
beginning o/§2. Suppose that p has property (L) and that every end of B is G-stable. 
Let e G E(B) with G-stable neighbourhood U and let e G X(e). Then 

(i) X(e) is the orbit of e under the action of G on E(X). 
(ii) Let V be a connected component of p~lU such that X(V) = e. Then Gy is 

contained in the isotropy group Ge of e. 
(iii) If Gy is finite, then Gy — Ge. 
(iv) Let e' be a vertical end of X. Then e — ef <=> there is a sequence (hn) in Gy 

such that hn.x —• e', for all x E X. Thus k~l{e'} — im(E(Gy) —• E(G)). 

PROOF, (i) and (ii) follow from (3.6). 
(iii) If Gy is finite, it follows that the connected components of p~xU have com

pact boundary, hence are neighbourhoods of distinct ends of X(e). Therefore, A is a 
bijection. As A is equivariant, Gy = Ge. 

(iv) "=>" Let e : R —• B be a proper map with ê(oo) = e. As p has property (L), 
there is a lift ë : R —• X with ë(f) G V, for large t. Thus £(oo) = e. As e = ef is 
vertical, there is a sequence (gn) in G with gn.x —+ e, for all JC G X. Hence, there 
is a proper map / : L —+ X (L is the infinite ladder [0, oo[x{0,1} U N0 x /) with 
/j[o,oo[x{o} — e a n d / ( « , 1) — gn-e(Q), for all n. For technical convenience, we may 
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assume that e(0) £ U and that e and/ take values in the 1-skeleta of B, respectively 
X. (If X,B are CW-complexes, it is at this point where we need the "finite dimension" 
hypothesis.) 

It follows that for n sufficiently large, pf{n} x / D dU ^ 0. dU is compact and 
can be assumed to be a finite subcomplex of B. Thus there exists a vertex v G dU, an 
infinite strictly increasing sequence «/ G N and a corresponding sequence ti G / , such 
that p/(n,-, f,-) = v. The sequence/(w;, u) converges to e. Further, pf yields loops // in 
U, based at v, corresponding to a sequence (hi) in 7Ti(£/, V) with /i/./(«o? *o) = /(#/? U). 

"<£=" Let (&„) be a sequence in Gy with /in.3t —> e', for all JC G X. Let e : [0, oo[—> V 
be a proper map, with pe proper and pe(oo) = e. To show that e = e', we construct 
a proper map / : L —• X with/(w, 1) = A„./(0,1) and/j[0)00[x{o} = *• 

Let U =: Uo D U\ D Ui D • • • be a neighbourhood basis of e. Then V =: 
Yo D V\ D Vi D - - • is a decreasing sequence of closed subsets of X, with empty 
intersection; where Vk := p~lÛk D V. These induce the sequence of maps of end 
spaces E(X) <— £(V) <— E(V\) < . There exists a proper increasing sequence (tk) 
in [0, oo[ such that e(tk) G p~l(Uk) H V. For every &, there is a subsequence (/**) of 
(hn) such that hk

n.e(tu) converges to some end e'k G E(Vk), for w —• oo. Hence, there 
exist proper maps ek : [0, oo[x{&} —• î \ with e*(w) = hk

n.e(tk). Since Vo ^ V'i D • • • 
induces e' <—i ê  <—i e'2 <—i • • •, there exist proper maps fk : [0, oo[x{tk, tk+\} U N 0 x 
fob tk+\] -> V*, extending the e*'s, with/£|{0}x[^+l ] = el[t^k+l]. 

The maps/: combine to a proper map F : [0, oo[x{f* : k G N0}U N0 x [0, oo[—• X. 
The desired map / can now be derived from F. D 

§4. Applications, Examples. We give some applications of the general results of 
Section 3. 

EXAMPLE 4.1. Consider the covering p : X := R x R -> R/l x R =: B. Then X 
has exactly one end and this end is both vertical and horizontal. We wish to see how 
Theorem 3.8 explains this from the covering space point of view. 

Clearly, G = Z. Now, B has two ends ±e corresponding to the ends ±oo of R. 
So E(X) = im(k : E(T) —• E(X))UX(+e)UX(-e). Both ends ±e are G-stable and 
the stable groups are equal to G. By 3.7, p has property (L). By 3.8.i, ii, X(+e) and 
X(-e) consist of one element each. By 3.8.iv, X(-e) = k(E(G)) = X(+e). 

Sometimes the end structure of X is understood and allows to infer the end structure 
of B, as in the following example. 

EXAMPLE 4.2. Let Y be a connected compact CW-complex. Let £ = (/?, 7r, y) be a 
real line bundle over Y. Then 

B has two ends ^ w\(Q — 0 (1st Stiefel Whitney class) 

B has one end & wi(0 = 1-

PROOF. If w\(Q = 0, then B = Y x R has two ends. Since w\(Q G Z/2, it now 
suffices to show 'Vi(0 = 1 implies that 5 has one end." This follows by applying 3.8 
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to the connected double cover p : I : = 7 ' x R - > f i , where Y' —-> Y is the connected 
principal Z/2-bundle associated with Ç • 

(4.2) can be useful when dealing with the normal bundle of a closed connected 
submanifold C of codimension 1 in a connected C°°-manifold M. 

PROPOSITION 4.3. (i) M — C has at most two connected components. 
(ii) If M — C has two connected components then v is trivial. 

PROOF, (i) Let D denote a normal unit disc bundle of C in M with respect to some 
Riemannian metric on v. Since the inclusion (M — D) —-> (M — C) is a deformation 
retract, we get a bijection Comp(M — D) —» Comp(M — C). Further, the inclusion 
(D — C) —• (M — C) induces an onto map Comp(£) — C) —-> Comp(M — C). By 
4.2, Comp(Z) — C) is in bijective correspondence with E(i/), which has at most two 
elements. 

(ii) The proof of (i) shows that if (M — C) has two components, then v has two 
ends. By 4.2, v is trivial. • 
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