DECOMPOSITIONS OF GRAPHS OF MODULES OVER SEMISIMPLE RINGS

Grace ORzech

Abstract

In this paper we show that an R-module graph over a semisimple ring R can be written as a direct sum of graphic submodules that are uniquely determined up to isomorphism type. Moreover, this decomposition enables us to describe the R-module graph in graphic terms as a disjoint union of connected components, each of which consists of a complete directed graph on its vertices together with a set of loops at each vertex, determined by the loops at 0 . We also give a graphic version of Maschke's Theorem.

0. Introduction

In [4] and [5] Ribenboim described a way of endowing an algebraic object with a compatible directed graph structure. For example, an R-module graph M_{Γ} is a quadruple $M_{\Gamma}=(M, V(M), o, t)$ where M is an ordinary R-module, $V(M)$ is a submodule of M, and $0, t: M \rightarrow V(M)$ are R-homomorphisms that restrict to the identity on $V(M)$. Thus, $M=\operatorname{ker}(0) \oplus V(M)=\operatorname{ker}(t) \oplus V(M)$. These decompositions are natural in an algebraic sense but unsatisfying categorically because ker(0) and ker (t) are submodules which are not R-module graphs in their own right.

When R is a field we are dealing with vector space graphs and in

Received 5 January 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ A 2.00+0.00$.
[3] we have studied decompositions of M_{Γ} into indecomposable R-subspaces. An analogous decomposition is possible when R is a semisimple ring in the usual (nongraphic) sense.

Before launching into the study of R-module graphs over a semisimple ring, R, we recall some observations made in [2] concerning arbitrary R-module graphs.

First, an R-module graph M_{Γ} is a directed graph whose vertices are the elements of $V(M)$ and whose edges are the elements of $E(M)=M \backslash V(M)$. An edge e is directed from o(e) to $t(e)$.

A submodule M^{\prime} of M is called a graphic submodule if
$o\left(M^{\prime}\right) \cup t\left(M^{\prime}\right) \subseteq M^{\prime}$.
Let $t(\operatorname{ker}(0))=V_{0}$ be the set of vertices that are graph theoretically adjacent to $0 . C_{0}=\operatorname{ker}(0) \oplus V_{0}$ is a graphic submodule of M and it is the graph theoretic connected component of 0 .
$L_{0}=\operatorname{ker}(0) \cap \operatorname{ker}(t) \quad$ is a graphic submodule and it consists of the vertex 0 together with all loops at 0 .

When R is semisimple, ordinary R-modules are completely reducible in the sense described in [1, Chapter II]. This is not the case for R-module graphs, as we shall see.

1. A graphic decomposition of an R-module graph

The decomposition $M=\operatorname{ker}(0) \oplus V(M)$ is module theoretic but not graph theoretic since ker(0) is not a subgraph of M_{Γ} unless $\operatorname{ker}(0)=\operatorname{ker}(t)=L_{0}$. Similarly the decomposition $C_{0}=\operatorname{ker}(0) \oplus V_{0}$ has components which are not graphic.

When R is semisimple we can express C_{0} and M as direct sums of graphic submodules. To do this, first write ker $(0)=L_{0} \oplus C$. This can be done because $L_{0} \subseteq \operatorname{ker}(0)$ and $k e r(O)$ is completely reducible. The complement C of L_{0} in ker(O) is not unique, but the next proposition shows that for any choice of $C, V_{0} \approx C$.

Proposition 1.1 If $C \subseteq \operatorname{ker}(0)$ and C satisfies $\operatorname{ker}(0)=L_{0} \oplus C$, then $C \approx V_{0}$.

Proof. Since $C \subseteq k e r(0), t(c)$ is in V_{0} for each c in C. Thus we can define $\varphi_{C}: C \rightarrow V_{O}$ by

$$
\begin{equation*}
\varphi_{C}(c)=t(c) \tag{1.2}
\end{equation*}
$$

If $\varphi_{C}(c)=0$, then c is in $L_{0} \cap C=\{0\}$. Thus φ_{C} is one-one. Let v be any element in V_{0}. We can write $v=t(x)$ for some x in ker(0) since v is adjacent to 0 . By hypothesis, $x=\ell+c$ for unique ℓ in L_{0} and c in C. Thus,

$$
\varphi_{C}(c)=\varphi_{C}(x-\ell)=t(x-\ell)=t(x)-t(\ell)=v .
$$

So, φ_{C} is onto.
Given C as in Proposition 1.1, let $K_{0, C}=C \oplus V_{0 .}$. The properties of $K_{0, C}$ are summarized in the next proposition.

Proposition $1.3{ }^{K} 0, C$ is a graphic submodule of M. Moreover, $K_{0, C}$ is a complete directed graph in the sense that for any ordered pair, (v, w) of vertices, $v \neq w$, from $k_{0, c}$, there is a unique edge e in $K_{0, C}$ satisfying $o(e)=v$ and $t(e)=w$.

Proof. Given any k in $K_{0, C}$, write $k=c+v$ where c is in C and v is in V_{0}. Since $t(c)$ is also in $V_{0}, t(k)=t(c)+v$ is in V_{0}. Also, $o(k)=o(c)+o(v)=v$ is in V_{0}. Thus, $t\left(K_{0, C}\right) \cup o\left(K_{0, C}\right) \subseteq V_{0} \subseteq K_{0, C}$, which proves that $K_{0, C}$ is graphic.

Next consider $v \neq w$ in $V_{0}=V\left(K_{0, C}\right)$. From the proof of Proposition 1.1, we know that there exist c_{v} and c_{w} in C such that $v=t\left(c_{v}\right)$ and $w=t\left(c_{w}\right)$. The edge $e=v-c_{v}+c_{w}$ is in $K_{0, c}$ and satisfies

$$
\begin{aligned}
& o(e)=o(v)-o\left(c_{v}\right)+o\left(c_{w}\right)=v \\
& t(e)=t(v)-t\left(c_{v}\right)+t\left(c_{w}\right)=v-v+w=w
\end{aligned}
$$

If e^{\prime} in C also satisfies $o\left(e^{\prime}\right)=v$ and $t\left(e^{\prime}\right)=w$, then $e-e^{\prime}$ is in $L_{O} \cap K_{O, C}=\{0\}$. This proves the uniqueness of the edge from v to w.

Now let C be such that $\operatorname{ker}(0)=L_{0} \oplus C$. Then

$$
c_{0}=\operatorname{ker}(0) \oplus V_{0}=\left(L_{0} \oplus C\right) \oplus V_{0}=L_{0} \oplus\left(C \oplus V_{0}\right)=L_{0} \oplus K_{0, C} .
$$

Thus C_{0}, the connected component of 0 , is the direct sum of two graphic submodules, one characterized graphically as loops at 0 and having only one vertex, the other characterized as a complete directed graph on the vertices in the connected component of 0 . While L_{0} is unique, the component $K_{0, C}$ is determined only up to isomorphism.

Since R is semisimple and $V_{0} \subseteq V(M)$, we can write $V(M)=V_{0} \oplus W$. W is graphic because every submodule of $V(M)$ is graphic. Thus,

$$
\begin{aligned}
M & =\operatorname{ker}(0) \oplus V(M) \\
& =\operatorname{ker}(0) \oplus\left(V_{0} \oplus \mathrm{~W}\right) \\
& =\left(\operatorname{ker}(0) \oplus V_{0}\right) \oplus \mathrm{W} \\
& =C_{0} \oplus \mathrm{~W} \\
& =L_{0} \oplus K_{0, C} \oplus \mathrm{~W}
\end{aligned}
$$

is a way of expressing M as a direct sum of graphic submodules.
It is easy to see that the submodule $W \approx V(M) / V_{0}$ is determined up to isomorphism. It plays a role in helping to describe M as a graph.

PROPOSITION 1.4. As a graph, M is the disjoint union of subgraphs, C_{w}, where C_{w} is the connected component of w, and w varies over W. Moreover, each c_{w} is graph theoretically isomorphic to c_{0}.

Proof. Let w_{1} and w_{2} be in W and suppose $c_{w_{1}}=c_{w_{2}}$. Then $w_{1}-w_{2}$ is in $C_{0} \cap V(M)$. Thus, $w_{1}-w_{2}$ is in V_{0}. But then $0+\omega_{1}=\left(\omega_{1}-w_{2}\right)+w_{2}$ and since $V(M)=V_{0} \oplus W$, we have $0=w_{1}-w_{2}$ and $w_{1}=w_{2}$.

This shows that

$$
M=\sum_{\substack{\text { (disjoint) } \\ w \text { in } W}} C_{w} .
$$

To see that C_{0} and C_{w} are isomorphic as graphs, define $F: C_{w} \rightarrow M$ by $F(x)=x-w$ and $G: C_{0} \rightarrow M$ by $G(x)=x+w$. First we check that $F\left(C_{w}\right) \subseteq C_{0}$. Let v be a vertex in C_{w} and e an edge in C_{w}. There is a sequence of edges, e_{1}, \ldots, e_{k} in C_{w} with o($\left.e_{1}\right)=w$, $t\left(e_{i}\right)=o\left(e_{i+1}\right)$ for $i=1, \ldots, k-1$, and $t\left(e_{k}\right)=v$, and there is another sequence, f_{1}, \ldots, f_{s}, with $o\left(f_{1}\right)=w, t\left(f_{i}\right)=o\left(f_{i+1}\right)$ for $i=1, \ldots, s-1$, and $t\left(f_{s}\right)=o(e)$. But then, $o\left(e_{1}-w\right)=0$, $t\left(e_{i}-w\right)=o\left(e_{i+1}-w\right)$ for $i=1, \ldots, k-1$, and $t\left(e_{k}-w\right)=v-w=F(v)$. So $F(v)$ is in C_{0}. Also, o($\left.f_{1}-w\right)=0, t\left(f_{i}-w\right)=o\left(f_{i+1}-w\right)$ for $i=1, \ldots, s-1$, and $t\left(f_{s}-w\right)=t\left(f_{s}\right)-w=o(e)-w=o(e-w)=$ $o(F(e))$. Thus, $F(e)$ is in C_{0}.

A similar argument can be used to show that $G\left(C_{0}\right) \subseteq C_{w^{*}}$. Since

$$
\begin{aligned}
& G F(x)=G(x-w)=(x-w)+w=x \text { and } \\
& F G(x)=F(x+w)=(x+w)-w=x
\end{aligned}
$$

F and G are one-one and onto.
To see that F and G preserve graphic structure, note that

$$
\begin{aligned}
& O F(x)=O(x-w)=O(x)-w=F O(x) \text { and } \\
& t F(x)=t(x-w)=t(x)-w=F t(x)
\end{aligned}
$$

and similarly, $o G(x)=G O(x)$ and $t G(x)=G t(x)$.
In accordance with our observations we name the components L_{0}, $K_{O, C}$, and W of M as follows:

DEFINITION 1.5. L_{O} is called the loop component of $M, K_{0, C}$ is called the complete component, and W is called the partition component.

The loop and partition components of a graphic module M share the property that any ordinary submodule of either one is graphic. $K_{0, C}$ is different. C is a submodule of $K_{0, C}$ but it is not graphic because $t(C)=V_{0}$ but $V_{0} \nsubseteq C$ since $C \cap V_{0} \subseteq \operatorname{ker}(0) \cap V_{0}=\{0\}$.
2. Decomposition of R-module graphs into indecomposable graphic R-submodules.

If an R-module graph M_{Γ} is indecomposable, then it must be comprised entirely of one of its graphic components.

Definition 2.1. An R-module graph M_{Γ} is called loop type if $M=L_{0}$, complete type if $M=K_{0, C}$, and vertex type if $M=W$.

If M_{Γ} is a loop type or vertex type indecomposable R-module graph then M must be irreducible as an R-module since any nontrivial submodule would be a direct summand and the summands would automatically be graphic. On the other hand, if M_{Γ} is a complete type indecomposable, then M is not indecomposable as an R-module since $M=C \oplus V_{0}$ with $C \approx V_{0} \neq\{0\}$.

Proposition 2.2. A complete type R-module graph $K_{0, C}=C \oplus V_{0}$ is indecomposable if and only if V_{0} is an irreducible R-module.

In order to prove this it will be useful to know the next fact:
Lemma 2.3. If $C \oplus V_{0}$ is a complete type R-module graph and V is any submodule of V_{0}, then $K=\varphi_{C}{ }^{-1}(V) \oplus V$ is a graphic submodule (where φ_{C} was defined in equation (1.2)).

Proof. Each k in K can be written uniquely as $k=x+v$ where x is in $\varphi_{C}^{-1}(V)$ and v is in V. Thus,

$$
\begin{aligned}
& o(k)=o(x)+o(v)=v \text { and } \\
& t(k)=t(x)+t(v)=\varphi_{C}(x)+v
\end{aligned}
$$

This shows that $O(K) U t(K) \subseteq V=V(K)$.

Proof (of Proposition 2.2.). First suppose V_{0} is not irreducible. Since R is semisimple, $V_{0}=V_{1} \oplus \ldots \oplus V_{n}$, where each V_{i} is an irreducible R-module. Let $K_{i}=\varphi_{C}^{-1}\left(V_{i}\right) \oplus V_{i}$. It is graphic by Lemma 2.3 and given the nature of φ_{C}, it is clear that $K_{0, C}=K_{1} \oplus \ldots \oplus K_{n}$. That is, $K_{0, C}$ is not indecomposable.

On the other hand, suppose V_{O} is irreducible but $K_{O, C}=G \oplus H$ for some graphic submodules G and H. since $V\left(K_{0, C}\right)=V_{0}=V(G) \oplus V(H)$, we may assume that $V(G)=V_{0}$ and $V(H)=\{0\}$. Thus, $H \subseteq L_{0}$ which is $\{0\}$ for a complete type R-module. This shows that $K_{0, C}$ is indecomposable.

The next fact is an easy consequence of our understanding of the nature of indecomposable R-module graphs and the usual decomposition theorem for modules over semisimple rings (e.g. see [1]).

THEOREM 2.4. If M_{Γ} is any R-module graph then

$$
M=L_{01} \oplus \ldots \oplus L_{0 \lambda} \oplus K_{1} \oplus \ldots \oplus K_{\tau} \oplus W_{1} \oplus \ldots \oplus W_{\mu}
$$

where each $L_{0 i}$ is a loop type indecomposable, each K_{j} is a complete type indecomposable, and each W_{k} is a vertex type indecomposable. The numbers λ, τ, and μ are unique and if

$$
M=L_{01}^{\prime} \oplus \ldots \oplus L_{0 \lambda}^{\prime} \oplus K_{1}^{\prime} \oplus \ldots \oplus K_{\tau}^{\prime} \oplus \ldots \oplus W_{1}^{\prime} \oplus \ldots \oplus W_{\mu}^{\prime}
$$

is another decomposition of M into indecomposable graphic submodules, the indices may be chosen so that $L_{0 i} \approx L_{0 i}^{\prime}, K_{j} \approx K_{j}^{\prime}$, and $W_{k} \approx W_{k}^{\prime}$ for $i=1, \ldots, \lambda, j=1, \ldots, \tau, \quad$ and $k=1, \ldots, \mu$.

3. Modules over semisimple group rings.

In this section we suppose $R=k[G]$ where k is a field of characteristic not dividing the order of G. By Maschke's Theorem, R is known to be a semisimple ring. Each R-module graph M_{Γ} is also a
k-vector space graph. Observe also that each g in G acts as a graphic k-linear operator, $T(g)$, on M_{Γ}.

The main theorem of this section shows how the graphic vector space structure of M_{Γ} influences its graphic module structure. It is a relative of Maschke's Theorem.

THEOREM 3.1. Let k be a field and G a finite group satisfying char $(k) \nmid[G: 1]$. Let M_{Γ} be a k[G]-moduze graph and M_{Γ}^{\prime} a graphic submodule of M_{Γ}. If there is a graphic k-subspace N of M such that $M=M^{\prime} \oplus N$, then there is a graphic $k[G]-s u b m o d u l e N^{\prime}$ of M such that $M=M^{\prime} \oplus N^{\prime}$ 。

Proof. Let $E: M_{\Gamma} \rightarrow M_{\Gamma}^{\prime}$ be the projection of M onto M^{\prime} arising from the decomposition $M=M^{\prime} \Theta N . \quad E$ is a graphic linear transformation and so is

$$
F=\frac{1}{[G: 1]} \sum_{g} \sum_{i n} T(g) E T(g)^{-1}
$$

It is easy to check that for each g in $G, F T(g)=T(g) F$, which means F is actually a graphic $K[G]$-module homomorphism that maps M_{Γ} to M_{Γ}^{\prime}. Also easy to verify is the fact that $F \mid M^{\prime}=i d_{M^{\prime}}$.

Now let $N^{\prime}=\left(i d_{M}-F\right)(M) . \quad N^{\prime}$ is a $k[G]$-submodule of M since $i d_{M}$ and F are $k[G]$-homomorphisms.

Let s be in $\{0, t\}$ and m in M. Then

$$
s(m-F(m))=s(m)-s F(m)=s(m)-F(s(m))=\left(i d_{M}-F\right)(s(m))
$$

This shows that $o\left(N^{\prime}\right) U t\left(N^{\prime}\right) \subseteq N^{\prime}$. Thus, N^{\prime} is a graphic $k[G]$-submodule of M and $F: M_{\Gamma} \rightarrow M_{\Gamma}^{\prime}$ may be interpreted as a projection homomorphism corresponding to the desired decomposition: $M_{\Gamma}=M_{\Gamma}^{\prime} \oplus N_{\Gamma}^{\prime}$.

References

[1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, 1962.)
[2] G. Orzech, "R-module graphs", preprint.
[3] G. Orzech, "A graph theoretic description of vector spaces with three subspaces", preprint.
[4] P. Ribenboim, "Algebraic structures on graphs", Algebra Universalis, 16 (1983), 105-123.
[5] P. Ribenboim, "Vector space graphs", Nanta Math. 12 (1979), 125-132.

Department of Mathematics and Statistics, Queen's University, Kingston K7L 3N6,

Canada.

