DECOMPOSITIONS OF GRAPHS OF MODULES OVER SEMISIMPLE RINGS

GRACE ORZECH

In this paper we show that an R-module graph over a semisimple ring R can be written as a direct sum of graphic submodules that are uniquely determined up to isomorphism type. Moreover, this decomposition enables us to describe the R-module graph in graphic terms as a disjoint union of connected components, each of which consists of a complete directed graph on its vertices together with a set of loops at each vertex, determined by the loops at θ . We also give a graphic version of Maschke's Theorem.

0. Introduction

In [4] and [5] Ribenboim described a way of endowing an algebraic object with a compatible directed graph structure. For example, an R-module graph M_{Γ} is a quadruple $M_{\Gamma} = (M, V(M), o, t)$ where M is an ordinary R-module, V(M) is a submodule of M, and $o, t: M \rightarrow V(M)$ are R-homomorphisms that restrict to the identity on V(M). Thus, $M = \ker(o) \bigoplus V(M) = \ker(t) \bigoplus V(M)$. These decompositions are natural in an algebraic sense but unsatisfying categorically because $\ker(o)$ and $\ker(t)$ are submodules which are not R-module graphs in their own right.

When R is a field we are dealing with vector space graphs and in

Received 5 January 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

[3] we have studied decompositions of M_{Γ} into indecomposable *R*-subspaces. An analogous decomposition is possible when *R* is a semisimple ring in the usual (nongraphic) sense.

Before launching into the study of R-module graphs over a semisimple ring, R, we recall some observations made in [2] concerning arbitrary R-module graphs.

First, an *R*-module graph M_{Γ} is a directed graph whose vertices are the elements of V(M) and whose edges are the elements of $E(M) = M \setminus V(M)$. An edge *e* is directed from o(e) to t(e).

A submodule M' of M is called a graphic submodule if $o(M') \cup t(M') \subseteq M'$.

Let $t(\ker(o)) = V_0$ be the set of vertices that are graph theoretically adjacent to 0. $C_0 = \ker(o) \oplus V_0$ is a graphic submodule of M and it is the graph theoretic connected component of 0.

 $L_0 = \ker(o) \cap \ker(t)$ is a graphic submodule and it consists of the vertex 0 together with all loops at 0.

When R is semisimple, ordinary R-modules are completely reducible in the sense described in [1, Chapter II]. This is not the case for R-module graphs, as we shall see.

1. A graphic decomposition of an R-module graph

The decomposition $M = \ker(o) \bigoplus V(M)$ is module theoretic but not graph theoretic since $\ker(o)$ is not a subgraph of M_{Γ} unless $\ker(o) = \ker(t) = L_0$. Similarly the decomposition $C_0 = \ker(o) \bigoplus V_0$ has components which are not graphic.

When R is semisimple we can express C_0 and M as direct sums of graphic submodules. To do this, first write $\ker(o) = L_0 \oplus C$. This can be done because $L_0 \subseteq \ker(o)$ and $\ker(o)$ is completely reducible. The complement C of L_0 in $\ker(o)$ is not unique, but the next proposition shows that for any choice of C, $V_0 \approx C$.

406

Proposition 1.1 If $C \subseteq ker(o)$ and C satisfies $ker(o) = L_0 \oplus C$, then $C \approx V_0$.

Proof. Since $C \subseteq \ker(o)$, t(c) is in V_0 for each c in C. Thus we can define $\Psi_C : C \neq V_0$ by

(1.2)
$$\varphi_{c}(c) = t(c)$$

If $\varphi_C(c) = 0$, then c is in $L_0 \cap C = \{0\}$. Thus φ_C is one-one. Let v be any element in V_0 . We can write v = t(x) for some x in ker(o) since v is adjacent to 0. By hypothesis, x = l + c for unique l in L_0 and c in C. Thus,

$$\varphi_{C}(c) = \varphi_{C}(x - l) = t(x - l) = t(x) - t(l) = v$$

so, φ_c is onto.

Given C as in Proposition 1.1, let $K_{0,C} = C \oplus V_0$. The properties of $K_{0,C}$ are summarized in the next proposition.

Proposition 1.3 $K_{0,C}$ is a graphic submodule of M. Moreover, $K_{0,C}$ is a complete directed graph in the sense that for any ordered pair, (v,w) of vertices, $v \neq w$, from $K_{0,C}$, there is a unique edge e in $K_{0,C}$ satisfying o(e) = v and t(e) = w.

Proof. Given any k in $K_{0,C}$, write k = c + v where c is in C and v is in V_0 . Since t(c) is also in V_0 , t(k) = t(c) + v is in V_0 . Also, o(k) = o(c) + o(v) = v is in V_0 . Thus, $t(K_{0,C}) \cup o(K_{0,C}) \subseteq V_0 \subseteq K_{0,C}$, which proves that $K_{0,C}$ is graphic.

Next consider $v \neq w$ in $V_0 = V(K_{0,C})$. From the proof of Proposition 1.1, we know that there exist c_v and c_w in C such that $v = t(c_v)$ and $w = t(c_w)$. The edge $e = v - c_v + c_w$ is in $K_{0,C}$ and satisfies

$$o(e) = o(v) - o(c_v) + o(c_w) = v ,$$

$$t(e) = t(v) - t(c_v) + t(c_v) = v - v + w = w .$$

Grace Orzech

If e' in C also satisfies o(e') = v and t(e') = w, then e - e'is in $L_0 \cap K_{0,C} = \{0\}$. This proves the uniqueness of the edge from vto w.

Now let C be such that $\ker(o) = L_0 \oplus C$. Then

$$C_0 = \ker(o) \oplus V_0 = (L_0 \oplus C) \oplus V_0 = L_0 \oplus (C \oplus V_0) = L_0 \oplus K_{0,C}$$

Thus C_0 , the connected component of θ , is the direct sum of two graphic submodules, one characterized graphically as loops at θ and having only one vertex, the other characterized as a complete directed graph on the vertices in the connected component of θ . While L_0 is unique, the component $K_{\theta,C}$ is determined only up to isomorphism.

Since R is semisimple and $V_0 \subseteq V(M)$, we can write $V(M) = V_0 \oplus W$. W is graphic because every submodule of V(M) is graphic. Thus,

$$M = \ker(o) \bigoplus V(M)$$

$$= \ker(o) \bigoplus (V_0 \bigoplus W)$$

$$= (\ker(o) \bigoplus V_0) \bigoplus W$$

$$= C_0 \bigoplus W$$

$$= L_0 \bigoplus K_{0,C} \bigoplus W$$

is a way of expressing M as a direct sum of graphic submodules.

It is easy to see that the submodule $W \approx V(M)/V_0$ is determined up to isomorphism. It plays a role in helping to describe M as a graph.

PROPOSITION 1.4. As a graph, M is the disjoint union of subgraphs, C_w , where C_w is the connected component of w, and w varies over W. Moreover, each C_w is graph theoretically isomorphic to C_0 .

Proof. Let w_1 and w_2 be in W and suppose $C_{w_1} = C_{w_2}$. Then $w_1 - w_2$ is in $C_0 \cap V(M)$. Thus, $w_1 - w_2$ is in V_0 . But then $0 + w_1 = (w_1 - w_2) + w_2$ and since $V(M) = V_0 \oplus W$, we have $0 = w_1 - w_2$ and $w_1 = w_2$.

408

This shows that

$$M = \bigcup_{\substack{\text{(disjoint)} \\ w \text{ in } W}} C_w$$

To see that C_0 and C_w are isomorphic as graphs, define $F: C_w \neq M$ by F(x) = x - w and $G: C_0 \neq M$ by G(x) = x + w. First we check that $F(C_w) \subseteq C_0$. Let v be a vertex in C_w and e an edge in C_w . There is a sequence of edges, e_1, \ldots, e_k in C_w with $o(e_1) = w$, $t(e_i) = o(e_{i+1})$ for $i = 1, \ldots, k-1$, and $t(e_k) = v$, and there is another sequence, f_1, \ldots, f_s , with $o(f_1) = w$, $t(f_i) = o(f_{i+1})$ for $i = 1, \ldots, s-1$, and $t(f_s) = o(e)$. But then, $o(e_1 - w) = 0$, $t(e_i - w) = o(e_{i+1} - w)$ for $i = 1, \ldots, k-1$, and $t(e_k - w) = v-w = F(v)$. So F(v) is in C_0 . Also, $o(f_1 - w) = 0$, $t(f_i - w) = o(f_{i+1} - w)$ for $i = 1, \ldots, s-1$, and $t(f_s - w) = t(f_s) - w = o(e) - w = o(e - w) =$ o(F(e)). Thus, F(e) is in C_0 .

A similar argument can be used to show that $G(C_0) \subseteq C_w$. Since

GF(x) = G(x - w) = (x - w) + w = x andFG(x) = F(x + w) = (x + w) - w = x,

F and G are one-one and onto.

To see that F and G preserve graphic structure, note that

$$oF(x) = o(x - w) = o(x) - w = Fo(x) \text{ and}$$
$$tF(x) = t(x - w) = t(x) - w = Ft(x)$$

and similarly, OG(x) = GO(x) and tG(x) = Gt(x).

In accordance with our observations we name the components L_0 , $K_{0,C}$, and W of M as follows:

DEFINITION 1.5. L_0 is called the *loop component* of *M*, $K_{0,C}$ is called the *complete component*, and *W* is called the *partition component*.

Grace Orzech

The loop and partition components of a graphic module M share the property that any ordinary submodule of either one is graphic. $K_{0,C}$ is different. C is a submodule of $K_{0,C}$ but it is not graphic because $t(C) = V_0$ but $V_0 \notin C$ since $C \cap V_0 \subseteq \ker(o) \cap V_0 = \{0\}$.

Decomposition of .R-module graphs into indecomposable graphic R-submodules.

If an R-module graph M_{Γ} is indecomposable, then it must be comprised entirely of one of its graphic components.

Definition 2.1. An *R*-module graph M_{Γ} is called *loop type* if $M = L_0$, complete type if $M = K_{0,C}$, and vertex type if M = W.

If M_{Γ} is a loop type or vertex type indecomposable *R*-module graph then *M* must be irreducible as an *R*-module since any nontrivial submodule would be a direct summand and the summands would automatically be graphic. On the other hand, if M_{Γ} is a complete type indecomposable, then *M* is not indecomposable as an *R*-module since $M = C \oplus V_0$ with $C \approx V_0 \neq \{0\}$.

Proposition 2.2. A complete type R-module graph $K_{0,C} = C \oplus V_0$ is indecomposable if and only if V_0 is an irreducible R-module.

In order to prove this it will be useful to know the next fact:

Lemma 2.3. If $C \oplus V_0$ is a complete type R-module graph and V is any submodule of V_0 , then $K = \varphi_C^{-1}(V) \oplus V$ is a graphic submodule (where φ_C was defined in equation (1.2)).

Proof. Each k in K can be written uniquely as k = x + vwhere x is in $\varphi_C^{-1}(V)$ and v is in V. Thus,

> o(k) = o(x) + o(v) = v and $t(k) = t(x) + t(v) = \varphi_{c}(x) + v.$

This shows that $o(K) \cup t(K) \subseteq V = V(K)$.

Proof (of Proposition 2.2.). First suppose V_0 is not irreducible. Since R is semisimple, $V_0 = V_1 \oplus \ldots \oplus V_n$, where each V_i is an irreducible R-module. Let $K_i = \varphi_C^{-1}(V_i) \oplus V_i$. It is graphic by Lemma 2.3 and given the nature of φ_C , it is clear that $K_{0,C} = K_1 \oplus \ldots \oplus K_n$. That is, $K_{0,C}$ is not indecomposable.

On the other hand, suppose V_0 is irreducible but $K_{0,C} = G \oplus H$ for some graphic submodules G and H. Since $V(K_{0,C}) = V_0 = V(G) \oplus V(H)$, we may assume that $V(G) = V_0$ and $V(H) = \{0\}$. Thus, $H \subseteq L_0$ which is $\{0\}$ for a complete type R-module. This shows that $K_{0,C}$ is indecomposable.

The next fact is an easy consequence of our understanding of the nature of indecomposable R-module graphs and the usual decomposition theorem for modules over semisimple rings (e.g. see [1]).

THEOREM 2.4. If M_{r} is any R-module graph then

$$M = L_{01} \oplus \ldots \oplus L_{0\lambda} \oplus K_1 \oplus \ldots \oplus K_{\tau} \oplus W_1 \oplus \ldots \oplus W_{\mu}$$

where each L_{0i} is a loop type indecomposable, each K_j is a complete type indecomposable, and each W_k is a vertex type indecomposable. The numbers λ , τ , and μ are unique and if

$$M = L'_{01} \oplus \ldots \oplus L'_{0\lambda} \oplus K'_{1} \oplus \ldots \oplus K'_{\tau} \oplus \ldots \oplus W'_{1} \oplus \ldots \oplus W'_{\mu}$$

is another decomposition of M into indecomposable graphic submodules, the indices may be chosen so that $L_{0i} \approx L'_{0i}$, $K_j \approx K'_j$, and $W_k \approx W'_k$ for $i = 1, ..., \lambda, j = 1, ..., \tau$, and $k = 1, ..., \mu$.

3. Modules over semisimple group rings.

In this section we suppose R = k[G] where k is a field of characteristic not dividing the order of G. By Maschke's Theorem, R is known to be a semisimple ring. Each R-module graph $M_{\rm p}$ is also a k-vector space graph. Observe also that each g in G acts as a graphic k-linear operator, T(g), on $M_{\rm p}$.

The main theorem of this section shows how the graphic vector space structure of M_{Γ} influences its graphic module structure. It is a relative of Maschke's Theorem.

THEOREM 3.1. Let k be a field and G a finite group satisfying char(k) $\not\downarrow$ [G:1]. Let M_{Γ} be a k[G]-module graph and M_{Γ}' a graphic submodule of M_{Γ} . If there is a graphic k-subspace N of M such that $M = M' \oplus N$, then there is a graphic k[G]-submodule N' of M such that $M = M' \oplus N$.

Proof. Let $E: M_{\Gamma} \to M'_{\Gamma}$ be the projection of M onto M' arising from the decomposition $M = M' \oplus N$. E is a graphic linear transformation and so is

$$F = \frac{1}{[G:1]} \sum_{\substack{g \text{ in } G}} T(g) ET(g)^{-1}$$

It is easy to check that for each g in G, FT(g) = T(g)F, which means F is actually a graphic K[G]-module homomorphism that maps M_{Γ} to M'_{Γ} . Also easy to verify is the fact that $F \mid M' = id_{M'}$.

Now let $N' = (id_M - F)(M)$. N' is a k[G]-submodule of M since id_M and F are k[G]-homomorphisms.

Let s be in $\{o, t\}$ and m in M. Then

$$s(m - F(m)) = s(m) - sF(m) = s(m) - F(s(m)) = (id_{M} - F)(s(m))$$

This shows that $o(N') \cup t(N') \subseteq N'$. Thus, N' is a graphic k[G]-submodule of M and $F: M_{\Gamma} \to M'_{\Gamma}$ may be interpreted as a projection homomorphism corresponding to the desired decomposition: $M_{\Gamma} = M'_{\Gamma} \bigoplus N'_{\Gamma}$.

https://doi.org/10.1017/S0004972700021651 Published online by Cambridge University Press

References

- [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, 1962.)
- [2] G. Orzech, "R-module graphs", preprint.
- [3] G. Orzech, "A graph theoretic description of vector spaces with three subspaces", preprint.
- [4] P. Ribenboim, "Algebraic structures on graphs", Algebra Universalis, 16 (1983), 105-123.
- [5] P. Ribenboim, "Vector space graphs", Nanta Math. 12 (1979), 125-132.

Department of Mathematics and Statistics, Queen's University, Kingston K7L 3N6, Canada.