ON THE STONE-CECH COMPACTIFICATION OF AN ORBIT SPACE

KAVITA SRIVASTAVA

By extending the given action of a discrete group G on a Tychonoff space X to βX , it is proved that the Stone-Čech compactification of the orbit space of X is the orbit space of the Stone-Cech compactification βX of X, when G is finite. The notion of G-retractive spaces is introduced and it is proved that the orbit space of a G-retractive space with G finite, is *G*-retractive.

1. Introduction

By a G-space X we mean a triple (X,G,θ) consisting of a Tychonoff space X, a discrete group G and an action θ of G on X. A subspace A of a G-space X is called invariant if $\theta(G \times A) = A$. An action θ of a group G on a space X is called trivial if $g \cdot x = x$ for $g \in G$, $x \in X$ and θ is said to be *transitive* if for each $x \in X$, the orbit $G_r = \{g \cdot x | g \in G\}$ is X itself. A map f from a G-space X to a G-space Y is called equivariant if $f(g \cdot x) = g \cdot f(x)$, $g \in G$, $x \in X$. Denote the set of all orbits G_r of a G-space X by X/G and let $\pi: X \rightarrow X/G$ be the orbit map taking x to G_{π} . Then X/G endowed with

Received 22 December 1986. The author is grateful to Dr. K.K. Azad for suggesting the problem.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00.

the quotient topology relative to π is called the *orbit space* of X. Action on X/G is taken to be trivial. The orbit map is open, continuous and equivariant.

The Stone-Čech compactification of a Tychonoff space X will be denoted by βX and X^* will denote the growth $\beta X - X$ of X. The zultrafilter A^p on X represents the point $p \in \beta X$. The Stone extension βf of a continuous map f from a Tychonoff space X to a Tychonoff space Y is given by $(\beta f)(p) = \bigcap_{Z \in A^p} C_1 \beta Y f(Z)$.

By an *extension of an action* θ of a group G on a subspace A of a space X, to the space X, we mean an action of G on X, whose restriction to $G \times A$ is θ .

Extending the given action of a discrete group G on a Tychonoff space X to βX , in Section 2, we obtain the Stone-Čech compactification of the orbit space X/G in terms of the orbit space of βX ; precisely, we prove that $\beta(X/G) = \beta X/G$, when G is finite. It is observed that the result need not be true in the case that G is an infinite discrete group.

Comfort [2] introduced the important concept of retractive spaces in 1965 [see 4 also]. In Section 3, we put this and other related concepts in their *G*-versions and prove that for a finite group *G*, the orbit space of a *G*-retractive space is *G*-retractive.

For terms not explained here see [1] and [3].

2. Action on BX

Let X be a G-space and for $g \in G$, let $T_g: X \to X$ be the homeomorphism defined by $T_g(x) = g \cdot x$, $x \in X$. For a subset A of X and a family A of subsets of X, denote $T_g(A) = \{g \cdot a \mid a \in A\}$ by $g \cdot A$ and $T_g(A) = \{g \cdot A \mid A \in A\}$ by $g \cdot A$. Clearly, $e \cdot A = A$ and $g_1 \cdot (g_2 \cdot A) = (g_1 g_2) \cdot A$, where e is the identity in G and $g_1, g_2 \in G$. Since, for $g \in G$ and $p \in \beta X$, $g \cdot A^p$ is a z-ultrafilter on X, it corresponds to a point, say $g \cdot p$, in βX . Define $\theta_\beta: G \times \beta X \to \beta X$ by $\theta_\beta(g,p) = g \cdot p$, $g \in G$, $p \in \beta X$. Then it can be seen that θ_β is an extension to βX of the action θ on X. The continuity of θ_{β} follows by noting that for a zero-set Z of X and $g \in G$, $g \cdot Cl_{\beta X} Z = Cl_{\beta X}(g \cdot Z)$ so that $(\theta_{\beta})^{-1}(Cl_{\beta X} Z) = \bigcup_{g \in G} \{\{g\} \times Cl_{\beta X}(g^{-1} \cdot Z)\}$ and that the family of closed sets $\{\{g\} \times Cl_{\beta X}(g^{-1} \cdot Z)\}$ is locally finite. For a G-space X, the G-space βX will mean the triple $(\beta X, G, \theta_{\beta})$. We state the following lemma without proof. LEMMA 2.1. For G-spaces X and Y, we have (a) X and X* are invariant subspaces of the G-space βX , (b) the extension θ_{β} on βX of a transitive action θ on X is transitive if and only if X is compact, (c) the Stone extension βf of a continuous equivariant map f: X + Y is equivariant.

THEOREM 2.2. If X is a G-space with G finite, then the Stone-Čech compactification of the orbit space X/G is the orbit space of the Stone-Čech compactification of X; that is, $\beta(X/G) = \beta X/G$.

Proof. Note that X/G is a dense subspace of the compact space $\beta X/G$. Since G is compact, $\beta X/G$ is Hausdorff [see 1; I, Theorem 3.1]. We show that the Stone extension βi of the inclusion map $i:X/G + \beta X/G$ is a homeomorphism. Note that $i \circ \pi_X = \pi \circ i_X$, where $\pi_X: X + X/G$ and $\pi : \beta X + \beta X/G$ are the orbit maps and i_X is the inclusion map of X into βX . From the functorial properties of β , it follows that $\beta i \circ \beta \pi_X = \pi \circ I_{\beta X}$. For q_1 , q_2 in $\beta (X/G)$, choose $p_1 \in (\beta \pi_X)^{-1}(q_1)$ and $p_2 \in (\beta \pi_X)^{-1}(q_2)$. Then $(\beta i)(q_1) = (\beta i)(q_2)$ implies that $G_{p_1} = G_{p_2}$. Therefore $p_1 = g \cdot p_2$ for some $g \in G$. Using equivariance of $\beta \pi_X$ and that the action on $\beta (X/G)$ is trivial, we obtain that $q_1 = q_2$. For surjectivity of βi , we note that $(\beta i)((\beta \pi_X)(p)) = G_p$, where $G_p \in \beta X/G$. Thus $\beta i : \beta (X/G) + \beta X/G$ is a homeomorphism which keeps X/G pointwise fixed.

Remark 2.3. Consider a transitive action of a discrete group G on a non-compact Tychonoff space X. Since the orbit space X/G is the singleton space, in view of Lemma 2.1 (b), we obtain that the result of Theorem 2.2 may not be true for the case of an infinite discrete group.

3. G-retractive spaces

DEFINITION 3.1. A continuous equivariant map r from a G-space X onto an invariant subspace A of X is called a G-retraction of X onto A if r leaves points of A fixed. The invariant subspace A is then called a G-retract of X. A G-space X is said to be a G-retractive space if the invariant subspace X^* is a G-retract of βX .

If G is a singleton or the action is trivial, the concept of G-retraction coincides with that of retraction and consequently those of G-retracts and G-retractive spaces coincide with retracts and retractive spaces, respectively.

EXAMPLE 3.2. Let X be a non-compact Tychonoff space and let $S = \beta X - \{p\}$, where $p \in X^*$. Then $\beta S = \beta X$ [see 3; 6.7]. Denote by G the discrete group of all self homeomorphisms on S together with the binary operation as the composition of maps and consider the G-space (S,G,θ) , where $\theta : G \times S \Rightarrow S$ is defined by $\theta(T,s) = T(s), T \in G$, $s \in S$. In view of Lemma 2.1 (a) $S^* = \{p\}$ is invariant. It is easily seen that S^* is a G-retract of βS . Consequently, the G-space (S,G,θ) is a G-retractive space.

LEMMA 3.3. If X is a G-retractive space, then X^*/G is a G-retract of $\beta X/G$.

Proof. Let r be a G-retraction of βX onto X^* . Then the map $r_1 : \beta X/G \to X^*/G$ defined by $r_1(G_p) = G_{r(p)}, p \in \beta X$, is a G-retraction.

THEOREM 3.4. The orbit space of a G-retractive space is G-retractive, where G is finite.

Proof. Let X be a G-retractive space with G finite, r be a G-retraction of βX onto X* and let $\beta i : \beta(X/G) \rightarrow \beta X/G$ and $r_1 : \beta X/G \rightarrow X^*/G$ be as in the proofs of Theorem 2.2 and Lemma 3.3, respectively. Define $r_2 : \beta(X/G) \rightarrow (X/G)^*$ by $r_2(q) = f(r_1(\beta i(q)))$, where $q \in \beta(X/G)$ and $f : X^*/G \rightarrow (X/G)^*$ is given by $f(G_p) = (\beta i)^{-1}(G_p)$, $p \in X^*$. It can be checked that r_2 is a G-retraction.

438

References

- [1] G.E. Bredon, Introduction to compact transformation groups, (Academic Press, New York and London; 1972).
- [2] W.W. Comfort, "Retractions and other continuous maps from βX onto $\beta X X$ ", Trans. Amer. Math. Soc. 114 (1965), 1-9.
- [3] L. Gillman and M. Jerison, Rings of continuous functions, (Van Nostrand, Princeton, New Jersey; Toronto; London; New York; 1969).
- [4] R.C. Walker, The Stone-Cech compactification, (Springer-Verlag, Berlin; Heidelberg; New York; 1974).

Senior Research Fellow

Allahabad Mathematical Society

Vijay Niwas

198, Mumfordganj

ALLAHABAD 211002,

India.