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Abstract

This paper studies the impairing of flows in multi-index transportation problem with axial
constraints. For any curtailed flow, the problem is shown to be equivalent to a standard
axial sum problem, whose solution can be obtained by known methods. The equivalence
is established only for specially defined solutions (referred to as M-feasible solutions) of
the standard problem. It is also proved that an optimal solution of the impaired flow
problem corresponds to such an M-feasible solution.

Introduction

In 1973, Appa [1] studied variants of the conventional transportation problem.
Another type of variant of the standard transportation problem was studied by
Brigden [2] considering mixed-type constraints. Klingman and Russel [6] investi-
gated the effect of an extra linear constraint on the transportation problem.
Extension of a standard transportation problem to a three-dimensional situation
with axial constraints was first examined by Schell [7]. Later on, in 1955, Corban
[3] developed a solution procedure for the same problem. A three-dimensional
transportation problem with planar constraints was introduced by Haley [4], who
also gave a solution procedure. A solid transportation problem equivalent to
SchelPs "Three Axial Sums" problem was formulated by Haley [5] in another
paper in 1964.

The "Three Axial Sums" problem deals with transporting of various commodi-
ties from a set of m warehouses to n different markets, whose total demands are
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[21 Multi-index transportation problem 297

specified. Thus if a, is the total availability at the /th warehouse, b} the total
demand at the jth market and ek the total availability of the A:th commodity,
then the multi-index transportation problem with axial constraints can be analyti-
cally stated as:

(P) Minimise 121212 cijkxijk
I J K

subject to
Kijk

J K

^ijk
I K

= ek'

Xijk

where cljk is the per unit cost of transporting the fcth product from the /'th
warehouse to the yth market and xljk is the amount of the klh product
transported on the above route.

/ = {1,2,..., m } is the index set of m warehouses, / = (1,2, . . . , n} is the
index set of n markets and K= (1,2, ...,/>} is the index set of p different
products.

Obviously for any feasible solution of (P), we have £,a, = Y,jbj — Y,Kek = N
(say).

Sometimes particular situations (financial problems, outdatedness of the prod-
uct, etc.) compel one to curtail the flow. At this juncture, some of the warehouses
are forced to be closed down or some of them are made to operate below the
original operational level, while some still continue to maintain their original
supplying behaviour. The net supply of each product and the demand at each
destination are also consequently affected.

The present paper discusses the above situation when the impaired flow is
exactly known. A procedure is developed to determine optimal solutions of this
problem which identifies the supply points selected for closure together with those
preferred to operate below or at their maximum operational level. The technique
also marks the affected commodities and the destinations.

Theoretical development

The flow constraint L / E y E^x,yfc = F (F < N) when introduced into the given
system (P), generates the following transportation problem which, mathematically
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stated is:

Minimise
I J K

subject to

J K

E E *,,*<*,•>

*,jk = F, (F<N)
I J K

x,jk > 0.

In order to solve the above problem (P-1), a related standard solid problem is
formulated, with an artificial supply point, a dummy destination and an extra
commodity, which is as follows:

Minimise
/' r

subject to

r K'

f r

where

p' = p ksK e' =(N—F}/2 + \

"X" being an arbitrary non-negative number and

c' = c \

<y,+i = °. c'in^k = 0, c;+ly t = 0, \ for all i^I,j<Ej,k<= K,

(1)
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where M is a sufficiently large positive integer, much larger than each of c'ljks,

REMARK 1. The definition of a'm+l, b'n+v e'p+l suggests that ym+Xn+ip+l = \.
DEFINITION. M-feasible solution of (P-2).
A feasible solution {y,jk},er, jer k&/c °f (P"2) is called an M-feasible

solution, if yljk = 0 whenever c'ljk = M, i e / ' , j G J', k e K'.

THEOREM 1. Any M-feasible solution of (P-2) gives a feasible solution of (P-1).

PROOF. Let {y,jk),er, j^r, k&K' be an M-feasible solution of (P-2). Then
{x,jk = y,jk}, 6 i . jej .keic i s a feasible solution of (P-1), because xl]k > 0 and

E T.x,jk =
J K J K

Therefore

J V K'

'^ r r

K' r

a', = a,, for/e/.

y,n

n+\k ~ l^y,j p+l + yi n+lp + l
r

Similarly

a,, i e / .
J K

I K
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and

Again

£ £ E*,,* = £ £ £>>„*
I J K I J K

J
i K r ' i y r

Z ^ 2-i\ L * y i j k ~ ym + ljk I Z J I Z J - ^ I n + l t ~ ^ m + 1 n + 1 /t

1̂7/1: ~ flm + l ~~ "n + 1 ~ g p
/ ' 7' A"

(( y.jk} ,e,;jer,kGK'is a n ^-feasible solution of (P-2))

~ e'p+1 + 2\

, ( Y ) = N ~(N ~
= F.

Hence E7 Ey Y.K xljk = F. Thus to every M-feasible solution of (P-2), there corre-
sponds a feasible solution of (P-1).

REMARK. It is obvious that a feasible solution of (P-2), which is not an
M-feasible solution can never correspond to a feasible solution of (P-1).

Henceforth, for following discussions, only M-feasible solutions of (P-2) will be
considered.

THEOREM 2. The objective function value at an M-feasible solution of (P-2) is
equal to that of (P-1) at its corresponding feasible solution.
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PROOF. Let {xiJk}lE, JeJ keK be a feasible solution of (P-1) corresponding to
an M-feasible solution {yljk},^r, , e y , * E r o f (P"2)> i e - . xijk = yijk, i e / ,
7 G 7, A: G K. Now

2^ 2- i-iCijkxijk
1 J K

= H'L Hc'ljkyljk
I J K

i J
 x

i—, L^ 1
K' I

- L L\
K' y v

~ 2-,\h
i v

 A:

A"

Ec;,

/'

J in + 1

^i n + 1 k-

Cm + 1 jk

k + Cln.

ij p + 1 1

), for every /

ym+kJk)

, 1 , + l ^ n + l ,

= E E E^o*^* (using (1) and M-feasibility).
/' / ' K'

Hence L,LjLfcCIJkxljk = Y.rLrLK'C'jkyljk, which proves the equality of the
objective functions.

T H E O R E M 3. / / {x,jk } , & , y j G J t k £ K is a feasible solution of (P-1), then { yljk}, G , ,

jej'.keK' is a feasible solution of (P-2), where

y,jk = xljk, i e l , jf=J,kf=K

= x,jk, (i, J,k)e(rxJ'xK')~{lxJxK),

{• /̂yAr}/e/', j e j - , self ft««g o« M-feasible solution of the following "Three Axial
Sums" problem:

Minimize
/' r

subject to

E £ * „ * = «,. ' G / ' >
y

E E*,y* = *,-,

/- y

Xijk

P(X)

https://doi.org/10.1017/S0334270000005828 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005828


302 L. Bandopadhyaya and M. C. Puri [7 ]

where

cijk = M, (/, j , k) <= ( / XJ X K), where M is a

sufficiently large positive integer

as defined earlier, ^ '

cijk ~ ' XJ'XK')~(IXJX K).,

J K

I K

= ck -
i J

CP+\ ~ cp+i-

PROOF. Let / e /. Then

J' K' J' X K

= E Ly.jk + Hy, n+i k +
J K K J'

= 2-, L,xijk + 2-,^, n + 1 k + L^Xijp + l
J K K J'

= E Zx,jk + E E*,,* (^ing (2))
J K J' K'

J K

J K V J K
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Also

l 2 2 l jk = "ni + l = am+l-j

r K' r K'

Hence

r K'

Similarly

r r

Obviously yijk > 0, / e / ' , y e / ' , k e T . Therefore { ^ } / e r , ; 6 ; . , t e r is a
feasible solution of (P-2).

REMARK 2. Theorems 1, 2, 3 prove that the optimal solution of (P-2) gives an
optimal solution of (P-1).

REMARK 3. As (P-2) is a standard "Three Axial Sums" problem, from Remark
2 it follows that there exists an integer optimal solution of (P-1).

Numerical example

Consider the problem (P-1) with ax = 24, a2 = 14, a3 = 18, a4 = 10; bx = 17,
b2 = 19, b2 = 21, b4 = 9; eY = 17, e2 = 31, e3 = 18; flow constraint
L,'LjLKxijk = F = 60 < N = 66. The cost arranged in the form of a three-
dimensional matrix is as given in Table 1.

The new problem (P-2) will have then a[ = 24, a'2 = 14, a\ = 18, a'4 = 10,
a's = (66 - 60)/2 + X = 3 + X; b[ = 17, ftj = 19, b\ = 21, ^ = 9, b's = 3 + X;
ej = 17, e'2 = 31, ej = 18, e\ = 3 + X, where X is an arbitrary non-negative
number.

The cost, c'ljk, as defined in (P-2) is given in the form of a three-dimensional
matrix in Table 2. Now solving (P-2) by the method given by Corban [3] or that
given by Haley [4, 5], the optimal solution of (P-2) is depicted in circles in Table
3. From the optimal solution of (P-2), the optimal solution of (P-1) can be known
and is as depicted in circles in Table 4.
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TABLE 1

[91

19

14

24

18
/

20

/

11

/

28

/

/

17

e

31

14/

9 /

15

24

14

21

/

20

/

19

14

/

13

/

21

1 12

/

. /

20

17

/

/ ,

24

/

16

/

21

18

/

15

/

14

10

8

16

11

/

/ .

19

/

13

/

10

/

13

/

23

/

8

/

20

/
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TABLE 2

305

15

11

14

24

18

/

20z

7

0

/

7

/

n.

a

31

o

7

7

/

M

y
y

24

/

I

21

/

20

7

7
14

0

14z
13

7

0

7

7

/
21

M

y
/

y

20

17

d

/

24

7

16z
7

0

18

/

15

/

21

0

7

7

/

M

y

l

0

/

/

c

19

7

13

/

7

0

237

8

7

7
0

Q

7

r
/
20

M

0

0

/

7

0

/

/

M

/

y

0

f

f

/

M

/

J

7

7

)
0

/
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TABLE 3

[ill

/ t
M l

\/f

\ /

\

\

\

19

i !

©

-M-
I\A

9

/ 1/1
i !/

' i

/ • / I/

\ \ /
\ \ V

j
' S V
' / A

M

' I ' (

/ ' ' ^

ii i
ii i

! i
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TABLE 4

/! \
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Appendix

Difference between the present paper and that of Brigden's

Brigden [2] considered a classical transportation problem, in which the con-
straints are of mixed type, that is, a mixture of equality and inequality require-
ments and availability constraints. There is no flow constraint in his problem and
thus the structure of the problem is undisturbed. He constructs an equivalent
standard transportation problem and suggests special types of "shifting transfor-
mations" referring to (>) constraints and "retaining transformations" dealing
with (<) constraints), to obtain a feasible solution of the original problem.

In the present paper, a 3-index transportation problem with axial constraints,
which are very much different from the conventional single-sum constraints, is
considered. The addition of a flow constraint which pertains to many practical
situations further complicates the structure of the problem, resulting in problem
(P-1).

Unlike Brigden's problem, (P-1) contains no " ^ " constraints. The proposed
solution procedure is therefore different from that of Brigden, in the sense that no
"shifting transformations" are required and the "retaining transformations" are
so defined as to take care of the additional flow constraint.

Unlike Brigden's approach, the equivalence between M-feasible solutions of
(P-2) and feasible solution of (P-1) is established without using duality results.
The proposed problem can be looked upon as a kind of variant of SchelVs "Three
Axial Sums" problem, whereas Brigden's is a different kind of variant of the
2-index transportation problem.

Consideration of a 3-index problem is a different and a broader aspect than the
2-index situations, in which we deal with the transportation of homogeneous
goods from warehouses to markets, whereas the third index in the proposed
problem takes care of various heterogeneous commodities transported from
sources to destinations. An upper bound ek on the availability of the £th
commodity (k e K) in problem (P-1) in addition to upper bounds a, on the
capacity of the /th warehouse (i e / ) and by on the demand of the yth
destination (jej) make it impossible to break the problem (P-1) in a sequence
of 2-dimensional transportation problems, flow constraint further strengthening
this argument. Thus 2-indices will not suffice to deal with the proposed problem.
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Characterisation of "M"
As in any feasible solution {y,jk}rxj'xic °f

the corresponding objective function value is at most

L = Y.Y.Uc'ijki min (a',,ty,e'k)).
v r K' ' 'J K

As y, n+i P+i> Jm+i j p+v ym+\ n+\ k 2St t o ^ e nonnegative integers for all
(/, j , k) e / x / X K, it follows that a choice of M, sufficiently larger than L
would force y,n+lp+1 = ym+ljp+1 = ym+ln+ik = 0 and thus make {yiJk}rxrxK.
M-feasible.

For specific purposes, M can be chosen as 50L or 100L.
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