BULL. AUSTRAL. MATH. SOC. VOL. 7 (1972), 227-232.

Simple proofs of Steck's determinantal expressions for probabilities in the Kolmogorov and Smirnov tests

E.J.G. Pitman

This paper gives simple proofs of two theorems of Steck concerning the distribution of sample distribution functions.

Theorems I and II below were stated and proved by Steck in two notable papers [2], [3]. As Steck showed, Theorem I enables us to determine:

- (i) the probability that the empirical distribution function lies between two other distribution functions;
- (ii) very general confidence regions for an unknown distribution function;
- (iii) the power of a test based on the empirical distribution function.

From Theorem II we can obtain the null distribution of the two-sample Smirnov statistics for arbitrary sample sizes. Steck's proofs were indirect, and somewhat complicated. Mohanty [1] gave a shorter proof of Theorem II. Here I give simple, direct proofs of both theorems.

LEMMA. Let

```
A_1, A_2, \dots, A_{m-1},
B_1, B_2, \dots, B_m
```

denote events such that for any integer k , the sets

Received 28 April 1972.

227

 $\{A_{r}, B_{s}; r < k, s \le k\}, \{A_{r}, B_{s}; r > k, s > k\}$

are independent, then

$$P(B_1B_2 \cdots B_mA_1A_2 \cdots A_{m-1}) = \Delta_m = \det(d_{ij}), \quad 1 \leq i, j \leq m$$

where

$$\begin{aligned} d_{ij} &= 0 & if \quad i > j + 1 , \\ &= 1 & if \quad i = j + 1 , \\ &= P(B_i) & if \quad i = j , \\ &= P(B_i^{B_{i+1}} \dots B_j^{A_i^*A_i^*} \dots A_{j-1}^*) & if \quad i < j , \end{aligned}$$

and A_n^* is the complement of A_n .

Note that the conditions on the events make B_1, B_2, \ldots, B_m independent. The events A_1, A_2, \ldots are 1-dependent. Put

$$\overline{A}_r = A_1 A_2 \cdots A_r$$
, $\overline{B}_r = B_1 B_2 \cdots B_r$.

The lemma may be proved by use of the principle of inclusion and exclusion.

$$P(\overline{B}_{m}^{A} 1^{A} 2 \cdots A_{m-1}) = P(\overline{B}_{m}) - \sum P(\overline{B}_{m}^{A} 2^{*}) + \sum_{p < s} P(\overline{B}_{m}^{A} 2^{*}) - \cdots + (-1)^{m-1} P(\overline{B}_{m}^{A} 2^{*}) - \cdots + (-1)^{m-1} P(\overline{B}_{m}^{A} 2^{*}) + \cdots + (-1)^{m-1} P(\overline{B}_{$$

which can be shown directly to be the expansion of Δ_m . A proof by induction is shorter, and easier to print.

Assume the lemma true for m = n.

$$\Delta_n = P(\overline{B}_n \overline{A}_{n-1}) \quad .$$

Consider Δ_{n+1} . The elements of its last row are all zero except

$$d_{n+1,n} = 1$$
, $d_{n+1,n+1} = P(B_{n+1})$.

Therefore

$$\Delta_{n+1} = P(B_{n+1})\Delta_n - \Delta'_n ,$$

where Δ'_n differs from Δ_n only in having B_n in the last column of Δ_n

replaced by $B_n B_{n+1} A_n^*$, which satisfies the same conditions relative to the other events appearing in Δ_n' as does B_n . Therefore

$$\Delta'_{n} = P(\overline{B}_{n}B_{n+1}A_{n}^{*\overline{A}}n_{-1}) = P(\overline{B}_{n+1}\overline{A}_{n-1}A_{n}^{*}) ;$$

$$P(B_{n+1})\Delta_{n} = P(B_{n+1})P(\overline{B}_{n}\overline{A}_{n-1}) = P(\overline{B}_{n+1}\overline{A}_{n-1}) .$$

Thus

$$\Delta_{n+1} = P(\overline{B}_{n+1}\overline{A}_{n-1}) - P(\overline{B}_{n+1}\overline{A}_{n-1}A_n^*)$$
$$= P(\overline{B}_{n+1}\overline{A}_{n-1}A_n) = P(\overline{B}_{n+1}\overline{A}_n) ,$$

and so the lemma is true for m = n + 1. It is easy to show that it is true for m = 2, and so it is true for all m.

COROLLARY. Taking the case where every $P(B_i) = 1$, we obtain the following result for the 1-dependent sequence of events A_1, A_2, \dots ,

$$P(A_1A_2 \dots A_{m-1}) = \det(d_{ij})$$
,

where

$$\begin{aligned} d_{ij} &= 0 & if \quad i > j + 1 , \\ &= 1 & if \quad i = j \quad or \quad j + 1 , \\ &= P(A_i^{*A_{i+1}^*} \dots A_{j-1}^*) \quad if \quad i < j . \end{aligned}$$

THEOREM I. Let

$$0 \le u_1 \le u_2 \le \dots \le u_m \le 1 ,$$

$$0 \le v_1 \le v_2 \le \dots \le v_m \le 1 ,$$

be given constants such that

$$u_i < v_i$$
, $i = 1, 2, ..., m$.

If U_1, U_2, \ldots, U_m are the order statistics (in ascending order) from a sample of m independent uniform random variables with range 0 to 1,

$$P(u_i \leq U_i \leq v_i, 1 \leq i \leq m) = m!det \left[(v_i - u_j)_+^{j-i+1} / (j-i+1)! \right],$$

where $(x)_{+} = \max(x, 0)$, and it is understood that determinant elements

for which i > j + 1 are all zero.

Proof. Let Y_1, Y_2, \ldots, Y_m be independent random variables, each with a uniform distribution from 0 to 1. The required probability is equal to

(1)
$$m!P(u_i \leq Y_i \leq v_i, 1 \leq i \leq m; Y_1 \leq Y_2 \leq ... \leq Y_m)$$
.

Denote by B_i the event $u_i \leq Y_i \leq v_i$. Denote by A_i the event $Y_i \leq Y_{i+1}$, and by A_i^* the complement of A_i , that is, the event $Y_i > Y_{i+1}$. The events A_i , B_i satisfy the conditions of the lemma. Hence

(2)
$$P(u_{i} \leq Y_{i} \leq v_{i}, 1 \leq i \leq m; Y_{1} \leq Y_{2} \leq \dots \leq Y_{m})$$

 $= P(B_{1}B_{2} \cdots B_{m}A_{1}A_{2} \cdots A_{m-1}) = \det(d_{ij}) \cdot d_{ii} = P(B_{i}) = v_{i} - u_{i} \cdot$
If $i < j$, $d_{ii} = P(B_{i+1} \cdots B_{i}A_{i+1}^{*} \cdots A_{i+1}^{*}) \cdot The event$

If i < j, $d_{ij} = P(B_i B_{i+1} \cdots B_j A_i^* A_{i+1}^* \cdots A_{j-1}^*)$. The even $B_i B_{i+1} \cdots B_j A_i^* A_{i+1}^* \cdots A_{j-1}^*$ is

$$u_{r} \leq Y_{r} \leq v_{r}, \quad i \leq r \leq j$$
$$Y_{i} > Y_{i+1} > \dots > Y_{j}.$$

This is equivalent to

$$v_i \stackrel{\geq}{=} Y_i > Y_{i+1} > \ldots > Y_j \stackrel{\geq}{=} u_j$$
,

the probability of which is $(v_i - u_j)_+^{j-i+1}/(j-i+1)!$. The theorem then follows from (1) and (2).

THEOREM II. Let $b_1 \leq b_2 \leq \ldots \leq b_m$ and $c_1 \leq c_2 \leq \ldots \leq c_m$ be sequences of integers such that $b_i < c_i$. The number of sets of integers (R_1, R_2, \ldots, R_m) such that

$$R_1 < R_2 < \dots < R_m$$
,
 $b_i < R_i < c_i$, $1 \le i \le m$

230

is the m-th order determinant $\det(d_{ij})$, where

$$\begin{aligned} d_{ij} &= 0 & \text{ if } i > j + 1 \text{ or if } c_i - b_j \leq 1 \text{ ,} \\ &= \begin{pmatrix} c_i - b_j + j - i - 1 \\ j - i + 1 \end{pmatrix} \text{ otherwise.} \end{aligned}$$

Proof. Put $Y_i = R_i - i$, $u_i = b_i - i + 1$, $v_i = c_i - i - 1$. The conditions on the R_i are equivalent to

$$Y_i$$
 an integer, $u_i \leq Y_i \leq v_i$; $1 \leq i \leq m$,
 $Y_1 \leq Y_2 \leq \ldots \leq Y_m$.

As before, denote by A_i the event $Y_i \leq Y_{i+1}$, and by A_i^* its complement, the event $Y_i > Y_{i+1}$. Put $N_i = v_i - u_i + 1$.

The required number is equal to

$$N_1 N_2 \cdots N_m P (A_1 A_2 \cdots A_{m-1})$$

when the Y_i are independent random variables, and Y_i has a uniform distribution over the integers from u_i to v_i . By the corollary to the lemma, this is

$$N_1 N_2 \dots N_m \det(d'_{ij})$$
,

where

$$\begin{aligned} d_{ij}^{\prime} &= 0 & \text{if } i > j + 1 , \\ &= 1 & \text{if } i = j \text{ or } j + 1 , \\ &= P(A_{i+1}^{*A_{i+1}} \dots A_{j-1}^{*}) & \text{if } i < j ; \end{aligned}$$

$$P(A_{i+1}^{*A_{i+1}} \dots A_{j-1}^{*}) = P(v_{i} \ge Y_{i} > Y_{i+1} > \dots > Y_{j} \ge u_{j})$$
This is zero if $v_{i} = v_{i} \le i - i$ that is if $c_{i} = h_{i} \le 1$

as before. This is zero if $v_i^{} - u_j^{} < j - i$, that is if $c_i^{} - b_j^{} \leq 1$. Otherwise it is equal to

$$\binom{v_{i} - u_{j} + 1}{j - i + 1} / N_{i} N_{i+1} \cdots N_{j} = \frac{d_{ij}}{N_{i} N_{i+1} \cdots N_{j}}$$

The numerator is the number of vectors of integers $(y_i, y_{i+1}, \ldots, y_j)$ satisfying $v_i \ge y_i > y_{i+1} > \ldots > y_j \ge u_j$, and the denominator is the number of vectors satisfying $u_n \le y_n \le v_n$, $i \le r \le j$.

Put $M_0 = 1$, $M_r = N_1 N_2 \dots N_r$; then in all cases

$$d'_{ij} = d_{ij}M_{i-1}/M_j$$
.

The required number (3) is

$$M_m \det(d'_{ij}) = M_m \det(d_{ij}M_{i-1}/M_j) = \det(d_{ij})$$
,

as may be obtained by taking factors out of rows and out of columns. This proves the theorem.

References

- [1] S.G. Mohanty, "A short proof of Steck's result on two-sample Smirnov statistics", Ann. Math. Statist. 42 (1971), 413-414.
- [2] G.P. Steck, "The Smirnov two sample tests as rank tests", Ann. Math. Statist. 40 (1969), 1449-1466.
- [3] G.P. Steck, "Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions", Ann. Math. Statist. 42 (1971), 1-11.

301 Davey Street, Hobart, Tasmania 7000.