Simple proofs of Steck's determinantal expressions for probabilities in the Kolmogorov and Smirnov tests

E.J.G. Pitman

This paper gives simple proofs of two theorems of Steck concerning the distribution of sample distribution functions.

Theorems I and II below were stated and proved by Steck in two notable papers [2], [3]. As Steck showed, Theorem I enables us to determine:
(i) the probability that the empirical distribution function lies between two other distribution functions;
(ii) very general confidence regions for an unknown distribution function;
(iii) the power of a test based on the empirical distribution function.

From Theorem II we can obtain the null distribution of the two-sample Smirnov statistics for arbitrary sample sizes. Steck's proofs were indirect, and somewhat complicated. Mohanty [1] gave a shorter proof of Theorem II. Here I give simple, direct proofs of both theorems.

LEMMA. Let

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots, A_{m-1}, \\
& B_{1}, B_{2}, \ldots, B_{m}
\end{aligned}
$$

denote events such that for any integer k, the sets

$$
\left\{A_{r}, B_{s} ; r<k, s \leq k\right\},\left\{A_{r}, B_{s} ; r>k, s>k\right\}
$$

are independent, then

$$
P\left(B_{1} B_{2} \ldots B_{m} A_{1} A_{2} \ldots A_{m-1}\right)=\Delta_{m}=\operatorname{det}\left(d_{i j}\right), \quad 1 \leq i, j \leq m
$$

where

$$
\begin{array}{rlrl}
d_{i j} & =0 & & \text { if } i>j+1, \\
& =1 & & \text { if } i=j+1, \\
& =P\left(B_{i}\right) & & \text { if } i=j, \\
& =P\left(B_{i} B_{i+1} \cdots B_{j} A_{i}^{*} A_{i+1}^{*} \cdots A_{j-1}^{*}\right) & \text { if } i<j,
\end{array}
$$

and A_{r}^{*} is the complement of A_{r}.
Note that the conditions on the events make $B_{1}, B_{2}, \ldots, B_{m}$ independent. The events A_{1}, A_{2}, \ldots are l-dependent. Put

$$
\bar{A}_{r}=A_{1} A_{2} \ldots A_{r}, \bar{B}_{r}=B_{1} B_{2} \ldots B_{r} .
$$

The lemma may be proved by use of the principle of inclusion and exclusion.

$$
\begin{aligned}
P\left(\bar{B}_{m} A_{1} A_{2} \ldots A_{m-1}\right)=P\left(\bar{B}_{m}\right)-\sum P\left(\bar{B}_{m} A_{r}^{*}\right) & +\sum_{r<s} P\left(\bar{B}_{m}^{A} A_{r}^{*} A_{s}^{*}\right) \\
& -\ldots+(-1)^{m-1} P\left(\bar{B}_{m} A_{1}^{*} A_{2}^{*} \ldots A_{m-1}^{*}\right),
\end{aligned}
$$

which can be shown directly to be the expansion of Δ_{m}. A proof by induction is shorter, and easier to print.

Assume the lemma true for $m=n$.

$$
\Delta_{n}=P\left(\bar{B}_{n} \bar{A}_{n-1}\right) .
$$

Consider Δ_{n+1}. The elements of its last row are all zero except

$$
d_{n+1, n}=1, \quad d_{n+1, n+1}=P\left(B_{n+1}\right)
$$

Therefore

$$
\Delta_{n+1}=P\left(B_{n+1}\right) \Delta_{n}-\Delta_{n}^{\prime},
$$

where Δ_{n}^{\prime} differs from Δ_{n} only in having B_{n} in the last column of Δ_{n}
replaced by $B_{n} B_{n+1} A_{n}^{*}$, which satisfies the same conditions relative to the other events appearing in Δ_{n}^{\prime} as does B_{n}. Therefore

$$
\begin{gathered}
\Delta_{n}^{\prime}=P\left(\bar{B}_{n} B_{n+1} A_{n}^{*} \bar{A}_{n-1}\right)=P\left(\bar{B}_{n+1} \bar{A}_{n-1} A_{n}^{*}\right) ; \\
P\left(B_{n+1}\right) \Delta_{n}=P\left(B_{n+1}\right) P\left(\bar{B}_{n} \bar{A}_{n-1}\right)=P\left(\bar{B}_{n+1} \bar{A}_{n-1}\right)
\end{gathered}
$$

Thus

$$
\begin{aligned}
\Delta_{n+1} & =P\left(\bar{B}_{n+1} \bar{A}_{n-1}\right)-P\left(\bar{B}_{n+1} \bar{A}_{n-1} A_{n}^{*}\right) \\
& =P\left(\bar{B}_{n+1} \bar{A}_{n-1} A_{n}\right)=P\left(\bar{B}_{n+1} \bar{A}_{n}\right)
\end{aligned}
$$

and so the lemma is true for $m=n+1$. It is easy to show that it is true for $m=2$, and so it is true for all m.

COROLLARY. Taking the case where every $P\left(B_{i}\right)=1$, we obtain the following result for the 1 -dependent sequence of events A_{1}, A_{2}, \ldots,

$$
P\left(A_{1} A_{2} \cdots A_{m-1}\right)=\operatorname{det}\left(d_{i j}\right)
$$

where

$$
\begin{aligned}
d_{i j} & =0 & & \text { if } i>j+1, \\
& =1 & & \text { if } i=j \text { or } j+1, \\
& =P\left(A_{i}^{*} A_{i+1}^{*} \cdots A_{j-1}^{*}\right) & & \text { if } i<j .
\end{aligned}
$$

THEOREM I. Let

$$
\begin{aligned}
& 0 \leq u_{1} \leq u_{2} \leq \ldots \leq u_{m} \leq 1, \\
& 0 \leq v_{1} \leq v_{2} \leq \ldots \leq v_{m} \leq 1,
\end{aligned}
$$

be given constants such that

$$
u_{i}<v_{i}, \quad i=1,2, \ldots, m
$$

If $U_{1}, U_{2}, \ldots, U_{m}$ are the order ε tatistics (in ascending order) from a sample of m independent uniform random variables with range 0 to 1 ,

$$
P\left(u_{i} \leq U_{i} \leq v_{i}, 1 \leq i \leq m\right)=m!\operatorname{det}\left[\left(v_{i}-u_{j}\right)_{+}^{j-i+1} /(j-i+1)!\right]
$$

where $(x)_{+}=\max (x, 0)$, and it is understood that determinont elements
for which $i>j+1$ are all zero.
Proof. Let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be independent random variables, each with a uniform distribution from 0 to 1 . The required probability is equal to

$$
\begin{equation*}
m!P\left(u_{i} \leq Y_{i} \leq v_{i}, 1 \leq i \leq m ; Y_{1} \leq Y_{2} \leq \ldots \leq Y_{m}\right) \tag{1}
\end{equation*}
$$

Denote by B_{i} the event $u_{i} \leq Y_{i} \leq v_{i}$. Denote by A_{i} the event $Y_{i} \leq Y_{i+1}$, and by A_{i}^{*} the complement of A_{i}, that is, the event $y_{i}>Y_{i+1}$. The events A_{i}, B_{i} satisfy the conditions of the lemma. Hence
(2) $P\left(u_{i} \leq Y_{i} \leq v_{i}, 1 \leq i \leq m ; Y_{1} \leq Y_{2} \leq \ldots \leq Y_{m}\right)$

$$
\begin{aligned}
&=P\left(B_{1} B_{2} \cdots B_{m}^{A} A_{2} \cdots A_{m-1}\right)=\operatorname{det}\left(d_{i j}\right) . \\
& d_{i i}= P\left(B_{i}\right)=v_{i}-u_{i}
\end{aligned}
$$

If $i<j, d_{i j}=P\left(B_{i} B_{i+1} \ldots B_{j} A_{i}^{*} A_{i+1}^{*} \ldots A_{j-1}^{*}\right)$. The event $B_{i} B_{i+1} \cdots B_{j} A_{i}^{*} A_{i+1}^{*} \cdots A_{j-1}^{*}$ is

$$
\begin{aligned}
& u_{r} \leq Y_{r} \leq v_{r}, i \leq r \leq j, \\
& Y_{i}>Y_{i+1}>\ldots>Y_{j} .
\end{aligned}
$$

This is equivalent to

$$
v_{i} \geq Y_{i}>Y_{i+1}>\ldots>Y_{j} \geq u_{j}
$$

the probability of which is $\left(v_{i}-u_{j}\right)_{+}^{j-i+1} /(j-i+1)!$. The theorem then follows from (1) and (2).

THEOREM II. Let $b_{1} \leq b_{2} \leq \ldots \leq b_{m}$ and $c_{1} \leq c_{2} \leq \ldots \leq c_{m}$ be sequences of integers such that $b_{i}<c_{i}$. The number of sets of integers $\left(R_{1}, R_{2}, \ldots, R_{m}\right)$ such that

$$
\begin{aligned}
& R_{1}<R_{2}<\ldots<R_{m} \\
& b_{i}<R_{i}<c_{i}, \quad 1 \leq i \leq m
\end{aligned}
$$

is the m-th order determinant $\operatorname{det}\left(d_{i j}\right)$, where

$$
\begin{array}{rlrl}
d_{i j} & =0 & \text { if } i>j+1 \text { or if } c_{i}-b_{j} \leq 1, \\
& =\binom{c_{i}-b_{j}+j-i-1}{j-i+1} \quad \text { otherwise. }
\end{array}
$$

Proof. Put $Y_{i}=R_{i}-i, u_{i}=b_{i}-i+1, v_{i}=c_{i}-i-1$. The conditions on the R_{i} are equivalent to

$$
\begin{gathered}
Y_{i} \text { an integer, } u_{i} \leq Y_{i} \leq v_{i} ; 1 \leq i \leq m \\
Y_{1} \leq Y_{2} \leq \ldots \leq Y_{m}
\end{gathered}
$$

As before, denote by A_{i} the event $Y_{i} \leq Y_{i+1}$, and by A_{i}^{*} its complement, the event $Y_{i}>Y_{i+1}$. Put $N_{i}=v_{i}-u_{i}+1$.

The required number is equal to

$$
\begin{equation*}
N_{1} N_{2} \quad \cdots N_{m} p\left(A_{1} A_{2} \quad \cdots A_{m-1}\right) \tag{3}
\end{equation*}
$$

when the Y_{i} are independent random variables, and Y_{i} has a uniform distribution over the integers from u_{i} to v_{i}. By the corollary to the lemma, this is

$$
N_{1} N_{2} \ldots N_{m} \operatorname{det}\left(d_{i j}^{\prime}\right)
$$

where

$$
\begin{array}{rlrl}
d_{i j}^{\prime} & =0 & & \text { if } i>j+1, \\
& =1 & & \text { if } i=j \text { or } j+1, \\
& =P\left(A_{i}^{*} A_{i+1}^{*} \ldots A_{j-1}^{*}\right) \quad \text { if } i<j ; \\
P\left(A_{i}^{*} A_{i+1}^{*} \ldots A_{j-1}^{*}\right) & =P\left(v_{i} \geq Y_{i}>Y_{i+1}>\ldots>Y_{j} \geq u_{j}\right)
\end{array}
$$

as before. This is zero if $v_{i}-u_{j}<j-i$, that is if $c_{i}-b_{j} \leq 1$.
Otherwise it is equal to

$$
\binom{v_{i}^{-u_{j}+1}}{j-i+1} / N_{i} N_{i+1} \ldots N_{j}=\frac{d_{i j}}{N_{i} N_{i+1} \ldots N_{j}}
$$

The numerator is the number of vectors of integers $\left(y_{i}, y_{i+1}, \ldots, y_{j}\right)$ satisfying $v_{i} \geq y_{i}>y_{i+1}>\ldots>y_{j} \geq u_{j}$, and the denominator is the number of vectors satisfying $u_{r} \leq y_{r} \leq v_{r}, i \leq r \leq j$.

Put $M_{0}=1, M_{r}=N_{1} N_{2} \ldots N_{r}$; then in all cases

$$
d_{i j}^{\prime}=d_{i j} M_{i-1} / M_{j} .
$$

The required number (3) is

$$
M_{m} \operatorname{det}\left(d_{i j}^{\prime}\right)=M_{m} \operatorname{det}\left(d_{i j} M_{i-1} / M_{j}\right)=\operatorname{det}\left(d_{i j}\right),
$$

as may be obtained by taking factors out of rows and out of columns. This proves the theorem.

References

[1] S.G. Mohanty, "A short proof of Steck's result on two-sample Smirnov statistics", Ann. Math. Statist. 42 (1971), 413-414.
[2] G.P. Steck, "The Smirnov two sample tests as rank tests", Ann. Math. Statist. 40 (1969), 1449-1466.
[3] G.P. Steck, "Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions", Ann. Math. Statist. 42 (1971), l-11.

301 Davey Street, Hobart,

Tasmania 7000.

