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SUMMARY

The effect of optimizing selection, mutation and drift on a metric
character determined by a large number of loci with equal effects without
dominance was investigated theoretically. Conditions for a stable equi-
librium under selection and mutation, in the absence of drift, have been
obtained, and hence the amount of genetic variability which can be
maintained by mutation has been determined. An approximate expres-
sion for the average amount of genetic variability to be expected in the
presence of drift in a population of finite size has also been obtained and
evaluated.

1. INTRODUCTION

The effect of selection for an optimal value on a polygenic, metric character has
been investigated by Fisher (1930), Haldane (1932,1953), Wright (1935), Robertson
(1956) and Bulmer (1971a). The conclusion of these authors is that optimizing
selection tends to eliminate genetic variability, but the tendency to fixation due to
this cause and to genetic drift will at some point be balanced by the introduction of
fresh variability by mutation. The purpose of this paper is to determine the amount
of genetic variability which can be maintained by mutation under optimizing
selection both in an infinite and in a finite population.

Because of the complexity of the problem we shall only discuss the simplest case of
a metric character determined by a large number of loci with equal effects and
without dominance; the effect of linkage disequilibrium will also be ignored.
Consider, then, a metric character, y, whose genetic component is determined by n
loci. We shall suppose that each locus has two alleles, Cx and Cz, and that the effects
of the three possible genotypes, CxC^, G-lCi and C72C2, are — a, 0 and a respectively. If
the frequency of the Cx allele at the ith locus is pt, then the genetic variance (before
selection) is n

Vo = 2a? S ptqt. (1)

We shall also suppose that there is an independent, normally distributed environ-
mental component of y with variance VE, so that the total phenotypic variance
(before selection) is V = VO+VE. The purpose of this paper is to determine the
expected value of the genetic variance under the joint action of selection, mutation
and drift.

We shall also suppose that the population is subject to selection for an optimal
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18 M. G. BULMER

value, d. As a mathematical model of optimizing selection we shall suppose that
the fitness of an individual with phenotypic value y is

«;(*/) = exp[-c(2/-0)2], (2)

where c is a measure of the intensity of selection. If y is normally distributed in the
population before selection with mean M and variance F, then it is quite easy to
show (see Latter, 1970, and Bulmer, 1971 b) that it will also be normally distributed
after selection with mean M + DM and variance V + DV, where

DM = 2cV(d-M)l(l + 2cV)A

Z>F = -2cF2/(l + 2cF). / ( 3 )

I t is often more convenient to express the intensity of selection in terms of the
dimensionless quantity A; = 2c F/( 1 + 2c F), (4)
so that

= -kV. (5)
The quantity k therefore represents the proportionate reduction ha the variance as a
result of selection; it has been called by Latter (1970) 'the coefficient of centripetal
selection'.

The above model of optimizing selection is a form of stabilizing selection since D V
is negative, that is to say the effect of selection is to reduce the phenotypic variance.
Under this form of selection, and in the absence of overdominance, it has already
been shown (Bulmer, 1971 o) that there is no non-trivial stable equilibrium under
selection alone, in the absence of mutation, so that all genetic variability must
eventually be eliminated. In the next section we shall consider how much genetic
variability can be maintained in this situation by mutation; for the time being we
shall suppose that the population size is effectively infinite so that there is no
genetic drift. For the sake of simplicity we shall only consider the symmetrical case
in which M = 6 when all the gene frequencies are equal to one half, or more generally
when the average of the gene frequencies is equal to one half- that is to say when

2. SELECTION AND MUTATION

It has been shown previously (Bulmer, 1971a) that the change in the gene fre-
quency at the ith locus as a result of selection is given approximately by

Apt (selection) = p^Aa - \Bcfidpi - gt)]. (6)

If all loci are subject to equal forward and backward mutation rates, u, then the
total change in the gene frequency is approximately

A^(total) = p^Aa - ^Ba^fa - &)] - «(p< - qt). (7)

If y is normally distributed the coefficients A and B are given by

A = -DMjV,

where DM and DV, the change in the phenotypic mean and variance as a result of
selection, are given by equation (3). The above expression for A is only sufficiently

https://doi.org/10.1017/S0016672300014221 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300014221


Genetic variability under optimizing selection 19

accurate if the skewness of the genetic contribution to y is of order l/n. However, it is
clear from the symmetry of the situation that for any equilibrium position the gene
frequencies must be symmetrically distributed about \, so that the skewness of the
distribution is zero; furthermore, DM must be zero at equilibrium since the regres-
sion of offspring on parent is linear in the absence of dominance. At equilibrium we
may therefore write A — 0

).J (9)

Since the total change in the gene frequency must be zero at equilibrium we may
therefore write ^ji

if Pt denotes the gene frequency at the ith locus at an equilibrium position. It follows
that either p _ n _ i ->

or

at an equilibrium position. The second alternative is only possible if S < £; if this
is the case, the equation PiQi = S will have two solutions between 0 and 1, which
will be denoted by TT1 and n2, located at equal distances on either side of | . Since the
gene frequencies must be symmetrically distributed about £, there must be equal
numbers of loci at 77̂  and n2.

To test the stability of an equilibrium position, let us suppose that the gene
frequencies are perturbed from their positions by small perturbations, ej( so that
Pi = Pi + ei. The coefficient A will be changed by the perturbation from zero to
2aB'E,ei (see Buhner, 1971a); the change in the coefficient B can be ignored. Hence,
ignoring terms like ef, we may write

] ei-\a?Be.i-2uei

u if

If we write e* = et

(

\u

= - in £ et + 4wef - (u/6) et if P, Q, = S.

for the perturbation in the next generation, then

, - ^ S e , - if P, = Q,=

(12)

*t = ( l - | e«-4tt £ e, if PtQt = S.
(13)

Let us first suppose that S < £. In this case the equilibrium will be unstable if
there is more than one locus at a gene frequency of \. For if the ith and jth. loci have
gene frequencies of \, then

(e? - e*) = (1 + *(»/*) - 2») (e, - et), (14)
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which is unstable since \uf8 > 2u when 8 < %. But the number of loci at | must be
even or odd according as the total number of loci is even or odd, since there are equal
numbers of loci at irx and n2. Thus a necessary condition for a stable equilibrium is
that there be no loci or one locus at \, depending on whether the total number of loci
is even or odd. To show that this is also a sufficient condition for stability when the
total number of loci is even, suppose that there are equal numbers of loci at TIX and
TT2. If we consider the quantities e = Sejra and di = ef — e, then

l)]e,l
f (1*)

J
The quantity d{ is stable since u/8 > 4M when 8 < £; the quantity e is clearly also
stable. It follows that the e/s are also stable. On the other hand, if 8 > \, then the
only equilibrium position is with all the loci at J; it can easily be verified by the
above argument that this is a stable equilibrium.

A slight complication arises from the fact that the critical quantity

itself depends on the gene frequencies which determine the genetic variance and
hence affect the total variance, V. If we assume that Pt Qt has the same value x at all
loci (which must be the case for a stable equilibrium if the number of loci is even),
then

8=1 + 2fE+4:nux. (15)
ca?

This straight line will intersect the straight line 8 = x at a single point, when x = £,
say. If £ < \, then 8 must clearly be less than \ when x = J, so that there is a unique
stable equilibrium at x = £. If £ > \, then 8 must be greater than £ when x = J, so
that there is a unique stable equilibrium at x = \.

To interpret the above results in terms of the genetic variability maintained by
mutation, we observe that if 8 < \ at the stable equilibrium point, then the genetic
variance is

Va = 2a2 S Pt Qi = 2nu( 1 + 2c V)jc, (16)

so that the heritability is

W = VajV = 2nu(l + 2cV)jcV = inu/k, (17)
where k is the measure of the intensity of selection defined in equation (4). (This
agrees with the result obtained by Latter (1960) by a less rigorous argument, with
the proviso that the measure of the intensity of selection, / , used by Latter is equal
to %k.) On the other hand if 8 > J at the stable equilibrium point, then Pt Qt = J at all
loci, so that

Va = |na2 (18)
and

h2 = \na?\ V = ina2l(lna2 + VE). (19)
Thus the heritability maintained by mutation is the smaller of the two quantities
(17) and (19); it would of course be impossible to maintain a heritability higher
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than (19) since the genetic variance has a maximum value given by (18). Thus if
the observed heritability of a metric character is W, and if it is postulated that this
heritability is maintained by mutation, then it must be inferred that inu/k ^ h%.
For example, if h? = J and k = 0-01, and if it can be assumed that the mutation
rate, u, is about 10"5, then it is necessary to postulate that the number of loci is at
least 125 unless some other means of maintaining genetic variability is operating.

It has been assumed in the above account that there are only two alleles at each
locus. This assumption may be rather unrealistic in the light of modern under-
standing of the nature of the gene, and it is therefore of interest to compare the above
result with the model investigated by Kimura (1965), in which there are an effectively
infinite number of alleles at each locus. Under this model it is assumed that there is a
probability u that a mutation will occur at a particular locus, and that the change in
the quantitative character produced by any mutation can be regarded as a random
variable, £, such that E(£,2) = cr2. Kimura also supposes that the character is subject
to selection depending on the squared deviation from an optimal value, so that the
fitness of an individual with phenotypic value y is w(y) = l—c(y — 6)2; for weak
selective pressures this is almost equivalent to the fitness function defined in
equation (2). The genetic variance maintained by mutation, on the assumptions that
there is no dominance and that the mutation rates, u, and genetic effects, cr2, are
the same at all loci, is then found to be

Va = noV(2»/c). (20)

It also has been assumed that all loci have equal effects. If this assumption is
relaxed under a model with two alleles at each locus, it can be shown that at equili-
brium the loci with large effects will have gene frequencies near 0 or 1, while loci
with small effects will have gene frequencies near or equal to J. The reader is
referred to the papers of Latter (1960, 1969) for further discussion.

3. SELECTION, MUTATION AND DRIFT
If the population is finite, of effective size N, the gene frequencies, pit at the

various loci will be subject to drift and will be random variables with a joint prob-
ability distribution. It has been shown by Wright (1937) and more rigorously by
Kimura (1964) that the stationary distribution of gene frequencies is given by

ttei,P» ...,Pn)Kw™ ft (ftft)*"-1, (21)

where w is the average fitness in a population with the given gene frequencies. If
y is normally distributed with mean M and variance V, given the gene frequencies
p1,pi, •••tPn, then, under the model of selection considered previously,

id = E{exj> [ - c(y - 6)f} = - ^ - ^ J "^ exp [ - c(y - Of - \{y - Mfj V] dy

= exp[-c(ilf-0)2/(l-|-2cF)]/V(l + 2cF) (by completing the square)

( 2 2 )
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If cV is small, this can be written to sufficient accuracy as

w ~ exp [ - c{M -d)2-cV] = exp - c[{M - Of + V]. (23)

In the symmetrical case when M = 6 when %pjn = J, we mayjwrite

= VJI! + 2a*2piqt.)

We may thus write approximately

4iPi,P» • • -,Pn) °c exp - 2Nca*{4[X(pi - \)f + 22p<?<} fi (ft?,)4"*-1- (25)

The gene frequencies are not independently distributed in equation (25) because
of the factor [L(Pi — £)]2. It is, however, the distribution which would be obtained
if we start with independently distributed gene frequencies each having the dis-
tribution

f(Pi) oc exp (- 4Nca*ptqt) (p^)^-1 (26)

and then weight this distribution with a probability depending on the value of
2(Pt ~ ¥)• (The distribution (26) is that of a locus with the homozygotes having the
same fitness, and the heterozygotes having a selective disadvantage of ca2.) Let us
now consider the joint distribution of the random variables X = 'L(pi — £) and
Y = E îffr, on the assumption that the ^ ' s are all independently distributed
according to the distribution (26). Since this distribution is symmetrical about £,
the covariance of pi and p^ must be zero, since knowledge that p^ takes the
particular value, b, say, only tells us that pt is equally likely to take the values
£ + V(i ~ ^ ) a n ^ i — V(i — ̂ )- Hence X and Y must also be uncorrelated. Furthermore,
it follows from the bivariate form of the central limit theorem that X and Y must
asymptotically follow a bivariate normal distribution when the number of loci is
large; since X and Y are uncorrelated they must thus be asymptotically indepen-
dent. If we now weight the joint distribution of them's by a factor depending only
on X in order to produce the distribution (25), the distribution of Y must remain
unaltered. Hence, in order to obtain information about the distribution of Y, which
determines the genetic variance, we can assume that the gene frequencies are
independently distributed with the distribution (26).

In order to find the expected value ofp^, and hence of ̂ Ip^ which determines
the genetic variance, from the distribution (26) we must evaluate an integral of the
type

=
J

(27)

where z = x(l — x). This integral is fortunately a standard Laplace transform given
in Erdelyi (1954, vol. 1, p. 139, no. 23) and is expressible as

I(a,ft) = B{ft,\){\)P~ie-^M(\, ft +\,\a) (28)
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where £(..., . . .) is the complete Beta function and M(...,...,...) is the confluent
hypergeometric function. (I am grateful to Dr F. H. C. Marriott for drawing my
attention to this solution of equation (27).) Hence

E(ptqt)=I(*,fi+l)m*,fi)
1 fi

The parameter ft = &Nu can be taken as a measure of the size of the population,
while the ratio fi/a = ujca? can be equated to the critical quantity 8 of the previous
section since it is assumed that c V is small. Values oiE(Pi qt) calculated from equation
(29) for different values of fi = 4Nu and of /?/a = u/ca2 = 8 are given in Table 1;
the irregular intervals of tabulation were dictated by available tables of the con-
fluent hypergeometric function (Airey, 1926, 1927; Rushton & Lang, 1954; Slater,
1964). The average probability of heterozygosity is 2E(piqi), and the expected value
of the genetic variance is 2na2E(piqi).

When the population size is infinite, it will be seen from the last column of Table 1
that EiPiqJ is the smaller of 8 and \; this follows from the results of the preceding
section. When the selection intensity is zero, so that c is zero and 8 infinite, it will be
seen from the last row of Table 1 that E(pt qt) = £/#/(/? + £); this follows from putting
c = 0 in equation (26), so that the distribution becomes a straightforward Beta
distribution. As a reasonable approximation in the body of the table it can be seen
that E{piqt) is roughly equal to whichever is the smaller of 8 and i/?/(/?+i). This
implies that the genetic variability is almost entirely determined by mutation and
drift, and is affected little by selection, when 8 is greater than £/?/(/?+£); on the
other hand, when the converse is true, the genetic variability is affected little by
drift and is determined almost entirely by mutation and selection.

Table 1. The expected value of p^ as a function of 4Nu and 8

i
a

u

ca2

0-025
0-083
0-250
0-833
2-50
00

01

0-0249
0-0356
00396
0-0410
00414
0-0417

0-5

0-0294
0-0811
0-1095
01203
0-1234
01250

1

0-0268
0-0935
0-1427
0-1598
01644
01667

3

0-0255
0-0934
0-1843
0-2074
0-2122
0-2143

CO

0-0250
0-0833
0-2500
0-2500
0-2500
0-2500

Since the level of heterozygosity for randomly chosen loci in natural populations
has been found to have a value of about 0-1, it is of interest to consider the values
of ft and 8 necessary to maintain such a level of heterozygosity under the present
model. From the previous paragraph it follows that an approximate condition for
2£(2>i<7i)to be equal to 0-05 is that the smaller of 8 and £/?/(/?+£) should be equal to
0-05; hence e i t h e r s = 0-05 and /? > 0-125 }
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If we assume that u = 10~5, these conditions can be written in the form

either ca? = 2 x 10"4 and N > 3000 "1
or cat < 2 x 10-4 and N = 3000. J

For example, let us suppose that the genetic variance of some quantitative
character is 50 and the total variance 100, so that the heritability is | . It will be
assumed that the coefficient of selection, k, is equal to 0-01, that the mutation rate,
u, is 10~5 and that the heterozygosity is 0-1. If the effective population size is con-
siderably larger than 3000, then the genetic variability must be determined almost
entirely by the joint effects of mutation and selection as discussed in the previous
section. Hence the number of loci must be about 125 from equation (17) (unless
some other means of maintaining genetic variability is operating); furthermore we
can deduce that c = 0-5 x 10~4 and that a2 = 4 from the facts that ca2 = 2 x 10~4

and that k = 2c F = 200c = 0-01. On the other hand, if the effective population size
is about 3000, so that the genetic variability is determined by the joint effects of
mutation and drift, then it can only be inferred that ca2 is less than 2 x 10~4; it can
be shown as before that c = 0-5 x 10"4, but it only follows that a2 must be less than
4 and that the number of loci must be larger than 125.
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